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Abstract

This paper identifies a fundamental economic welfare tradeoff between two-sided

open platforms and two-sided proprietary (closed) platforms connecting consumers and

producers. Proprietary platforms create two-sided deadweight losses through monopoly

pricing but at the same time, precisely because they set prices in order to maximize

profits, they partially internalize two-sided positive indirect network effects and direct

competitive effects on the producer side. We show that this can sometimes make

proprietary platforms more socially desirable than open platforms, which runs against

the common intuition that open platforms are more efficient. By the same token,

inter-platform competition may also turn out to be socially undesirable because it

may prevent platforms from sufficiently internalizing indirect externalities and direct

intra-platform competitive effects.
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1. Introduction

An increasing number of industries in today’s economy are organized around two-sided plat-

forms, which enable consumers to purchase, access and use a variety of products supplied

by independent producers: software systems, Internet portals, mobile networks, shopping

centers, etc. Policy makers have recently started to devote considerable attention to some

of these markets: in particular, the rising popularity of the open source software movement

has led many governments around the world to enact policies promoting open source soft-

ware systems at the expense of proprietary systems1. Oftentimes, these policies seem to

stem from a presumption (shared by some economists) that open software platforms are

inherently more efficient than their proprietary counterparts. The social efficiency issues

associated with different modes of platform governance (open vs. closed) in the type of

markets described above are quite important and they have not yet been addressed by

the growing economics literature on two-sided markets, which has up to now been mostly

concerned with platform pricing structures2.

In this context, the key contribution of our paper is to formally reveal a fundamental

welfare tradeoff between two-sided proprietary (i.e. profit-maximizing) platforms and two-

sided open platforms, which allow "free entry" on both sides of the market. Using the

model of two-sided platforms connecting buyers and suppliers of many varied products first

introduced by Hagiu (2004a), we show that on the one hand, a profit-maximizing platform

creates two-sided deadweight losses through monopoly pricing, but on the other hand,

precisely because it sets prices in order to maximize profits, it internalizes at least partially

the positive indirect network externalities between consumers and product suppliers and the

direct competitive effects between producers. By contrast, an open platform internalizes

1See Hahn et al. (2002).
2See for instance Armstrong (2005), Rochet and Tirole (2003), Hagiu (2004b).
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neither of these two effects since it essentially sets prices equal to marginal costs (zero) on

both sides. Therefore it is by no means obvious which type of platform will create higher

product variety, consumer adoption and total social welfare. We also show that the same

tradeoff arises when comparing a situation with competing platforms and one with a single

monopoly platform: for a certain range of parameters, the latter generates higher product

variety and social welfare. This suggests that there is a sense in which platform competition

is undesirable because it prevents platforms from sufficiently internalizing indirect network

effects and therefore from inducing the appropriate levels of product variety.

This paper is also a generalization of the earlier economics literature on product va-

riety, free entry and social efficiency, in particular the seminal contribution of Mankiw

and Whinston (1986). They study the inefficiencies associated with free-entry in product

markets and show that the sign of the inefficiency (i.e. whether there is excessive or insuf-

ficient entry) depends on the interplay between the competitive (business-stealing) effect

and the product-diversity effect. Our analysis can be viewed as an extension of theirs in two

important dimensions. First, Mankiw and Whinston’s model is "one-sided" in the sense

that the number of consumers participating in the market is fixed and only the number of

producers is variable. This allows them to focus exclusively on direct (negative) compet-

itive effects on the producer side and abstract from the positive indirect network effects

between the consumer side and the producer side, which are central to our paper. Thus,

our two-sided open platforms are similar but more general than the free-entry regimes

studied by Mankiw and Whinston (1986), Kiyono and Suzumura (1987), Spence (1976),

Dixit and Stiglitz (1977) and Salop (1979) because consumer participation in the market

is endogenous in our framework. Second and most important, our two-sided proprietary

platforms controlling market access through prices charged to both consumers and product

suppliers constitute a novel form of market organization, which has not been analyzed by
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the literature on product variety.

Finally, our paper is related to the literature on indirect network effects, especially

Church and Gandal (1992) and Church Gandal and Krause (2002). Both papers study two-

sided technology (or platform) adoption, however in both models, the platform is assumed

to be entirely passive, i.e. there is no strategic pricing on either side of the market. This

is equivalent to an open platform in our model.

The paper is organized as follows: the next section lays out the basic model and sets

up the two-sided mechanisms determining platform adoption by consumers and producers

for a monopoly two-sided proprietary platform, a social planner and a monopoly open

platform. Section 3 analyzes social efficiency, by first comparing product variety, consumer

adoption and social welfare under a proprietary platform and an open platform. It then

extends the basic model in two directions. First, it introduces vertical differentiation on the

producer side and shows that in this context, contrary to common intuition, a monopoly

platform can induce socially excessive product variety. Second, it compares a regime with

two competing platforms with one in which only one platform is active and shows that

for a range of parameter values, platform competition is not socially desirable. Section 4

concludes.

2. Modelling framework

The modeling framework is derived from that developed in Hagiu (2004a). We are inter-

ested in two-sided platforms whose value to consumers (users) is increasing in the number

of developers3 they support and whose value to developers is increasing in the number of

3Developers are third-party product suppliers: developers of software applications or games, content
providers, etc. For simplicity and ease of interpretation throughout the paper we will use the blanket term
"developers" instead of third-party producers and "applications" in order to refer to their products.
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users who adopt them. The platform controls the extent of adoption on both sides of the

market through prices.

Net surplus for a user indexed by θ from joining a platform which charges her PU 4 and

is supported by n applications is:

u (n)− PU − θ

where u (n) is the surplus obtained from the n applications, net of the prices charged by

application developers and the parameter θ is the user’s intrinsic "distance" in preference

space to the system comprised by the platform and the applications5. It is distributed

over a support [θL, θH ] (we allow θH to be infinite). The number of users "closer" than θ

(i.e. characterized by θ
0 ≤ θ) is F (θ), where F is a differentiable and strictly increasing

function with continuously differentiable derivative f , mapping [θL, θH ] into [0,+∞] and

such that F (θL) = 0. We denote by εF the elasticity of F , which is to be interpreted as

the "elasticity" of user demand for the platform:

εF (θ) =
θf (θ)

F (θ)
> 0

Similarly, net profits for a developer indexed by φ from supporting a platform which

charges PD and is adopted by all users with θ ≤ θm are6:

π (n)F (θm)− PD − φ

4Hagiu (2004b) studies the pricing aspect of the problem into detail. Here we are concerned with social
efficiency, therefore we choose the simplest possible pricing game which allows us to derive the main insights.

5For example, it can be interpreted as the difference between the fixed (sunk) cost of learning how to
use the system and the standalone value of the platform (in case it comes bundled with some applications).

6 Indeed, given the structure of user preferences assumed above, if user θ adopts the platform given n
and PU then all users θ0 ≤ θ will also adopt.
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where π (n) is the profit per platform user net of variable costs and the parameter φ is

the fixed cost of writing an application, distributed on [0, φH ] (we allow φH to be infinite).

The number of developers with fixed costs less than or equal to φ is H (φ), where H is a

differentiable and strictly increasing function with continuously differentiable derivative h,

mapping [0, φH ] into [0,+∞] and such that H (0) = 0. The elasticity of developer demand

for the platform is:

εH (φ) =
φh (φ)

H (φ)
> 0

As suggested by this formulation we will ignore integer constraints and treat n as a

continuous variable throughout the paper. The reason is that in the markets we have in

mind there are hundreds or even thousands of applications: each individual developer is

then "very small" and ignores the influence of his decision on platform adoption by users

and other developers. Continuity also renders the analysis very convenient by allowing us

to use demand elasticities.

Let:

V (n) = u (n) + nπ (n)

denote the gross surplus created by n applications for each platform user.

We make the following assumption:

Assumption 1 u (n) is strictly increasing, π (n) is strictly decreasing and V (n) is

strictly increasing and concave.

This assumption is quite reasonable: it simply says that net user surplus u (n) is in-

creasing in the number of applications used, that each developer’s profits per user are

decreasing in n (crowding effect) and that the gross user surplus created by n applications

is increasing at a decreasing rate (the 100th application is less valuable than the 10th).
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Let us denote by εV the elasticity of V :

εV (n) =
nV 0 (n)

V (n)
∈]0, 1[

The elasticity εV measures the intensity of users’ preference for variety. The higher εV ,

the less concave V (.) and therefore the higher the marginal contribution of an additional

application to gross surplus per platform user.

Also, it will prove useful to define:

λ (n) =
π (n)

V 0 (n)

the ratio between developer profits and the marginal contribution of an additional developer

to gross surplus per platform user. Intuitively, when λ (n) > 1, each developer is gaining

more than his marginal contribution, therefore one would expect a bias towards socially

excessive entry on the developer side of the market under an open platform (or free entry

regime), and viceversa, when λ (n) < 1, an open platform regime contains a bias towards

socially insufficient developer entry (cf. Mankiw and Whinston (1986)). A two-sided

proprietary platform may either correct or exacerbate this bias to a certain extent through

its prices.

In order to illustrate how the reduced forms u (n), π (n) and V (n) are obtained, we

provide two specific examples, both of which satisfy assumption 1 and which we will use

throughout the paper.

Example 1 Suppose users’ gross utility has the Spence-Dixit-Stiglitz formG (
P

i v (qi)),

where qi is the "quantity" of application i consumed, v (0) = 0, v0 (.) > 0 and v00 (.) < 0

and G0 (.) > 0, G00 (.) < 0.
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User maximization implies that the quantity qk demanded by each platform user7 from

developer k charging pk satisfies:

pk = v0 (qk)G
0
ÃX

i

v (qi)

!

Each developer takes the market price G0 (
P

i v (qi)) as given when setting his price.

Consequently, the stage 3 pricing equilibrium among developers is symmetric and defined

by:

v0 (qn)G
0 (nv (qn)) = pn = argmax

p

½
(p− c) v0−1

µ
p

G0 (nv (qn))

¶¾
Then: π (n) = (pn − c) qn, u (n) = G (nv (qn))− npnqn and V (n) = G (nv (qn))− ncqn.

Letting v (q) = qσ and G (z) = z
α
σ , with 0 < α < σ < 1, we obtain p = c

σ and:

π (n) = (1− σ)α
³ασ

c

´ α
1−α

n
− σ−α
σ(1−α)

u (n) = (1− α)
³ασ

c

´ α
1−α

n
α(1−σ)
σ(1−α)

V (n) = (1− σα)
³ασ

c

´ α
1−α

n
α(1−σ)
σ(1−α)

εV =
α (1− σ)

σ (1− α)
∈]0, 1[

λ =
σ (1− α)

1− σα
∈]0, 1[

Example 2 Suppose users have unitary demand for applications (i.e. buy either 0 or

one unit of each application) and gross benefits from using n applications are V (n) with

V 0 (.) > 0, V 00 (.) < 0. In this case the stage 3 price equilibrium is: pn = V 0 (n) leading

7This is because all users "agree" on the incremental benefits offered by applications.
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to8: π (n) = V 0 (n), u (n) = V (n) − nV 0 (n) > 0 and λ = 1. Letting V (n) = Anβ, with

0 < β < 1, we obtain9:

π (n) = βAnβ−1

u (n) = (1− β)Anβ > 0

εV = β

Let us now clearly specify the timing of the pricing game we consider throughout the

paper. There are 3 stages:

• Stage 1) The platform sets prices PU and PD for consumers and developers simulta-

neously

• Stage 2) Users and developers make their adoption decision simultaneously

• Stage 3) Developers having adopted the platform set prices for consumers and those

consumers who have adopted the platform in the second stage decide which applica-

tions to buy.

The slightly odd-sounding assumption that users decide whether or not to buy the

platform before developers set their prices is made in order to simplify the analysis of the

two-sided pricing game. Given that developers are atomistic in our model, it is entirely

harmless: developers ignore the effect of their pricing decision on total consumer demand

for the platform anyway.

8Here we assume developers have 0 marginal costs: many of the real-life platforms we have in mind
support digital applications whose marginal costs are virtually 0. In example 1 marginal costs are necessarily
positive in order to keep prices and profits finite.

9This example is used by Church Gandal and Krause (2002).
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2.1. The optimization problem for a two-sided proprietary platform

Given the platform’s prices PU and PD, it is indeed an (interior) equilibrium for n devel-

opers and F (θm) users to adopt the platform in stage 2 only if the following two conditions

hold:

π (n)F (θm)− PD −H−1 (n) = 0 (2.1)

u (n)− PU = θm (2.2)

The first condition says that in equilibrium all profit opportunities are exhausted for

developers (assuming the supply of developers is large enough) and the second condition

says that the marginal user θm must be indifferent between adopting and not adopting the

platform.

Equation (2.1) determines developer demand n as a function N
¡
θm, PD

¢
of user de-

mand and the price charged to developers, whereas equation (2.2) determines the marginal

user θm (and therefore user demand F (θm)) as a function Θ
¡
n, PU

¢
of developer demand

and the price charged to users. Note that these two-way demand interdependencies or

indirect network externalities are positive: N
¡
., PD

¢
and Θ

¡
., PU

¢
are both increasing.

Plugging (2.2) into (2.1), we obtain n as an implicit function of the platform’s prices

PD and PU :

π (n)F
¡
u (n)− PU

¢
= H−1 (n) + PD (2.3)

This expression makes clear that on the developer side of the market there are both

positive indirect network effects contained in the term F
¡
u (n)− PU

¢
and negative direct

or competitive effects contained in the term π (n).

Throughout the paper we normalize for simplicity and without any loss of substance
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the platform’s marginal costs on both sides to 0. The expression of platform profits is then:

ΠP = PUF (θm) + nPD

Using (2.1) and (2.2) we obtain:

ΠP = (V (n)− θm)F (θm)− nH−1 (n) (2.4)

which depends only on (θm, n). Therefore, rather than maximizing platform profits over¡
PU , PD

¢
we will do so directly over (θm, n)10.

The first-order conditions determining the optimal
¡
θmp , np

¢
are:

V (n)− θm

θm
=

1

εF (θ
m)

(2.5)

V 0 (n)F (θm) = nH−10 (n) +H−1 (n) (2.6)

Given the profit-maximizing
¡
np, θ

m
p

¢
, the corresponding profit maximizing prices

¡
PU
2sp, P

D
2sp

¢
are then uniquely determined by (2.1) and (2.2).

2.2. The optimization problem for the social planner

A benevolent social planner maximizes total welfare, which in our framework is the differ-

ence between total surplus from indirect network effects and the costs of entry on the two

sides of the market. Its expression when n developers and all θ ≤ θm users are allowed in

10A similar "trick" is used by Armstrong (2003) in a linear model. Below we discuss necessary conditions
for this transformation to be legitimate in our model.
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the market is then:

W (θm, n) = V (n)F (θm)−
Z θm

0
θf (θ) dθ −

Z H−1(n)

0
φh (φ) dφ (2.7)

which the social planner maximizes over (θm, n). This leads to the following first-order

conditions:

V (n)− θm = 0 (2.8)

V 0 (n)F (θm)−H−1 (n) = 0 (2.9)

which determine the socially optimal levels of entry on both sides (θmso, nso).

2.3. Open platform or two-sided free entry

In our framework, an open platform is characterized simply by free-entry of both users

and developers, i.e. the open platform charges prices equal to 0 on both sides of the

market (
³
PU
fe, P

D
fe

´
= (0, 0)) and users and developers enter freely until all positive surplus,

respectively profit, opportunities are exhausted. Formally, nfe and θmfe are determined

simultaneously by the following two equations:

πDm (n) = π (n)F (θm)−H−1 (n) = 0 (2.10)

θm = u (n) = V (n)− nπ (n) (2.11)

where πDm (n) are net profits of the marginal developer when n developers have entered.

Before proceeding, there are a few issues we need to address in order to be completely

rigorous. First, we sidestep the problem of multiple solutions inherent in contexts with
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indirect network effects by assuming11:

Assumption 2
¡
θmp , np

¢
, (θmso, nso) and

¡
θmfe, nfe

¢
are well-defined, i.e. (2.5, 2.6),

(2.8, 2.9) and (2.10, 2.11) each have a unique interior solution. Moreover
¡
np, θ

m
p

¢
and

(nso, θ
m
so) are global maximizers for Π

P and W respectively.

Second, at a minimum we should also make sure that given
¡
PU
p , PD

p

¢
,
¡
np, θ

m
p

¢
arises as

a stable market configuration and similarly, given zero prices on both sides (
³
PU
fe, P

D
fe

´
=

(0, 0)),
¡
nfe, θ

m
fe

¢
also arises as a stable market configuration. Graphically, stability of con-

figuration (nx, θmx ) given
¡
PU
x , PD

x

¢
means that at point (nx, θmx ) the curve n = N

¡
θm, PD

x

¢
crosses the curve θm = Θ

¡
n, PU

x

¢
from below in a (n, θm) plane12.

Assumption 3 The market configurations
¡
np, θ

m
p

¢
and

¡
nfe, θ

m
fe

¢
are stable given¡

PU
p , PD

p

¢
,respectively (0, 0).

The following lemma, proven in the appendix, provides a useful example of functional

forms, which satisfy assumptions 2 and 3.

Lemma 0 Assume F , H and V are defined on [0,+∞] and have constant elasticities,

i.e. F (θ) = BθεF , H−1 (φ) = Cφ
1
εH , V (n) = AnεV , π (n) = λV 0 (n), where εV =

α(1−σ)
σ(1−α) ,

λ = σ(1−α)
1−σα in example 1 and εV = β, λ = 1 in example 2. Then assumptions 2 and 3 are

satisfied if:

εV (1 + εF ) ≤ 1 +
1

εH
(2.12)

∙
1− λεV
1− εV

εV (1 + εF )− 1
¸
λ (1− εV ) ≤

1

1 + εH
(2.13)

¥

11The insights provided by the discussion that follows is unaffected by this assumption and the formal
analysis is greatly simplified.
12See Hagiu (2004b) for a graphic representation and a dynamic justification.
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Figure 2.1:

Third and last, for
¡
PU
p , PD

p

¢
, (2.1) and (2.2) may have multiple stable solutions (θm, n)

as illustrated in figure 2.113.

This is a well-known feature in markets with indirect network effects14. Thus, we also

make the following assumption.

Assumption 4 If there are multiple stable market configurations, solutions to (2.1)

and (2.2) given
¡
PU
p , PD

p

¢
=
¡
u (np)− θmp , π (np)F

¡
θmp
¢
−H−1 (np)

¢
, then the proprietary

platform is able to coordinate users and developers on its most preferred solution, i.e.¡
θmp , np

¢
.

This assumption is less restrictive than it might appear at first glance. Even when there

are multiple stable equilibria, if developers and users do not coordinate on the equilibrium

13Assumption 2 already ensures that given PU
fe, P

D
fe = (0, 0), (2.1) and (2.2) have a unique stable

solution θmfe, nfe .
14See for example Church and Gandal (1992).
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desired by the platform, then the latter can "adjust" coordination either by providing some

of its own applications or by restricting entry on both sides.

3. Proprietary platforms, open platforms, product diversity and social

efficiency

Having set up the equations determining the levels of user adoption and developer entry

under a two-sided proprietary platform, a social planner and a two-sided open platform, we

can now turn to comparing them, as well as the total levels of social welfare the platforms

induce.

3.1. Monopoly proprietary platform vs. monopoly open platform

Although our representation of open platforms as allowing free entry on both sides of the

market may be an overly simplified conceptualization of, say, the open source software

form of market organization15, it is sufficient for revealing a fundamental welfare tradeoff

relative to proprietary platforms. An open platform does not create two-sided deadweight

losses due to monopoly pricing but at the same time leaves uninternalized the positive

indirect network effects between users and developers, whereas a proprietary platform has

an incentive to internalize them precisely because it sets its prices in order to maximize

profits.

Note that in a one-sided market the welfare comparison would be trivial: a firm pricing

at marginal cost always entails higher output and higher social welfare than a profit-

maximizing monopolist who cannot price-discriminate. By contrast, in a two-sided context,

things are more complex: as we show below, a proprietary platform may in fact induce

15 In particular, "free entry" of users and developers is certainly not a perfect representation of the
licensing agreements characteristic of open source software (BSD or GPL).
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more developer entry (i.e. product variety), user adoption and higher total social welfare

than an open platform and it may even result in socially excessive product variety (and

user adoption).

To understand precisely where the tradeoffs come from, it is useful to look at the

economic mechanisms which drive entry on each side of the market. Consider first the

developer side. The derivative of total social welfare with respect to n is:

∂W

∂n
= V 0 (n)F (θm)−H−1 (n) = πDm (n) +

¡
V 0 (n)− π (n)

¢
F (θm) (3.1)

Thus, if one looks only at the developer side of the market, what drives a wedge between

the levels of product diversity under an open platform relative to the socially optimal level

is the term (V 0 (n)− π (n))F (θm). If developer profits per platform user π (n) exceed the

marginal contribution of an additional developer to social welfare per platform user V 0 (n)

(i.e. λ > 1), then ∂W
∂n < πDm (n) and therefore an open platform tends to induce excessive

entry of developers all other things equal. And viceversa. This is precisely the insight of

Mankiw and Whinston (1986). To see this more clearly, consider example 1:

V 0 (n)− π (n) = n
¡
G0v0 − c

¢ ∂qn
∂n| {z }+G0 ×

¡
v − v0qn

¢| {z }
business-stealing product diversity

Just like in Mankiw and Whinston (1986) the first term represents the business stealing

effect and is negative as long as ∂qn
∂n < 0 and the price G0v0 is above marginal cost, whereas

the second term is the product diversity effect and is positive since v is concave. The sign

of the inefficiency of an open platform on the developer side depends on which of these

two effects dominates. In example 2 we have π (n) = V 0 (n), so that the open platform
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introduces no bias with respect to developer entry all other things equal.

But of course, all other things are not equal in our model, since developer entry depends

on user entry and viceversa. As we show below, the open platform induces too little user

entry, which in turn leads to too little developer entry, an indirect effect which does not

exist in Mankiw and Whinston (1986).

Consider now the derivative of a proprietary platform’s profits with respect to n:

∂ΠP

∂n
= V 0 (n)F (θm)−H−1 (n)− nH−10 (n)

= πDm (n) +
¡
V 0 (n)− π (n)

¢
F (θm)− nH−10 (n) (3.2)

Comparing (3.2) with (3.1), the proprietary platform introduces no inefficiency through

the business stealing and the product diversity effects. This is due to the fact that in our

model both users and developers are differentiated only horizontally, so that the platform

can fully internalize developer revenues nπ (n) and user gross surplus V (n) − nπ (n)16.

What does induce a bias however is the proprietary platform’s inability to perfectly price

discriminate among developers: it consequently discounts the total social value created by

an additional developer by nH−10 (n), the revenues lost on existing developers by reducing

the price PD in order to accomodate the additional developer. Since this bias is negative,

the proprietary platform tends to induce too little entry on the developer side, keeping

everything else constant.

Turning now to the user side of the market, first order condition 2.5 with respect to θm

16Below we provide an example with vertical developer differentiation.
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for the proprietary platform is:

u (n)− PU
p = θm =

εFV (n)

1 + εF
(3.3)

Comparing (2.8) to (2.11), the open platform tends to induce too little user adoption

all other things equal, because each developer who enters does not take into account the

effect of his price on total user demand for the platform. Comparing (3.3) to (2.8), the

proprietary platform also tends to induce too little user entry: it perceives the benefits of

an additional user as the difference between the extra revenues PU
p +nπ (n) = V (n)− θm,

which are exactly equal to the total social value created by the additional user17, and F (θm)
f(θm) ,

the revenues lost on existing users by reducing the price PU
p in order to accomodate the

additional user.

Comparing (2.11) and (3.3), it is not possible to say in general which of the open

platform or the proprietary platform restricts user adoption more. It depends on the sign

of PU
p : all other things equal, the proprietary platform induces less restriction of user entry

if and only if it subsidizes users, i.e. sets PU
p < 0. This illustrates the fact that, by being

able to balance the interests of the two sides through its pricing structure, a proprietary

platform may come closer to the socially optimal level of adoption than a platform simply

pricing at marginal cost on both sides.

Thus, given that a proprietary platform induces a bias towards socially insufficient entry

on both sides of the market, the combination of the two leads unambiguously to insufficient

product diversity and user adoption relative to the socially optimal levels. This of course

is not a robust conclusion: it is due to our assumption of horizontal differentiation on both

sides. Below we show that introducing vertical developer differentiation is sufficient for

17Once again, this is because users are differentiated only horizontally.
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overturning this result.

However, even in this simple horizontal differentiation framework, the proprietary plat-

forms may turn out to induce higher levels of product variety and total social welfare. To

see this more clearly, we can combine the first-order conditions above in order to obtain:

• the level of product variety np induced by a proprietary platform solves:

V 0 (n)F

µ
εFV (n)

1 + εF

¶
= nH−10 (n) +H−1 (n) (3.4)

• the level of product variety nfe induced by an open platform solves:

π (n)F (u (n)) = H−1 (n) (3.5)

• the level of product variety nso chosen by the social planner solves:

V 0 (n)F (V (n)) = H−1 (n) (3.6)

Under sufficient regularity conditions (cf. Assumption 2 and Lemma 0), np, nfe, nso

are well-defined, i.e. (3.4), (3.5) and (3.6) each have a unique positive solution. Then,

since, εF
1+εF

< 1 and H−10 (n) > 0, we have np < nso. However, comparing (3.4) and (3.5),

it is not possible to say in general whether np ≷ nfe. Figure (??) illustrates (3.4), (3.5)

and (3.6): in graph a) the positive indirect network effects are outweighed by the negative

direct business-stealing effects on the developer side so that the left-hand sides of (3.4),

(3.5) and (3.6) are decreasing in n, whereas graph b) depicts the case in which the positive

indirect effects are stronger.

The following proposition provides a rigorous illustration of all the previous considera-
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tions.

Proposition 4 Assume V , F and H are defined on [0,+∞] with constant elasticities,

F (θ) = BθεF , H−1 (n) = Cn
1
εH , V (n) = AnεV , π (n) = λV 0 (n), u (n) = (1− λεV )V (n)

and competition among developers is either as in example 1, with εV =
α(1−σ)
σ(1−α) and λ =

σ(1−α)
1−σα , or as in example 2, with εV = β and λ = 1. Also, assume (2.12) and (2.13) hold.

Then:

i) Both the proprietary and the open platforms induce socially insufficient product va-

riety and user adoption: np, nfe < nso and θmp , θ
m
fe < θmso

ii) Suppose in addition that εF = 1 and that all developers have the same fixed cost φ

(i.e. εH = +∞, C = φ) and compete as in example 1. Then:

• np > nfe if and only if (1− σα)2 > 2σ (1− α)2.

• Total social welfare can be higher with either type of platform: W(np,θmp )
W(nfe,θmfe)

→ +∞

when α→ 0, σ → 0 and α
σ → k < 1;

W(np,θmp )
W(nfe,θmfe)

→ 3
4 when σ → 1.

Proof See appendix.¥

The most substantial part of proposition 4 is part ii): it exhibits specific cases in which

a proprietary platform dominates an open platform both in terms of product variety and

total social welfare.

3.2. Developer vertical differentiation and socially excessive product variety

Despite its tractability, one shortcoming of the two-sided horizontal differentiation model

we have used up to now is that it cannot generate cases in which proprietary platforms
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induce socially excessive levels of product variety18, as was made clear in the discussion

above. This is because when the two sides of the market are differentiated only horizon-

tally, a two-sided platform fully internalizes the indirect network effects between users and

developers, as well as the direct competitive effects between developers. The only distor-

tions which arise are the deadweight losses due to monopoly pricing on both sides of the

market and they lead to insufficient entry of both users and developers.

In this subsection we wish to make clear that this feature cannot be robust to more

general formulations of user and developer demand and that everything hinges crucially on

the extent to which a platform internalizes indirect network effects and business-stealing

effects. Even though a two-sided platform extracts only a part of total user and developer

surplus, there is no reason why the marginal contribution of an additional developer to

platform profits should always be lower than the marginal contribution of that developer

to total social surplus so that the platform necessarily restricts entry too much relative to

the social optimum. In particular, if developers are sufficiently vertically differentiated by

the benefits they offer users (as opposed to being simply heterogeneous in their fixed costs)

and if the platform is unable to perfectly price discriminate, then it might overestimate

the value of the positive indirect network effects relative to the value of negative direct

competitive effects and therefore induce socially excessive entry.

To formalize this insight, we modify our model by assuming that all developers have

the same fixed cost φ > 0 and that they are exogenously differentiated by the quality q

of their applications. The quality q is the probability that a given user is interested in

a particular application (demand for each application is unitary) and is distributed over

a support [qL, qH ] ⊂ [0, 1], such that the number of developers with quality lower than q

18By contrast, it is easy to construct cases in which the level of product variety generated by an open
platform is socially excessive: it suffices to assume inelastic user demand and use our example 1 with the
functional forms provided in section 4 of Mankiw and Whinston (1986): G (z) = 1

z
, v (q) = aq − b

2
q2.
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is H (q), where H is an increasing function with continuous derivative h and satisifying

H (qL) = 0 and H (qH) < +∞.

Although developers are vertically differentiated, we still assume for simplicity that

the platform is restricted to charging only fixed access fees on both sides19. Given plat-

form prices
¡
PU , PD

¢
and user demand F (θm), only high-quality developers enter, i.e.

those with q ≥ qm, where qm is the quality of the marginal developer. Each user buysR qH
qm qh (q) dq applications so that the equilibrium price of applications is V 0

³R qH
qm qh (q) dq

´
by straightforward analogy with example 1 above. qm is then defined by:

V 0
µZ qH

qm
qh (q) dq

¶
qmF (θm)− PD − φ = 0

The marginal user θm is then given by:

V (Q (qm))−Q (qm)V 0 (Q (qm))− θm − PU = 0

where:

Q (qm) =

Z qH

qm
qh (q) dq

is the number of applications bought by each platform user. Platform profits are:

ΠP = PUF (θm) + PD (H (qH)−H (qm))

= [V (Q (qm))−E (qm)− θm]F (θm)− (H (qH)−H (qm))φ

19Our insights remain valid when the platform is also allowed to charge variable fees. The only necessary
condition is that the platform should be unable to fully extract all developer revenues through its prices.
This may be justified for example by the need to provide sufficient innovation incentives to developers, as
shown in Hagiu (2004b).
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where:

E (qm) = V 0 (Q (qm)) (Q (qm)− (H (qH)−H (qm)) qm) > 0

is the difference between total developer revenues and the portion thereof which is extracted

by the platform (per user). In other words, it is the part of developer gross surplus

uninternalized by the platform. Note that when all developers have the same quality,

E (qm) = 0, which brings us back to the horizontal differentiation case, in which the two-

sided platform fully internalizes both developer revenues and user surplus.

Assuming the appropriate second order and stability conditions hold, the profit-maximizing

marginal product quality qmp and user θmp are the solutions to the first-order conditions:

(V (Q)−E (qm)− θm) f (θm) = F (θm) (3.7)

µ
dQ

dqm
V 0 (Q)−E0 (qm)

¶
F (θm) + h (qm)φ = 0 (3.8)

Social welfare on the other hand has the following expression:

W = V (Q)F (θm)−
Z θm

0
θf (θ) dθ − (H (qH)−H (qm))φ

so that the socially optimal marginal product quality qmso and marginal user θ
m
so are the

solutions to:

V (Q)− θm = 0 (3.9)

dQ

dqm
V 0 (Q)F (θm) + h (qm)φ = 0 (3.10)

Comparing (3.9) and (3.10) to (3.7) and (3.8), it is no longer obvious whether the two-

sided proprietary platform will induce too little (qmp > qmso) or too much (q
m
p < qmso) variety
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(and user adoption). Indeed, while the monopoly pricing distortion on the user side still

tends to render user adoption sub-optimal20, on the developer side it all depends on the

sign of E0 (qm). Specifically, if E0 (qm) > 0, then the left hand side of (3.8) is lower than

the left-hand side of (3.10) and consequently, since both expressions are decreasing in qm

(required by our assumption that the maximization problems are well-defined), it might

turn out that qmp < qmso. In this case there is an excessive variety bias on the developer side,

which may exceed the insufficient user adoption bias. The following proposition provides

and example in which this happens:

Proposition 5 Assume there is a mass B of identical users (i.e. user demand for

the platform is inelastic), H (q) = C (q − qL), V (Q) = V − A
Qβ and:

βqL > 2qH

Then ΠP (qm) and W (qm) are concave and the proprietary platform induces socially

excessive product diversity, i.e. qmp < qmso or H (qH)−H
¡
qmp
¢
> H (qH)−H (qmso).

Proof In the appendix.¥

3.3. Monopoly platform vs. competing platforms

The economic efficiency tradeoff coined above between internalizing two-sided indirect net-

work effects and creating two-sided deadweight loss also has interesting implications re-

garding the desirability of competition between two-sided platforms. In a static one-sided

context, with no fixed set-up costs and no innovation, more competition always increases

social welfare as it helps reduce the deadweight losses due to pricing by firms with market

20To see this, note that given the same qm, (3.7) yields a lower θm than (3.9).

25



power. In a two-sided context however, the countervailing force is that platform compe-

tition limits the ability of individual platforms to extract surplus from both sides of the

market and therefore may generate less product variety and user adoption than those aris-

ing under a monopoly platform regime (all other things equal). This negative effect might

well outweigh the positive effect of competition (reduction of deadweight loss).

To illustrate this mechanism, consider the following straightforward extension of our

model to allow for platform competition (cf. Hagiu (2004b)). The user horizontal differ-

entiation parameter θ is now assumed to be uniformly distributed on a Hotelling segment

[0, 1]; unit transportation costs are t and there is one platform situated at each of the two

extremities. Thus, the utility of a user located at θ ∈ [0, 1] from adopting platform 1 is

u0+u (n1)− tθ−PU
1 , whereas that from adopting platform 2 is u0+u (n2)− t (1− θ)−PU

2 ,

where u0 is the standalone value of each platform for users. In all that follows we assume

u0 is large enough so that the user market is always entirely covered. For i = 1, 2, ni

denotes the number of developers supporting platform i. Then, denoting by DU
i total user

demand for platform i, we have DU
1 +DU

2 = 1 and:

DU
1 =

1

2
+

u1 − u2
2t

(3.11)

where ui = u0 + u (ni)− PU
i is the utility gross of transportation costs offered by platform

i to its users.

Meanwhile we assume there is no differentiation between platforms from the developers’

perspective, i.e. a developer with fixed development cost φ makes profits π (ni)DU
i −PD

i −

φ by joining platform i exclusively and π (n1)D
U
1 + π (n2)D

U
2 − PD

1 − PD
2 − 2φ from

multihoming21. Thus, for each developer, the decision to adopt platform 1 is independent

21We also implicitly assume the development cost is platform-independent and there are no economies of
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of his decision to adopt platform 2, given DU
1 and DU

2
22, so that developer demand ni for

platform i ∈ {1, 2} is implicitly defined by:

π (ni)D
U
i − PD

i −H−1 (ni) = 0 (3.12)

The assumption that platforms are differentiated from the point of view of users but are

perfect substitutes for developers simplifies the analysis and is also quite realistic in most

cases. Indeed, at equal platform quality, developers care only about the respective installed

bases of users and, compared to the latter, they are relatively less likely to have intrinsic

preferences for one platform over the other (i.e. being die-hard MacIntosh or Nintendo

fans for example).

Although in principle both users and developers are allowed to multihome, we focus

on the symmetric equilibrium in which each platform attracts half the users exclusively,

whereas all developers who enter multihome. If the user differentiation parameter t is large

enough, this is the only symmetric equilibrium.

Platform 1’s profits are then:

ΠP1 = PU
1 D

U
1 + PD

1 n1 =
¡
PU
1 + n1π (n1)

¢µ1
2
+

u1 − u2
2t

¶
− n1H

−1 (n1)

= (V (n1)− u1)

µ
1

2
+

u1 − u2
2t

¶
− n1H

−1 (n1)

In order to find the symmetric equilibrium without explicitly deriving the two-dimensional

best-response functions, we use a "trick" developed by Choi (2004). In the symmetric equi-

"platform scale", i.e. the cost of development for an additional platform does not depend on having or not
developed for another platform.
22This is because developers are atomistic, so that each individual developer does not take into account

the effect of his adoption decision on DU
1 and DU

2 through the indirect network effect mechanism.
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librium, u1 = u2 = u and DU
1 = DU

2 =
1
2 . Consider then varying PD

1 while maintaining

u (n1)− PU
1 fixed equal to u:

ΠP1 = (V (n1)− u)
1

2
− n1H

−1 (n1)

Meanwhile, (3.12) defines a 1-to-1 relationship between n1 and PD
1
23:

π (n1)
1

2
− PD

1 = H−1 (n1)

so that we can optimize directly over n1. We obtain that the number nc of developers who

enter (and multihome) in the symmetric equilibrium with platform competition is defined

by24:

V 0 (nc)
1

2
= ncH

−10 (nc) +H−1 (nc) (3.13)

Since we are only concerned with social welfare and prices are simple transfers, we need

not worry here about determining the actual equilibrium prices charged by the platforms

on the two sides of the market (see Hagiu (2004b) for the complete derivation of the pricing

structure): nc is sufficient for our purposes.

Let us now turn to the case of a monopoly platform situated at one extremity of the

Hotelling segment and assume that u0 is high enough so that the platform covers the entire

market for users. It does so by charging PU = u0+u (n)− t. Developer demand n is given

by:

π (n)− PD −H−1 (n) = 0

23This is because π is strictly decreasing and H−1 strictly increasing.
24 If the right-hand side of (3.13) is increasing then nc is unique. This is the case when H has constant

elasticity.
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Therefore platform profits are:

ΠP = PU + PDn = V (n) + u0 − t− nH−1 (n)

so that the level of product diversity np chosen by the monopoly platform is defined by:

V 0 (np) = npH
−10 (np) +H−1 (np) (3.14)

Comparing (3.14) and (3.13), it is clear that the monopoly platform induces more

product diversity than the competing platforms:

np > nc

The social welfare tradeoff is the following. With a monopoly platform situated at one

extremity (say 0) of the Hotelling segment, there is less platform diversity so that users

situated further than x = 1
2 incur additional transportation costs (

t
2 overall). On the other

hand however, the monopoly platform offers more developer product diversity to its users

than any of the two competing platforms because it is able to internalize a larger share

of user benefits. Additionaly, there is no duplication of fixed costs for the developers who

enter, since they only support one platform rather than two.

Formally, the social welfare gain from having one platform rather than two is:

V (np)− V (nc)−
t

4
+ 2

Z H−1(nc)

0
φh (φ) dφ−

Z H−1(np)

0
φh (φ) dφ

The following proposition establishes rigorously that this expression can be either pos-

itive or negative depending on parameter values.
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Proposition 6 Assume u0 is high enough so that both the competing platforms and a

single monopoly platform cover the user market entirely in equilibrium, that all developers

have the same fixed development cost φ (i.e. developer demand is inelastic, εH = +∞)

and that developers for the same platform compete as in example 2 (i.e. V (n) = Anβ,

π (n) = βAnβ−1, u (n) = (1− β)Anβ). Then there exists a non-empty interval [tL, tH ] so

that total social welfare is higher with a single monopoly platform than with two competing

platforms if and only if t ∈ [tL, tH ].

Proof See appendix.¥

Thus, proposition 6 confirms that there is a sense in which platform competition may

be undesirable because it prevents the competing platforms from sufficiently internalizing

positive indirect network effects, so that they do not have enough incentives to induce

product variety. A monopoly platform can sometimes be more efficient, even though it

creates more deadweight loss. Although here we have focused on the simplest case, in which

both the competing platforms and a monopoly platform cover the user market entirely, it

should be clear that this insight is valid in more general settings, with partial coverage of

the user market and more than two platforms.

4. Conclusion

There is a widely held view among policy makers and economists that open platforms

and competition among platforms are intrinsically more desirable for social efficiency than

closed, proprietary and monopolistic platforms. This belief seems to rely on an intuition

that open and free access to a bottleneck ressource can only improve social welfare. In

this paper we have provided a simple model of two-sided platforms which shows clearly

how this intuition breaks down in two-sided markets. The key ingredients are positive
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two-sided indirect network externalities and direct competitive (business-stealing) effects

on the producer side of the market, which give rise to a fundamental welfare tradeoff

between open and proprietary platforms. Because the latter have market power, they

can create two-sided deadweight losses typically by restricting access on both sides of

the market more than is socially desirable. At the same time however, precisely because

they set prices to maximize profits, they have an inherent interest in internalizing indirect

network externalities and direct competitive effects, which are left uninternalized by open

platforms. As we have shown formally, this may lead them to induce higher levels of

product variety, user adoption and total social welfare than open platforms. We have

also shown that proprietary platforms may even induce socially excessive levels of product

variety when their profit maximization program leads them to overestimate the value of

indirect network externalities. Similarly, platform competition in two-sided markets may

turn out to be socially undesirable if it prevents platforms from sufficiently internalizing

indirect network externalities and direct competitive effects. The conclusion is that welfare

analysis in two-sided markets follows a very different logic from that in one-sided markets

and may lead to counterintuitive conclusions.

While here we have focused on two very simple and stark forms of platform governance

- open vs. closed -, we believe there are promising perspectives for more in-depth research

on subtler aspects of platform governance in two-sided markets (cooperatives, associations,

etc.), which should inform both policy-makers and business practitioners.
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5. Appendix

Proof of Lemma 0 With the functional forms assumed, (2.5, 2.6) are equivalent to

θmp =
εF
1+εF

AnεVp and:

εVA
1+εFB

µ
εF

1 + εF

¶εF

nεV (1+εF )−1p = C

µ
1 +

1

εH

¶
n

1
εH
p
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(2.8, 2.9) are equivalent to θmso = AnεVso and:

BA1+εF εV n
εV (1+εF )−1
so = Cn

1
εH
so

and (2.11, 2.10) are equivalent to θmfe = (1− λεV )An
εV
so and:

BA1+εF λεV (1− λεV )
εF n

εV (1+εF )−1
fe = Cn

1
εH
fe

Thus,
¡
θmp , np

¢
, (θmso, nso) and

¡
θmfe, nfe

¢
are uniquely defined if εV (1 + εF )− 1 < 1

εH
.¡

θmp , np
¢
is a global maximum for ΠP (θm, n) if and only if the second order condition

holds, i.e. if and only if the Hessian matrix of ΠP (θm, n) evaluated at
¡
θmp , np

¢
is semi-

definite negative. We have:

∂2ΠP

(∂θm)2
¡
θmp , np

¢
=

¡
V 0 (np)− θmp

¢
f 0
¡
θmp
¢
− 2f

¡
θmp
¢

= f
¡
θmp
¢ÃV (np)− θmp

θmp

θmp f
0 ¡θmp ¢

f
¡
θmp
¢ − 2

!

= −f
¡
θmp
¢µ
1 +

1

εF

¶
< 0

∂2ΠP

∂n2
¡
θmp , np

¢
= V 00 (np)F

¡
θmp
¢
−
¡
nH−1 (n)

¢00
(np) < 0

because V is concave and
¡
nH−1 (n)

¢00
(np) = C

³
1 + 1

εH

´
1
εH

n
1
εH
−1

> 0.

∂2ΠP

∂θm∂n

¡
θmp , np

¢
= V 0 (np) f

¡
θmp
¢
> 0

It therefore remains to check that
³

∂2ΠP

∂θm∂n

¡
θmp , np

¢´2
< ∂2ΠP

(∂θm)2

¡
θmp , np

¢
× ∂2ΠP

∂n2

¡
θmp , np

¢
,

which, using the expressions above and omitting arguments of some functions in order to
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avoid clutter, is equivalent to:

V 02f <

µ
1 +

1

εF

¶µ
−V 00F +C

µ
1 +

1

εH

¶
1

εH
n

1
εH
−1

p

¶

But (2.6) implies:

C

µ
1 +

1

εH

¶
1

εH
n

1
εH
−1

p =
1

εH

V 0 (np)

np
F
¡
θmp
¢

so that the inequality above is equivalent to:

V 02 <

µ
1 +

1

εF

¶µ
−
V 00θmp
εF

+
1

εH

V 0θmp
np

1

εF

¶

or, using (2.5):

εF <
−V 00V
V 02

+
1

εH

V

npV 0

Noting that V 00V
V 02 =

εV−1
εV

, this is finally equivalent to (2.12).

Similarly, (nso, θmso) is a global maximum for W if and only if the Hessian matrix of

W (n, θm) evaluated at this point is semi-definite negative. We have:

∂2W

(∂θm)2
(nso, θ

m
so) = (V (nso)− θmso) f (θ

m
so)− f (θmso) = −f (θmso) < 0

∂2W

∂n2
(nso, θ

m
so) = V 00 (nso)F (θ

m
so)−H−10 (nso) < 0

∂2W

∂θm∂n
(nso, θ

m
so) = V 0 (nso) f (θ

m
so)

and
³

∂2W
∂θm∂n (nso, θ

m
so)
´2

< ∂2W
(∂θm)2

(nso, θ
m
so)

∂2W
∂n2

(nso, θ
m
so) is equivalent to:

V 0 (nso)
2 f (θmso) < −V 00 (nso)F (θmso) +H−10 (nso)
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or, using V 0 (nso)F (θmso) = H−1 (nso):

−V 0 (nso)2

V 00 (nso)V (nso)

θmsof (θ
m
so)

F (θmso)
< 1− V 0 (nso)

V 00 (nso)nsoεH

or:
εV εF
1− εV

< 1 +
1

(1− εV ) εH

which is in turn equivalent to (2.12).

ii) The necessary and sufficient conditions for stability are:

∂Θ

∂n
(nx, u (nx)− θmx ) <

1
∂N
∂θm (θ

m
x , π (nx)F (θ

m
x )−H−1 (nx))

for (nx, θmx ) =
¡
np, θ

m
p

¢
and (nx, θmx ) =

¡
nfe, θ

m
fe

¢
. Using the implicit function theorem,

the condition corresponding to
¡
np, θ

m
p

¢
is equivalent to:

u0 (np) <
H−10 (np)− π0 (np)F

¡
θmp
¢

π (np) f
¡
θmp
¢ (5.1)

Using the first order conditions (2.5) and (2.6), (5.1) is equivalent to25:

(1 + εF )
npu

0π

V V 0
+

π0np
V 0

<
1

1 + εH

Since π (n) = λV 0 (n) and u (n) = V (n) − λnV 0 (n) = (1− λεV )V (n), the inequality

above is equivalent to:

(1 + εF )
np (1− λεV )λV

0

V
+

λV 00np
V 0

<
1

1 + εH

25We omit functional arguments and use the fact that nH−10(n)
H−1(n) = 1

εH(H−1(n))
.
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or:

(1 + εF )λεV (1− λεV )− λ (1− εV ) <
1

1 + εH

which, after factoring λ (1− εV ), is exactly the condition (2.13) given in the text.

Similarly, the stability condition corresponding to
¡
nfe, θ

m
fe

¢
is equivalent to:

u0 (nfe)π (nfe) f
¡
θmfe
¢
+ π0 (nfe)F

¡
θmfe
¢
≤ H−10 (nfe)

which, using (2.10) and (2.11), can be rewritten as:

u0 (nfe)nfe
u (nfe)

f
¡
θmfe
¢
θmfe

F (u (nfe))
+

π0 (nfe)nfe
π (nfe)

≤ 1

εH

or, since u (n) = (1− λεV )V (n), π (n) = λV 0 (n):

εV εF + εV − 1 ≤
1

εH

which is equivalent to (2.12).¥

Proof of Proposition 4 i) (3.4), (3.5) and (3.6) are respectively equivalent to:

BA1+εF εV

µ
εF

1 + εF

¶εF

nεV (1+εF )−1 = C

µ
1 +

1

εH

¶
n

1
εH (5.2)

BA1+εF λεV (1− λεV )
εF nεV (1+εF )−1 = Cn

1
εH (5.3)

BA1+εF εV n
εV (1+εF )−1 = Cn

1
εH (5.4)

As shown in Lemma 0, if (2.12) holds then each of these three equations admits a

unique positive solution. Note that we are in the case depicted in graph a) of figure ?? if
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εV (1 + εF ) < 1 and in the case depicted in graph b) if εV (1 + εF ) > 1. Since λ, εV < 1,

(5.2), (5.3) and (5.4) clearly imply that nfe, np < nso. Then:

θmfe = (1− λεV )V (nfe) < V (nfe) < V (nso) = θmso

θmp =
εF

1 + εF
V (np) < V (np) < V (nso) = θmso

ii) Let β = σ−α
σ(1−α) = 1− εV and recall that λ =

σ(1−α)
1−σα ∈]0, 1[. Then, since εH = +∞,

(2.12) is implied by (2.13), which is equivalent to:

2 (1− β) <
β

1− λ (1− β)
(5.5)

Together with λ < 1, this implies that 1 > β > 1
2 . (5.2) and (5.3) become:

(1− β)

2
n1−2βp =

C

BA2
(5.6)

α (1− σ) (1− α)

(1− σα)2
n1−2βfe =

C

BA2
(5.7)

(1− β)n1−2βso =
C

BA2
(5.8)

We have: np > nfe if and only if
(1−β)(1−σα)2

2 > α (1− σ) (1− α), which is equivalent

to (1− σα)2 > 2σ (1− α)2. It remains to be verified that this inequality may hold or not,

while still satisfying (5.5). If α→ 0 then β → 1 and λ→ σ, so that (5.5) is satisfied, and

in the limit np > nfe if and only if σ < 1
2 , so that both cases are possible.

Total social welfare has the following expression:

W (n, θm) = BV (n) θm − B (θm)2

2
− nC
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Using (5.6), (5.7) and θmfe = (1− λ (1− β))V (nfe), θmp =
V (n2sp)

2 and V (n) = An1−β

we obtain:

W
¡
np, θ

m
p

¢
= BA2

µ
1

2
− 1
8

¶
n2−2βp − BA2 (1− β)

2
n2−2βp

=
BA2

2

µ
β − 1

4

¶µ
BA2 (1− β)

2C

¶ 2−2β
2β−1

and:

W
¡
nfe, θ

m
fe

¢
= BA2

"Ã
1− λ (1− β)− (1− λ (1− β))2

2

!
− α (1− σ) (1− α)

(1− σα)2

#
n2−2βfe

=
BA2 (1− α)2

2 (1− σα)2

µ
BA2α (1− σ) (1− α)

C (1− σα)2

¶ 2−2β
2β−1

Finally:
W
¡
np, θ

m
p

¢
W
¡
nfe, θ

m
fe

¢ = µβ − 1
4

¶³σ
λ

´ 2
2β−1 1

(2σ)
2−2β
2β−1

Let σ = x, α = kx with 0 < k < 1
3 and x→ 0. Then λ→ 0 and β → 1− k so that (5.5)

is satisfied in the limit and at the same time σ
λ → 1 and therefore W2sp

Wfe
→ +∞.

Now let σ → 1 keeping α fixed: λ, β → 1 so that (5.5) is satisfied and W2sp

Wfe
→ 3

4 .¥

Proof of Proposition 5 The expression of platform profits is:

ΠP (qm) = B (V (Q (qm))−E (qm))− C (qH − qm)φ

and that of social welfare:

W (qm) = BV (qm)− C (qH − qm)φ
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where Q = C
2

³
q2H − (qm)

2
´
and E (qm) = CV 0(Q)

2 (qH − qm)2.

qmp solves:

−BV 0 (Q (qm))Cqm −BE0 (qm) + Cφ = 0

whereas qmso is the solution to:

−BV 0 (Q (qm))Cqm + Cφ = 0

We assume that the parameters A, B and C are such that both solutions are interior, so

that in order to prove qmp < qmso it is sufficient to prove that E
0 (qm) > 0 for all qm ∈ [qL, qH ]

and the derivatives of the two expressions above are both negative. We have:

E0 (qm) = −C
2V 00 (Q (qm)) qm

2
(qH − qm)2 − CV 0 (Q (qm)) (qH − qm)

= −C
2

2
V 00 (Q) (qH − qm)2

∙
qm +

V 0 (Q)

QV 00 (Q)
(qH + qm)

¸
= −C2V 00 (Q) (qH − qm)2

µ
qm − qH + qm

β + 1

¶

so that E0 (qm) > 0 is equivalent to:

βqm > qH

which is true since βqL > 2qH .

The second derivative of total social welfare with respect to qm is:

BV 00 (Q (qm)) (Cqm)2 −BV 0 (Q (qm))C
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and is clearly negative. Therefore, we are done if we show that E00 (qm) > 0. We have:

E00 (qm) = −C
2V 00 (Q)

β + 1

h
β (qH − qm)2 − 2 (qH − qm) (βqm − qH)

i
+
C3V 000 (Q)

β + 1
qm (qH − qm)2 (βqm − qH)

Using −QV
000(Q)

V 00(Q) = β + 2, the condition E00 (qm) > 0 is equivalent to:

β (qH − qm)− 2 (βqm − qH) +
2 (β + 2)

qH + qm
qm (βqm − qH) > 0

or:

((β + 2) qH − 3βqm) (qH + qm) + 2 (β + 2) qm (βqm − qH) > 0

or:

(β + 2) q2H + (2β + 1) q
m (βqm − 2qH) > 0

which is true when βqL > 2qH .¥

Proof of Proposition 6 (3.14) and (3.13) become:

nc =

µ
βA

2φ

¶ 1
1−β

np =

µ
βA

φ

¶ 1
1−β

The expression of the social welfare gain from having a single platform rather than two

becomes:

A (1− β)nβp −A (1− β)nβc −
t

4
= A (1− β)

µ
βA

2φ

¶ β
1−β ³

2
β

1−β − 1
´
− t

4
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and it is positive if and only if t ≤ 4A (1− β)
³
βA
2φ

´ β
1−β

³
2

β
1−β − 1

´
= tH .

On the other hand we need to make sure that in the symmetric equilibrium with two

competing platforms they make non-negative profits and all users do indeed singlehome,

which will yield a lower bound on t. We have:

PD
c = π (nc)

1

2
− φ =

1

2
βAnβ−1c − φ = 0

PU
c = t− ncπ (nc) +

u0 (nc)π (nc)

π0 (nc)
= t− 2βAnβc

Hence, the two platforms make non-negative profits and all users singlehome if and

only if PU
c ≥ 0, i.e.if and only if:

t ≥ 2βAnβc = 2βA
µ
βA

2φ

¶ β
1−β

= tL

Finally, we need to verify that tL ≤ tH , which is equivalent to:

β

1− β
≤ 2

³
2

β
1−β − 1

´

and this inequality holds for all β ≥ 0.¥
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