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Abstract

Strategic interactions between two-sided platforms depend not only on whether their de-
cision variables are strategic complements or substitutes as for one-sided firms, but also -and
crucially so- on whether or not the platforms subsidize one side of the market in equilib-
rium. For example, with prices being strategic complements across platforms, we show that
a cost-reducing investment by one firm may have a positive effect on its rival’s profits and a
negative effect on its own profits when one side is subsidized in equilibrium. By contrast, if
platforms make positive margins on both sides, the same investment has the regular, expected
effects. Our analysis implies that the strategy space and the logic of competitive advantage
are fundamentally different in two-sided markets relative to one-sided markets.
Keywords: Two-Sided Markets, Two-Sided Platforms, Strategic Complements, Strategic

Substitutes, Competitive Advantage.
JEL Classifications: L1, L2, L4, L8

1 Introduction

Fudenberg Tirole (1984) (hereafter FT) and Bulow Geanakoplos and Klemperer (1985) (hereafter

BGK) have proposed a typology of strategic interactions in one-sided markets oligopolies. They

analyze a competition game preceded by an investment stage. Three factors are shown to determine

whether an incumbent will over-invest or under-invest: whether the objective of the incumbent is to

accomodate or to deter entry, whether actions in the competition game are strategic completements

or substitutes and whether investment increases or decreases rivals’ profits (cf. Tirole 1988).

In this paper, we show that the possibility of subsidization of one side in a two-sided market

can lead to fundamentally new (and somewhat surprising) strategic configurations in oligopoly. For

instance, we show that a cost-reducing investment by a two-sided platform may be a successful

entry accomodation strategy and at the same time raise the profits of its rival (in a one-sided

market, cost reductions by one firm unambiguously hurt its competitors). The intuition behind

this result is as follows. A cost reduction by one of the platforms gives it a competitive advantage

relative to its rival, so that in the new equilibrium its prices on both sides will be lower than its

rival’s and it will steal customers from its rival on both sides of the market relative to the initial
∗Harvard University, efarhi@fas.harvard.edu
†Harvard Business School, ahagiu@hbs.edu
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equilibrium. However, the ratio between the number of customers stolen from the subsidized side

and the number of customers stolen from the other (profitable) side may be sufficiently high so that

the rival is happy to get rid of both, and sufficiently low so that the more cost-effective platform

can serve them profitably at the new equilibrium prices. In other words, the cost reduction allows

a "price-rebalancing" act by both platforms1, which may end up being beneficial to both of them -

in stark contrast with the one-sided case.

An important application of this result concerns tying in the spirit of Whinston (1990): a two-

sided platform A also has a monopoly power over another product M which is homogenously valued

by all customers on one side of A. Tying M and the purchase of the platfom on this side of A then

acts as a commitment to price agressively by raising the opportunity cost of a foregone sale. In the

pricing game that follows, it has the same effect as a reduction of the marginal cost of distribution

of A on the side of the market which buys M, relative to rival two-sided platforms. In a one-sided

market with price competition and homogenous valuations of the tying good, tying is always a

"top dog" strategy: it decreases rivals’ profits while increasing one’s own. By contrast, the result

mentioned above implies that in a two-sided market, tying can be part of a "fat cat" strategy: a

profitable way to accomodate entry while at the same time being "soft" (i.e. benefitting rivals as

well).

More broadly, our analysis reveals that the set of strategic configurations in a two-sided market

is strictly larger than in a one-sided market - not in terms of the nature of the strategies but in

terms of the conditions under which they emerge. This is due to the fact that in two-sided markets,

the sign of the strategic effect — that determines whether the incumbent will over- or under-invest

— can no longer be entirely determined by the effect on rivals’ profits as in one-sided markets.

This conclusion lends significant substance and support to the contention that two-sided markets

have new implications, both from a strategy and from a public policy perspective. Indeed, the recent

and burgeoning literature on two-sided markets is built on this premise, but the main argument put

forward up to now is that two-sided platforms are different because they might end up subsidizing

one side of the market in order to recoup on the other. This argument has received significant

attention from antitrust scholars (e.g. Evans (2003), Wright (2004)), which have pointed out several

implications, such as for instance that below-cost pricing in a market may not be indicative of

predation, but of a two-sided pricing strategy, which can be profitable regardless of the presence

of competition. Our paper takes a step beyond exhibiting this type of skewed two-sided pricing

structure by deriving deeper implications of this feature for strategic interactions among platforms

and a systematic categorization of strategies in two-sided markets oligopolies (which we show can

be very different from one-sided markets).

Relation to the literature. This paper contributes to the recent two-sided markets literature,
intiated by Armstrong (2006), Caillaud and Jullien (2003) and Rochet and Tirole (2003). Most of

this literature has analyzed how platforms might solve the chicken-and-egg problem associated

1Cf. Rochet and Tirole (2006).
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with two sided-markets and focused almost exclusively on the conditions determining which (if

any) side is subsidized and how much. We study the implications of the two-sided pricing game

between two platforms on strategic investment choices that must be made prior to the pricing

game. To illustrate the conclusions of our general analysis, we borrow from Armstrong (2006)’s

two-sided Hotelling competition setting, but we extend his model by allowing for "hinterlands" -

this extension is absolutely necessary in order to exhibit results which are different from the ones

occurring in one-sided markets.

This paper is also related to the literature on tying. An important benchmark in this literature

is Whinston (1990). Whinston shows that when the tying good is homogenous, then tying acts as a

commitment to be more aggressive in the competition on the tied good market. As a result, tying

can be a profitable strategy to deter entry. However, in this case, tying is never a profitable strategy

to accomodate entry. Our results show that this insight can be overturned in a two-sided setting.

There are three papers in the two-sided market literature that focus on tying. Rochet and Tirole

(2003b) provide an economic analysis of the tying practice initiated by payments card associations

Visa and MasterCard in which merchants who accept their credit cards were forced also to accept

their debit cards. They show that in the absence of tying, the interchange fee between the merchant’s

and the cardholder’s banks on debit is too low and tends to be too high on credit compared to the

social optimum. Tying is shown to be a mechanism to rebalance the interchange fee structure and

raise social welfare. Choi (2007) analyzes the welfare effects of tying in a model of competition

between two-sided platforms (connecting consumers and content providers), when one or both sides

can multihome. In his model, tying simply allows one of the platforms to reach all consumers

by bundling the platform product in question with another product that all consumers need (the

motivating example is the tying of Windows Media Player to the Windows Operating System,

which every PC user has). The impact of tying on social welfare depends on whether consumers

can multihome or not, but in all cases, tying unambiguously hurts the rival platform.

Amelio and Jullien (2007) consider a setting in which two-sided platforms would like to set

prices below zero on one side of the market in order to solve the demand coordination problem,

but are constrained to set non-negative prices. Tying can then serve as a mechanism to introduce

implicit subsidies on one side of the market in order to solve the aforementioned coordination

failure. As a result, tying can raise participation on both sides and can benefit consumers in the

case of monopoly platform. In a duopoly context tying also has a strategic effect on competition.

Contrary to the monopoly case, tying may not be ex-post and/or ex-ante optimal for a contested

platform. Moreover, the competing platform benefits from it if the equilibrium implicit subsidy is

large enough. We also obtain this result, although as a particular case of a broader setting.

The remainder of the paper is organized as follows. In Section 2, we briefly review the typology

introduced by FT for one sided-markets. In Section 3, we lay out a very general two-sided market

oligopoly setting, derive the corresponding characterization of the strategic space and explain the

key differences relative to the one-sided environment. In Section 4, we illustrate the general analysis

with specific, micro-foundedmodels, which also allow us to derive more intuition for our main results.
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We conclude in Section 5.

2 One-sided markets

This section provides a brief summary of the framework and animal strategy nomenclature intro-

duced by FT; it draws heavily on Tirole (1988), to which the reader is referred for more details.

There are two firms, an incumbent, A, and an entrant, B. The timing of the duopoly game

comprises three stages. In stage 1, firm A chooses a variable KA — for example a capacity, an

investment in product quality or in a cost reducing technology. In stage 2, firm B observes KA and

decides whether or not to enter. In stage 3, the stage game depends on wether or not B has entered

at stage 2. If B has not entered at stage 2, A chooses xA — which could be a price or a quantity—

to maximize profits as a monopolist. If B has entered then A and B simultaneously choose xA and

xB.

In stage 3, if only firm A is active then its profits are denoted by ΠM (KA, xA). If both firms

are active, firm i’s profits are denoted by Πi (KA, xA, xB). The best response functions for the two

firms in this stage are denoted by x∗A (xB, KA) and x∗B (xA,KA) respectively:

x∗i (xj, KA) = argmax
xi

Πi (KA, xA, xB) for i, j ∈ {A,B} , i 6= j

Also, denote by (x∗∗A (KA) , x
∗∗
B (KA)) the resulting Nash equilibrium in stage 3 given A’s choice

of KA in stage 1.

There are two cases to consider. If entry deterrence is the most profitable strategy for A then

its choice of KA is driven by ΠB. Firm A will choose KA so as to just deter entry by firm B:

KM
A = argmax

KA

ΠM
¡
KA, x

M
A (KA)

¢
subject to:

ΠB (KA, x
∗∗
A (KA) , x

∗∗
B (KA)) ≤ 0 (1)

where xMA (KA) = argmaxxA Π
M (KA, xA).

By contrast, if entry accomodation is the most profitable strategy for firm A, then its choice of

KA is driven by ΠA. In this case, KA is chosen as follows:

KD
A = argmax

KA

ΠA (KA, x
∗∗
A (KA) , x

∗∗
B (KA))

subject to

ΠB (KA, x
∗∗
A (KA) , x

∗∗
B (KA)) ≥ 0 (2)

In the rest of the paper we assume that B’s participation constraint (2) is not binding. Conse-
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quently, the stage 3 Nash equilibrium (x∗∗A (KA) , x
∗∗
B (KA)) is characterized by:

∂ΠA

∂xA
=

∂ΠB

∂xB
= 0

Following FT, in the case of entry accomodation, the overall effect of KA on ΠA can be decom-

posed into a direct effect and a strategic effect:

dΠA

dKA
=

∂ΠA

∂KA| {z }
direct effect

+
∂ΠA

∂xB

dx∗∗B
dKA| {z }

strategic effect

Meanwhile, the influence of KA on firm B’s profits, both under entry deterrence and accomoda-

tion, is given by:
dΠB

dKA
=

∂ΠB

∂KA| {z }
direct effect

+
∂ΠB

∂xA

dx∗∗A
dKA| {z }

strategic effect

(3)

Assuming by symmetry that sign
³
∂ΠA

∂xB

´
= sign

³
∂ΠB

∂xA

´
, we have:

sign

µ
∂ΠA

∂xB

dx∗∗B
dKA

¶
= sign

µ
∂ΠB

∂xA

∂x∗B
∂xA

¶
sign

µ
dx∗∗A
dKA

¶
(4)

where ∂x∗B
∂xA

> 0 (< 0) if the variables (xA, xB) are strategic complements (substitutes).

The focus of the analysis is on the strategic effects. Direct effects would exist even if firm B did

not observe KA (open loop solution). Therefore, the sign of the strategic effect - under both entry

deterrence and accomodation - determines whether firm A should over- or under-invest relative to

the level of investment which would prevail in the open loop equilibrium. FT adopt the convention

that investment makes firm A "tough" ("soft") if the strategic effect of KA on firm B’s profits

is negative (positive). We will maintain this convention throughout our paper. They then define

the following strategies: (i) "top dog", be big (i.e. overinvest) in order to look tough (aggressive);

(ii)"lean and hungry look", stay small (i.e. underinvest) in order to look tough (aggressive), (iii)

"puppy dog": stay small in order to look soft (inoffensive) and (iv) "fat cat": be big in order to

look soft (inoffensive). These four strategies turn out to be sufficient for fuly describing firm A’s

desired behavior in all cases, as shown in the following table:
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Table 1

where A stands for entry accomodation and D for entry deterrence.

We now specialize the model to the following application, to which we will refer in the next

sections of the paper. Actions xi are prices - xi ≡ pi for i = A,B - and KA is an investment which

reduces the marginal cost cA of firm A. We also make three assumptions. First, profit functions

are concave in own prices so that best response correspondances p∗A (pB, cA) and p∗B (pA, cA) are

well-defined and single-valued. Second, for each cA there is a unique Nash equilibrium in prices

(p∗∗A (cA) , p
∗∗
B (cA)) and it is stable. Third, prices are strategic complements (this is the case with

linear demand models): ∂p∗i
∂p−i

> 0 for i ∈ {1, 2}.
In the appendix we prove that these assumptions guarantee that:

dp∗∗A
dcA

> 0

Denoting by ni (pA, pB) the demand for firm i — with the property that ∂ni
∂p−i

> 0 > ∂ni
∂pi
, for

i ∈ {1, 2} — we have:

dΠB

dKA
=

d

dKA
((pB − cB)nB) = (p

∗
B − cB)| {z }
>0

∂nB
∂pA|{z}
>0

dp∗A
dcA|{z}
>0

dcA
dKA| {z }
<0

< 0

where the first term is positive because firm B’s profits have to be positive in equilibrium in order

for firm B to be active.

Thus, a cost-reducing investment by firm A in a one-sided market can only be tough. This is

quite intuitive: a marginal cost reduction by one firm can only hurt its rival in a one-sided context

when firms compete in prices2. As we will see in the next section, things change radically in a

two-sided context.
2It can easily be shown that the same holds when firms compete in quantities.
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3 Two-sided markets

We now move to a two-sided context, in which the two firms A and B are competing not for

just one type of customers, but for two interrelated groups of customers 1 and 2. Each platform

i ∈ {A,B} chooses 2 actions pi1 and pi2, which correspond to sides 1 and 2 respectively. Although

in principle these could be any strategic actions, we will henceforth only consider the case in which

they correspond to prices that the platforms have to set on both sides of the market.3

Two-sidedness is captured by assuming that the demand a platform faces on each side is de-

creasing in the price it charges to that side, increasing in the price charged by the rival platform

on the same side, increasing in the realized demand on the other side of the same platform and

decreasing in the realized demand on the other side of the rival platform. In short, the demand for

platform i on side j is given by:

N i
j = n̂ij

¡
pij, p

−i
j , N i

−j, N
−i
−j
¢

(5)

with
∂n̂ij
∂pij

< 0 <
∂n̂ij

∂p−ij
;

∂n̂ij
∂N i

−j
> 0 >

∂n̂ij

∂N−i−j
.

Let cij denote the marginal costs of platform i on side j, which we all assume to be constant.

The timing of the game is the same as in the previous section. In stage 1, firm A chooses an

investment KA. In stage 2, firm B observes KA and decides whether or not to enter. In stage 3: if

B has not entered at stage 2, then A chooses pA1 and pA2 as a monopolist; if B has entered then A

and B simultaneously choose pi1 and pi2, i ∈ {A,B}.
Throughout the rest of the paper, we focus on the case in whichKA is a cost-reducing investment

on side 1 for platform A:
dcA1
dKA

< 0 and
dcA2
dKA

=
dcB1
dKA

=
dcB2
dKA

= 0

To simplify things, we assume that KA has no direct effect on platform B’s profits, so the total

effect is equal to

We also make the following four assumptions in order simplify the analysis (the substance of

our conclusions is not affected).

Assumption 1 (non-singularity) For any set of prices {pij}, the four equations (5), determine
a unique, stable, configuration of demands:

N i
j = nij

¡
{pkl }

¢
where

∂nij
∂pij

< 0 <
∂nij

∂p−ij
and

∂nij
∂pi−j

< 0 <
∂nij

∂p−i−j
.

The profits of platform i can then be written as:

Πi =
¡
pi1 − ci1

¢
ni1 +

¡
pi2 − ci2

¢
ni2

3In fact, we are unaware of any model of two-sided markets in which platforms compete in variables other than
prices.
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Assumption 2 (concavity) Each platform’s profits are concave in both of its prices holding the
rival platform’s prices constant and there always exists a unique Nash equilibrium in the stage 3

pricing game denoted by
©
p∗∗ij

ª
with i ∈ {1, 2}, j ∈ {A,B}.

We continue to denote the platforms’ best response functions by pi∗j
¡
p−i1 , p−i2 , ci1, c

i
2

¢
, i ∈ {A,B},

j ∈ {1, 2}.

Assumption 3 (strategic complementarity) Prices are strategic complements: ∂pi∗j /∂p
−i
l > 0

and equilibrium prices for each platform are increasing in its own costs:

∂pi∗∗j
∂cij0

> 0 for all i ∈ {A,B} , j, j0 ∈ {1, 2} (6)

Note that this assumption implies that4:

dpA∗∗i

dKA
=

∂pA∗∗i

∂cA1

dcA1
dKA

< 0

dpB∗∗i

dKA
=

∂pB∗i
∂pA1

dpA∗∗1

dKA
+

∂pB∗i
∂pA2

dpA∗∗2

dKA
< 0

for i = 1, 2.

In a one-sided market, the condition corresponding to (6) is automatically verified and can

be seen at the most general level as an application of the monotone comparative statics results

in Milgrom and Shannon (1994). These principles, however, cannot be invoked in the two-sided

context analyzed in this section.

Assumption 4 (symmetry) For KA = 0 and the corresponding Nash equilibrium, we have:

∂Πi

∂p−ij

¡
{p∗∗kl }

¢
=

∂Π−i

∂pij

¡
{p∗∗kl }

¢
Indeed, instead of solving the last two stages of the game for all values of KA, we will only

perform a local comparative statics analysis in KA around KA = 0, which is sufficient for our

purposes.

3.1 Strategic interactions with variable prices on both sides

We are interested in determining the strategic effects of KA on the rival platform (B)’s profits as

well as on platform A’s own profits. The notion of under/over-investment is relative to a situation

4The Nash equilibrium prices
¡
pi∗∗j

¢
are a function of the four costs

¡
cij
¢
, which in turn depend solely on KA.

With a slight abuse of notation, we denote by pi∗∗j (KA) the resulting function of KA. The total derivative
dpi∗∗j
dKA

refers to this latter function whereas the partial derivatives
∂pi∗∗j
∂ci

j0
refer to the function of costs.
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in which only the direct effects exists. Hence our interest lies in determining the signs of dΠA

dKA
− ∂ΠA

∂KA

and dΠB

dKA
− ∂ΠB

∂KA

5.

Using the envelope theorem, the sign of the strategic effect on platform B’s profits is:

sign

½
dΠB

dKA
− ∂ΠB

∂KA

¾
= sign

½
∂ΠB

∂pA1

dpA∗∗1

dKA
+

∂ΠB

∂pA2

dpA∗∗2

dKA

¾

= sign

⎧⎨⎩ X
j∈{1,2}

µ¡
pB1 − cB1

¢ ∂nB1
∂pAj

+
¡
pB2 − cB2

¢ ∂nB2
∂pAj

¶
dpA∗∗j

dKA

⎫⎬⎭ (7)

The sign of the strategic effect of KA on firm A’s own profits is:

sign

½
dΠA

dKA
− ∂ΠA

∂KA

¾
= sign

½
∂ΠA

∂pB1

dpB∗1
dKA

+
∂ΠA

∂pB2

dpB∗∗2

dKA

¾
= sign

½
∂ΠB

∂pA1

dpB∗∗1

dKA
+

∂ΠB

∂pA2

dpB∗∗2

dKA

¾

= sign

⎧⎨⎩ X
j∈{1,2}

µ¡
pB1 − cB1

¢ ∂nB1
∂pAj

+
¡
pB2 − cB2

¢ ∂nB2
∂pAj

¶
dpB∗∗j

dKA

⎫⎬⎭ (8)

These two expressions constitute the core of our analysis. Note that the respective signs of

the strategic effects for firms A and B are disconnected. This is a crucial difference with BGK

and FT, which analyze the same kind of strategic interactions, but in one-sided oligopolies. In

one-sided contexts the terms dpA∗∗i

dKA
and

dpB∗∗j

dKA
are negative when the "actions"

¡
pAi , p

B
j

¢
are strategic

complements6. By contrast, here the fact that the prices
¡
pAi , p

B
j

¢
are strategic complements does

not pin down the sign of the terms ∂ΠB

∂pAi
.

As a consequence, the set of strategic configurations in a two-sided market is strictly larger than

in a one-sided market - not in terms of the nature of the strategies but in terms of the conditions

under which they emerge. Equations (7) and (8) imply that the following four configurations are

possible7: (i) dΠA

dKA
− ∂ΠA

∂KA
> 0 and dΠB

dKA
− ∂ΠB

∂KA
> 0; (ii) dΠA

dKA
− ∂ΠA

∂KA
> 0 and dΠB

dKA
− ∂ΠB

∂KA
< 0; (iii)

dΠA

dKA
− ∂ΠA

∂KA
< 0 and dΠB

dKA
− ∂ΠB

∂KA
> 0; (iv) dΠA

dKA
− ∂ΠA

∂KA
< 0 and dΠB

dKA
− ∂ΠB

∂KA
< 0.

Under entry accomodation, these cases lead to the following strategies for platform A : (i) fat

cat; (ii) top dog; (iii) puppy dog; (iv) lean and hungry look.

By contrast, in a one-sided market with competition in prices, the optimal strategy for entry

accomodation by A can only take two forms: fat cat and puppy dog (cf. Table 1). This is because

in this case the two strategic effects of KA necessarily have the same sign.

Consequently, Table 1 above needs to be adjusted in order to allow for the full range of strategic

scenarios in a two-sided market. We say that investment KA is "self-serving" ("self-harming") for

firm A if the strategic effect on A is positive (negative). Note that we focus on the case where entry

5Note that by assumption ∂ΠB

∂KA
= 0.

6In one-sided markets, even in the case when actions are strategic substitutes (e.g. competition in quantities),
the signs are flipped - they are negative. Therefore, in one-sided contexts are always entirely determined by whether
actions are strategic complements or substitutes.

7And while still maintaining the condition that B’s profits are positive.
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accomodation is the optimal strategy for A.

Table 2

First, note that it is possible for KA to have a positive effect on platform B’s profits — so that

KA is "soft" — without violating the condition that B’s profits are positive in equilibrium:¡
pB∗∗1 − cB1

¢
nB1 +

¡
pB∗∗2 − cB2

¢
nB2 > 0

The possibility for a cost reduction by one platform to increase the profits of its rival is novel.

This situation never occurs in one-sided markets — as we showed in the previous section. In a

two-sided market setting, it is possible that in equilibrium the platforms subsidize one side of the

market — say side 2 — and recoup the losses on the other side: pB∗∗2 − cB2 < 0 and pB∗∗1 − cB1 > 0.

Note that for KA to be soft in this case and for B to make positive profits it is necessary that:

nB1
nB2

>
−
¡
pB∗∗2 − cB2

¢
pB∗∗1 − cB1

>
∂nB1 /∂p

A
j

∂nB2 /∂p
A
j

for at least one j ∈ {1, 2}, which implies:

∂nB2 /∂p
A
j

nB2
>

∂nB1 /∂p
A
j

nB1
(9)

for at least one j ∈ {1, 2}. This condition can be interpreted in the following way: softness is
more likely to occur when the "business stealing" effect on the subsidized side

¡
nB2
¢−1 ¡

∂nB2 /∂p
A
j

¢
is higher relative to the business stealing effect on the profitable side

¡
nB1
¢−1 ¡

∂nB1 /∂p
A
j

¢
.

Equation (9) holds the key to interpreting the surprising result above. By the envelope theorem,

a small change in KA impacts ΠB only through A’s equilibrium prices. Given that KA reduces cA1 ,

we know that A’s prices will be lower in the new equilibrium on both sides (dp
A∗∗
1

dKA
, dp

A∗∗
2

dKA
< 0), which

means that A steals customers from B on both sides of the market. However, if the proportion of
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customers stolen byA fromB on the loss-making side is sufficiently high relative to the proportion of

customers stolen on the profit-making side, this might increase B’s profits. Getting new customers

on both sides in these proportions can also be profitable for A because it has now gained some

competitive advantage relative to B (recall that dcA1
dKA

< 0). Thus, the investment KA can be both

soft and self-serving. Inspecting (8), it should be clear however that KA can also be self-harming,

just as in one-sided markets.

A complementary intuition can be obtained in the following way. Imagine that the initial

situation is a symmetric equilibrium where prices are given by p1and p2, and market shares are

given by n1 and n2, with p1− c1 > 0 and p2− c2 < 0. As we move to the new equilibrium, in which

platform A has gained a very small competitive advantage ∆cA1 < 0, we have8:

∆Πi −∆ci1n1 = ∆pi1n1 +∆pi2n2 + (p1 − c1)∆ni1 + (p2 − c2)∆ni2

for i = {A,B}. Note that under our assumptions, ∆pi1 < 0 and ∆pi2 < 0 so that

∆pi1n1 +∆pi2n2 < 0 for all i

Hence a necessary condition for ∆Πi−∆ci1n1 to be positive for all i (i.e. to be in a fat cat scenario)

is that

(p1 − c1)∆ni1 + (p2 − c2)∆ni2 > 0 for all i ∈ {A,B} (10)

Clearly, if the total market size is fixed on each side, then ∆nAj = −∆nBj for all j ∈ {1, 2} so that:

(p1 − c1)∆nA1 + (p2 − c2)∆nA2 = −(p1 − c1)∆nB1 − (p2 − c2)∆nB2

and (10) cannot be verified. Hence, a cost-reducing investment being a fat cat strategy requires

market expansion on at least one side. Indeed, suppose that on side 1, total market size is not fixed.

Denote by ∆m1 ≡ ∆mA
1 + ∆mB

1 > 0 the total expansion in market size on side 1 (it is positive

because both platforms’ prices decrease). We now have:

(p1 − c1)∆nA1 + (p2 − c2)∆nA2 = −(p1 − c1)∆nB1 − (p2 − c2)∆nB2 + (p1 − c1)∆m1

with (p1 − c1)∆m1 > 0. Therefore, if the market size expansion is strong enough, (10) can be

verified. The cost-reducing investment allows for a better balancing act between the two sides

which benefits both platforms through a market expansion on the profit-making side.

Tying. Tying can be analyzed as a reduction in marginal costs on one side of the market.

Configuration (i) above is then a case in which tying makes the incumbent soft and is profitable at

the same time. In other words, tying becomes a fat cat strategy. We have therefore uncovered the

8We ignore second order terms.
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possibility that tying can be a profitable entry-accomodation strategy, in stark contrast with the

case of one-sided markets.

To put this result in perspective, it is worth reviewing the logic of the argument in Whinston

(1990). Whinston considers a model with two firms A and B. Firm A produces two different goods

1 and 2A. The market for good 1 is monopolized by firm A. Goods 2A and 2B are imperfect

substitutes and give rise to price competition: the demand for good 2i is given by xi2(p
A
2 , p

B
2 ) with

∂xi2
∂pj2
≥ 0 if i 6= j and ∂xi2

∂pj2
< 0 if i = j. Firm B however, needs to pay an entry cost KB in order to

operate. In addition to its pricing decisions, firm A can offer bundles of its products. Two cases

have to be distinguished. The commitment case occurs when firm A commits to a specific bundle

of products before entry and pricing decisions are made. The no-commitment case occurs when

bundling decisions are made at the same time as pricing decisions.

Whinston’s main result corresponds to the case that is closest to our setup, where valuation for

the tying good 1 is homogenous across all consumers. Whinston shows that tying is useless in the

no-commitment case: firm A can make sure that all customers purchase good 1 and replicate the

bundling equilibrium in the independent pricing game (where bundling is prohibited).

In the commitment case tying acts on the best responses as a reduction in marginal cost for firm

A: every sale of good 2A comes with the extra benefit of a sale of good 1, lowering the effective

corresponding marginal cost of this sale. Tying therefore acts as a commitment by firm A to be

more aggressive. If firm B remains active, this reduces the profits of both firms. Tying is a self-

deafeating strategy to accomodate entry. However, tying can result in foreclosure whereby firm B

decides not to pay the fixed cost. Firm A then monopolizes the market for good 2. The benfit

for firm A is reduced competition for good 2. The potential loss comes from the fact that firm

A will be a monopolist who can only offer a bundle. Thus, the presence of a large number of

consumers who dislike poduct 2A may make a commitment to bundling unprofitable, even when it

leads to exclusion. The conclusion is that in this context, tying is a top dog strategy that is always

unprofitable to accomodate entry, and can sometimes be profitable to deter entry.9

3.2 Strategic interactions with prices fixed on one side

It is useful to briefly compare the results above with a situation in which platforms’ margins on one

side of the market, say side 2, are exogenously fixed, i.e. pA2 − cA2 = pB2 − cB2 ≡ π2. This may be

9Whinston then investigates the consequences of relaxing the assumption that the valuations for good 1 are
homogenous. The results are modified as follows. First and most related to this paper, a commitment to tying need
not always result in foreclosure: it can be the case that firm B’s profits increase as a result of a commitment to tying
by firm A. The reason is twofold. Enough consumers may find good 1 unattractive so that the margin on every
bundle sale is lower than the margin on an independent sale of good 1A (it is always higher in the homogenous case)
— the monopoly power of firm A is too weak. Also, the elasticity of bundle sales to the price of the bundle is not
identical anymore to that arising in market 2 — indeed, when 2A and 2B are nearly homogenous, tying essentially
transorms the nearly homogenous market 2 into a vertically differentiated market, potentially raising firm B’s profits.
Second, tying can be a profitable strategy even in the absence of the ability to commit, and when it is, it may

lower firm B’s profits.
Note however that with non-homogeneous valuations for good 1, tying in the Whinston model can no longer be

interpreted as a marginal cost reduction for good 1, like in our model.
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interpreted as a context in which regulation, common practice or other institutions put prices on

one side of the market beyond the control of the two platforms. Then each platform i only has one

variable to choose - pi1 - and the demand functions can be written as N
i
j = nij

¡
{pA1 , pB1 }

¢
.

The strategic effect of KA on platform B is:

dΠB

dKA
=

∂ΠB

∂pA1

dpA∗1
dKA

=

∙¡
pB∗1 − cB1

¢ ∂nB1
∂pA1

+ π2
∂nB2
∂pA1

¸
dpA∗1
dKA

whereas the strategic effect on platform A’s own profits is:

∂ΠA

∂pB1

dpB∗1
dKA

=
∂ΠB

∂pA1

dpB∗1
dpA1

dpA∗1
dKA

=

∙¡
pB∗1 − cB1

¢ ∂nB1
∂pA1

+ π2
∂nB2
∂pA1

¸
dpB∗1
dpA1

dpA∗1
dKA

=
dΠB

dKA

dpB∗1
dpA1

The first expression above implies that the possibility of KA being soft survives. If for example

π2 < 0 and
¡
nB2
¢−1 ¡

∂nB2 /∂p
A
1

¢
>
¡
nB1
¢−1 ¡

∂nB1 /∂p
A
1

¢
, then we can have simultaneously dΠB

dKA
> 0

and ΠB > 0 in equilibrium. However, given that sign
³
∂ΠA

∂pB1

dpB∗1
dKA

´
= sign

³
dΠB

dKA

´
sign

³
dpB∗1
dpA1

´
, if

dpB∗1
dpA1

> 0 — which is always the case with linear demands and prices fixed on one side — then the two

strategic effects have the same sign, just like in a one-sided market. Hence, by fixing prices on one

side, the set of possible optimal strategies for entry accomodation for platform A is reduced back

to {puppy dog, fat cat}.

4 Examples

In this section we use specific models to prove that the results anticipated by the general analysis

above are indeed possible. In particular, for each example, our goal is to exhibit the possibility

of a small cost reduction by platform A being "soft" (i.e., increasing platform B’s profits), while

prices are strategic complements across platforms. An additional benefit of working through these

examples is that they allow us to gain further intuition regarding the two-sided strategic interactions

we are illustrating.

4.1 Fixed prices on one side

We begin with the simpler case, in which platform prices — or markups — are fixed on one side of

the market. In this case, we can write without loss of generality the profits of platform i ∈ {A,B}
as:

Πi =
¡
pi1 − ci1

¢
ni1
¡
pi1, p

j
1

¢
+ π2f

¡
ni1, n

j
1

¢
where ni1

¡
pi1, p

j
1

¢
is non-negative, decreasing in pi1 and increasing in pj1; f (., .) is non-negative,

increasing in its first argument - f1 > 0 - and decreasing in its second argument - f2 ≤ 0.
We want to show that the strategic effect of a decrease in cA1 on ΠB can be positive, i.e.

13



∂ΠB

∂pA1

¡
pB∗1 , pA∗1

¢
< 010. This is equivalent to11:

¡
pB∗1 − cB1

¢
+ π2

"
f1 + f2

∂nA1
∂pA1

µ
∂nB1
∂pA1

¶−1#
< 0 (11)

The first order condition in pB1 yields:

¡
pB∗1 − cB1

¢
+ π2

"
f1 + f2

∂nA1
∂pB1

µ
∂nB1
∂pB1

¶−1#
= −nB1

µ
∂nB1
∂pB1

¶−1
> 0 (12)

Thus, in order for our example to work, we need to have f2 < 0 and either:

π2 > 0 and

¯̄̄̄
∂nA1
∂pA1

∂nB1
∂pB1

¯̄̄̄
<

¯̄̄̄
∂nB1
∂pA1

∂nA1
∂pB1

¯̄̄̄
(13)

or:

π2 < 0 and

¯̄̄̄
∂nA1
∂pA1

∂nB1
∂pB1

¯̄̄̄
>

¯̄̄̄
∂nB1
∂pA1

∂nA1
∂pB1

¯̄̄̄
(14)

Stability of the demand system in
¡
pA1 , p

B
1

¢
requires

¯̄̄
∂nA1
∂pA1

∂nB1
∂pB1

¯̄̄
>
¯̄̄
∂nB1
∂pA1

∂nA1
∂pB1

¯̄̄
, hence we must have

π2 < 0
12.

Most models found in the two-sided market literature up to now — Armstrong (2006) in par-

ticular — have a symmetic linear strucuture which implies
¯̄̄
∂nA1
∂pA1

¯̄̄
=
¯̄̄
∂nB1
∂pB1

¯̄̄
=
¯̄̄
∂nB1
∂pA1

¯̄̄
=
¯̄̄
∂nA1
∂pB1

¯̄̄
. Hence

they cannot satisify our conditions (13) or (14). We therefore need to depart from the symmetry

assumption and look to obtain the following type of expression:

ni1
¡
pi1, p

j
1

¢
= N − pi1 + γpj1

with 0 < γ < 1. In other words, we need the elasticity of a platform’s demand in its own price to be

strictly higher in absolute value than the elasticity in the rival platform’s price. This can be achieved

by adding "hinterlands" on side 1 to the two-sided Hotelling model considered in Armstrong (2006).

In the appendix we provide the detailed micro-foundations of this model, which allows us to

10Recall that, with fixed prices on one side, dp
A∗
1

dcA1
> 0 whenever ΠA is concave in pA1 .

11All terms are evaluated at
¡
pB∗1 , pA∗1

¢
.

12Note that the requirement f2 < 0 rules out multihoming by all side 2 agents, since in that case demands for
each platform on side 2 would be independent of each other (assuming away economies of scale in multihoming) and
hence f

¡
nB1 , n

A
1

¢
would only depend on nB1 .
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obtain:

ni1 = N1 − pi1 + γpj1

ni2 =
N2

2
+

N2α2
2t2

¡
ni1 − nj1

¢
Πi =

¡
pi1 − ci1

¢
ni1 + π2n

i
2 (15)

where N1 > 0, N2 > 0, t2 > 0, α2 > 0, π2 < 0 (necessary as we have seen above) and γ ∈]0, 1[ are
all constants.

The linearity of demand in prices implies that platform i’s profits are concave in pi1, which in

turn implies dpA1
dcA1

> 0, and that platform prices are strategic complements, i.e. dpi1
dpj1

> 0 for all

i 6= j ∈ {A,B} (so that assumptions 1-4 are satisfied).
In the appendix we prove:

Proposition 1 A necessary and sufficient condition for a cost reduction by platform A to be profit

enhancing for platform B — (11) above — is:

N1 − c1 (1− γ)− |π2|
N2α2
2t2

(1 + γ)
2 (1− γ)

γ
< 0 (16)

¥

Condition (16) can be compared to the condition for n1 to be positive in equilibrium13:

N1 − c1 (1− γ)− |π2|
N2α2
2t2

(1 + γ) (1− γ) > 0 (17)

and to the condition for platform profits to be positive in equilibrium:h
N1 − c1 (1− γ) + |π2| N2α22t2

(1 + γ)
i h

N1 − c1 (1− γ)− |π2| N2α22t2
(1 + γ) (1− γ)

i
(2− γ)2

> |π2|
N2

2
(18)

It is then easily verified that the last three conditions can hold simultaneously for a range of

parameter values. Note that γ < 1 is absolutely necessary in making it possible that (16) and (17)

hold at the same time.

To gain some intuition, note that (16), (17) (18) are clearly satisfied when γ = 0 and N1 is

sufficiently large relative to N2. In this case, (15) yields ni1 = N1−pi1 and so there is no competition
between platforms on side 1. Meanwhile, on side 2 platforms are "forced" to lose money and each

gains unprofitable side 2 customers in proportion to its market share advantage relative to its rival

on side 1. Consequently, plaform A is always happy to lose market share on side 2 (since that

13We use the equilibrium expressions of p1 and n1 provided in the proof of Proposition 1 in the appendix.
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entails no loss in market share on side 1) and this happens whenever platform B’s marginal cost

cB1 decreases because it leads to lower p
B
1 , higher n

B
1 and higher n

B
2 . The condition that N1 is

sufficiently large relative to N2 simply ensures that the market of unprofitable customers (side 2) is

sufficiently small relative to the market of profitable customers (side 1) so that the platforms can

make positive profits in equilibrium.

The result is thus straightforward when the two platforms are sufficiently differentiated so that

they don’t compete too much on side 1. When inter-platform competition on side 1 becomes more

intense (i.e. γ increases), it becomes less and less likely that a cost reduction by one platform on

side 1 will benefit its rival. This is because each platform is now ambivalent about losing customers

on side 2: although that rids it of unprofitable customers, it also decreases its market share of

profitable side 1 customers. One can confirm this intuition by noting that the left hand side of (16)

is increasing in γ and strictly positive for γ = 1. Therefore, for γ high enough, a cost reduction by

one platform always hurts its rival, as standard intuition suggests.

4.2 Fully two-sided pricing

Let us now turn to the general case, when prices on both sides of the market are flexible. An

investment that reduces platform A’s marginal cost cA1 is soft if and only if (recall 7):∙¡
pB∗1 − cB1

¢ ∂nB1
∂pA1

+
¡
pB∗2 − cB2

¢ ∂nB2
∂pA1

¸
dpA∗1
dcA1

+

∙¡
pB∗1 − cB1

¢ ∂nB1
∂pA2

+
¡
pB∗2 − cB2

¢ ∂nB2
∂pA2

¸
dpA∗2
dcA1

< 0

which means we want at least one of the two terms in-between square brackets to be negative.

Assume then that: ¡
pB∗1 − cB1

¢ ∂nB1
∂pA1

+
¡
pB∗2 − cB2

¢ ∂nB2
∂pA1

< 0

or, equivalently ¡
pB∗1 − cB1

¢
+
¡
pB∗2 − cB2

¢ ∂nB2
∂pA1

µ
∂nB1
∂pA1

¶−1
< 0 (19)

Just like in the previous example, the main issue is also satisfying the first order conditions. In

particular, the first order condition in pB1 is:

¡
pB∗1 − cB1

¢
+
¡
pB∗2 − cB2

¢ ∂nB2
∂pB1

µ
∂nB1
∂pB1

¶−1
= −nB1

µ
∂nB1
∂pB1

¶−1
> 0 (20)

To simplify things somewhat, assume that14 ∂n̂B2
∂NB

1
= − ∂n̂B2

∂NA
1
> 0 (recall (5)). Then:

∂nB2
∂pA1

µ
∂nB1
∂pA1

¶−1
=

∂n̂B2
∂NB

1

Ã
1 +

¯̄̄̄
¯∂nA1∂pA1

µ
∂nB1
∂pA1

¶−1 ¯̄̄̄¯
!

and
∂nB2
∂pB1

µ
∂nB1
∂pB1

¶−1
=

∂n̂B2
∂NB

1

Ã
1 +

¯̄̄̄
¯∂nA1∂pB1

µ
∂nB1
∂pB1

¶−1 ¯̄̄̄¯
!

14This holds for example when platforms compete a la Hotelling with no hinterlands on side 2.
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Stability requires
¯̄̄
∂nA1
∂pB1

∂nB1
∂pA1

¯̄̄
≤
¯̄̄
∂nB1
∂pB1

∂nA1
∂pA1

¯̄̄
, therefore, in order to satisfy (19) and (20) simultaneously,

we must have:

pB∗2 − cB2 < 0 and

¯̄̄̄
¯∂nA1∂pB1

µ
∂nB1
∂pB1

¶−1 ¯̄̄̄¯ <
¯̄̄̄
¯∂nA1∂pA1

µ
∂nB1
∂pA1

¶−1 ¯̄̄̄¯
Again, this condition cannot be satisfied in the Armstrong (2006) model. Just like in the previous

example, we need to have:
∂nA1
∂pB1

=
∂nB1
∂pA1

= −γ∂n
A
1

∂pA1
= −γ∂n

B
1

∂pB1

with 0 < γ < 115. In this case:

∂nB2
∂pA1

µ
∂nB1
∂pA1

¶−1
=

∂n̂B2
∂NB

1

µ
1 +

1

γ

¶
>

∂n̂B2
∂NB

1

(1 + γ) =
∂nB2
∂pB1

µ
∂nB1
∂pB1

¶−1
To obtain this, we posit the following demand functions:

ni1 =
1

2
+

ui1 − uj1
2t1

+
x1
2t1

¡
V1 + ui1

¢
(21)

ni2 = N2

"
1

2
+

ui2 − uj2
2t2

#
(22)

with:

ui1 = α1n
i
2 − pi1 and ui2 = α2n

i
1 − pi2 (23)

where:

α1, α2, t1, t2, x1, V1, N2 > 0 (24)

We also assume that marginal costs are symmetric and non-negative for both platforms:

cA1 = cB1 ≡ c1 > 0

cA2 = cB2 ≡ c2 ≥ 0 (25)

Note that we have:

nA2 + nB2 = N2

Relegating calculations in the appendix, we have:

Proposition 2 There exists a range of parameters (α1, α2, t1, t2, x1, V1, N2, c1, c2) for which an in-

vestment that slightly decreases platform i’s marginal cost ci1 is soft, i.e. increases the profits of

platform j 6= i, i, j ∈ {A,B}.¥

The purpose of this example is to demonstrate the theoretical possibility for tying to be soft. The

example is too stylized to warrant a full-blown numerical exercise. We have explored qualitatively

15In the Armstrong (2006) model, γ = 1.
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the factors that determine the likelihood and the strength of this effect. We leave it for future

research to perform a quantitative analysis in a realistic structural model.

5 Conclusion

We have shown that strategic interactions in two-sided market duopolies are fundamentally different

from those in one-sided markets. The possibility of cross-subsidization between the two sides leads

to novel and counterintuitive results. In particular, a cost-reducing investment by one firm can both

increase the profits of its rivals and be desirable for the firm undertaking the investment. Thus,

increasing competitive advantage through cost advantage for one platform may end up benefiting

both platforms (in a one sided market, cost reductions by one firm always hurt its rivals). The

fundamental reason is that in the event one side of the market is subsidized, the platform gaining

a cost advantage helps the rival platform by stealing customers on both sides in proportions that

it was unprofitable for the latter to serve. This means that a cost-reducing investment can be part

of a fat cat strategy under entry accomodation, which is never the case in a one-sided market, as

shown by FT.

A prominent application is tying, which in a one-sided market is unambiguously tough. By

contrast, our analysis implies that it can actually be soft in a two-sided market, which means

that tying may in fact benefit both the tying firm and its rival. This can for example mean that

when Microsoft is tying Windows Media Player into Windows (which can simply be interpreted as

leveraging a distribution cost advantage on the consumer side over Real Networks and other rivals),

everyone could possibly benefit. Of course, this possibility - in this example or other contexts -

could only be confirmed through empirical analysis, which we leave for future research.
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6 Appendix

Proof. (dp
∗
A

dcA
> 0 in section 2)

Let:

H (pA, pB, cA) ≡ (pA − cA)
∂nA
∂pA

(pA, pB) + nA (pA, pB)

Then we can write the first order condition in pA as:

H (p∗A, pB, cA) = 0

for all pB and cA. In particular:

H (p∗∗A , p
∗∗
B , cA) = 0

Given that ∂nA
∂pA

< 0 and assuming the second order condition in pA is satisfied, we have
∂H
∂pA

< 0 and
∂H
∂cA

> 0. Totally differentiating H (p∗∗A , p
∗∗
B , cA) with respect to cA we obtain:

−∂H

∂cA
=

dp∗∗A
dcA

∙
∂H

∂pA
+

∂H

∂pB

∂p∗B
∂pA

¸
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Meanwhile, total differentiation of H (p∗A, pB, cA) with respect to pB yields:

∂H

∂pB
+

∂H

∂pA

∂p∗A
∂pB

= 0

Evaluating the last two equations in (p∗∗A , p
∗∗
B , cA), we obtain:

dp∗∗A
dcA

=
− ∂H

∂cA

∂H
∂pA

³
1− ∂p∗B

∂pA

∂p∗A
∂pB

´
Finally, the stability of the Nash equilibrium (p∗∗A , p

∗∗
B ) implies that 1 >

∂p∗B
∂pA

∂p∗A
∂pB

, therefore
dp∗∗A
dcA

> 0.

¥

Micro-foundations leading to the demand system (15)
We assume that on side i there is a Hotelling segment of consumers with linear transportation costs

ti, standalone valuation for either platform Vi and additional utility αi per customer on side j of the same

platform, with i 6= j ∈ {1.2}. We assume the total mass of these customers is 1 on side 1 and M2 on

side 2. Furthermore, on side 1, each platform faces a downward-sloping demand of "loyal" customers (i.e.

who are never interested in the rival platform), with standalone valuation V1, utility per side 2 customer

on the same platform β1 and transportation costs
2t1
x
. This yields the following expression of for platform

i’s demands:

ni1 =
1

2
+

α1
¡
ni2 − nj2

¢
+
¡
pj1 − pi1

¢
2t1

+
x

2t1

¡
V1 + β1n

i
2 − pi1

¢
ni2 = M2

Ã
1

2
+

α2
¡
ni1 − nj1

¢
2t2

!

where α1, α2, x, V1, β1, t1, t2 > 0.

Solving this demand system for (ni1, n
i
2) as functions of prices only, we obtain:

ni1 =M1 − θpi1 + λpj2

with:

M1 =
t1 + xV1 + β1

M2

2

2t1

θ =
(1 + x)

³
1− M2α2α1+M2α2xβ1

4t1t2

´
+ M2α2α1+M2α2xβ1

4t1t2

4t1
³
1
2
− M2α2α1+M2α2xβ1

4t1t2

´
λ =

³
1− M2α2α1+M2α2xβ1

4t1t2

´
+ (1 + x) M2α2α1+M2α2xβ1

4t1t2

4t1
³
1
2
− M2α2α1+M2α2xβ1

4t1t2

´
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We need to impose:
1

2
>

M2α2α1 +M2α2xβ1
4t1t2

which not surprisingly implies:

0 < λ < θ

To simplify things, we let then γ = λ
θ
< 1 and N1 =

M1

θ
; N2 =

M2

θ
, since we can factor all profits by

θ without changing anything.

So everything is as if we had:

ni1 = N1 − pi1 + γpj1

ni2 =
N2

2
+

N2α2
2t2

¡
ni1 − nj1

¢
with γ < 1. ¥

Proof. (Proposition 1) The first order condition ((12) in the text) at the symmetric equilibrium

(pA1 = pB1 = p1 and nA1 = nB1 = n1) can be written as:

p1 − c1 + π2
N2α2
2t2

(1 + γ) = n1 > 0

At the symmetric equilibrium:

n1 = N1 − (1− γ) p1

Plugging in the first order condition above, we obtain:

p1 =
c1
2− γ

+
N1 − π2

N2α2
2t2

(1 + γ)

2− γ

The condition for a cost reduction by platform A to be profit enhancing for platform B ((11) above) is

then:

p1 − c1 + π2
N2α2
2t2

γ + 1

γ
< 0

Replacing p1 with its expression as a function of the model parameters, this condition is equivalent to

(16)16. ¥

Proof. (Proposition 2) Solving (21), (22) and (23) for ni1 and n
i
2, i = A,B, we obtain:

nA2 =
N2

2
+

α2 (2 + x1)N2

¡
pB1 − pA1

¢
+ 2t1

¡
pB2 − pA2

¢
4t1t2 − 2α1α2 (2 + x1)N2

nB2 =
N2

2
+

α2 (2 + x1)N2

¡
pA1 − pB1

¢
+ 2t1

¡
pA2 − pB2

¢
4t1t2 − 2α1α2 (2 + x1)N2

16Recall that π2 < 0 so that |π2| = −π2 > 0.
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nA1 =
t1 + V1x1 +

α1N2
2

2t1
+

α1 (2 + x1)
¡
pB2 − pA2

¢
4t1t2 − 2α1α2 (2 + x1)N2

+
4t1t2 + α1α2x1 (2 + x1)N2

4t1t2 − 2α1α2 (2 + x1)N2
× pB1
2t1
− 4t1t2 (1 + x1)− α1α2x1 (2 + x1)N2

4t1t2 − 2α1α2 (2 + x1)N2
× pA1
2t1

nB1 =
t1 + V1x1 +

α1N2
2

2t1
+

α1 (2 + x1)
¡
pA2 − pB2

¢
4t1t2 − 2α1α2 (2 + x1)N2

+
4t1t2 + α1α2x1 (2 + x1)N2

4t1t2 − 2α1α2 (2 + x1)N2
× pA1
2t1
− 4t1t2 (1 + x1)− α1α2x1 (2 + x1)N2

4t1t2 − 2α1α2 (2 + x1)N2
× pB1
2t1

We need to impose the following condition in order for this demand system to be well-defined:

4t1t2 − 2α1α2 (2 + x1)N2 > 0 (26)

In order to simplify notation for the calculation of the pricing equilibrium, let:

γ1 ≡
α1 (2 + x1)

4t1t2 − 2α1α2 (2 + x1)N2
; γ2 ≡

α2 (2 + x1)N2

4t1t2 − 2α1α2 (2 + x1)N2

δ ≡ 2t1
4t1t2 − 2α1α2 (2 + x1)N2

; ε ≡ 4t1t2 + α1α2x1 (2 + x1)N2

2t1 [4t1t2 − 2α1α2 (2 + x1)N2]

N1 ≡
t1 + V1x1 +

α1N2
2

2t1
; 1 + u ≡ 4t1t2 (1 + x1)− α1α2x1 (2 + x1)N2

4t1t2 + α1α2x1 (2 + x1)N2

Clearly u > 0 since we must have 4t1t2 − 2α1α2 (2 + x1)N2 > 0. We can now write:

nA1 =
N1

2
+ γ1

¡
pB2 − pA2

¢
+ εpB1 − ε (1 + u) pA1

nB1 =
N1

2
+ γ1

¡
pA2 − pB2

¢
+ εpA1 − ε (1 + u) pB1

nA2 =
N2

2
+ γ2

¡
pB1 − pA1

¢
+ δ

¡
pB2 − pA2

¢
nB2 =

N2

2
+ γ2

¡
pA1 − pB1

¢
+ δ

¡
pA2 − pB2

¢
Recall that platform profits are:

ΠA =
¡
pA1 − cA1

¢
nA1 +

¡
pA2 − cA2

¢
nA2

ΠB =
¡
pB1 − cB1

¢
nB1 +

¡
pB2 − cB2

¢
nB2

We start from a symmetric situation with cA1 = cB1 = c1 and cA2 = cB2 = c2 and consider a slight decrease
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in cA1 . Using the demand expressions above, the first order conditions in prices are:¡
pA1 − cA1

¢
× ε (1 + u) +

¡
pA2 − cA2

¢
γ2 =

N1

2
+ γ1

¡
pB2 − pA2

¢
+ εpB1 − ε (1 + u) pA1 (27)

¡
pA1 − cA1

¢
× γ1 +

¡
pA2 − cA2

¢
δ =

N2

2
+ γ2

¡
pB1 − pA1

¢
+ δ

¡
pB2 − pA2

¢
(28)

¡
pB1 − cB1

¢
× ε (1 + u) +

¡
pB2 − cB2

¢
γ2 =

N1

2
+ γ1

¡
pA2 − pB2

¢
+ εpA1 − ε (1 + u) pB1 (29)

¡
pB1 − cB1

¢
× γ1 +

¡
pB2 − cB2

¢
δ =

N2

2
+ γ2

¡
pA1 − pB1

¢
+ δ

¡
pA2 − pB2

¢
(30)

We can use (29) and (30) to determine platform B’s best response prices
¡
pB1 , p

B
2

¢
as a function of platform

A’s prices
¡
pA1 , p

A
2

¢
:

pB1 =
1

4δε (1 + u)− (γ1 + γ2)
2 ×

⎧⎪⎨⎪⎩
2δN1

2
− (γ1 + γ2)

N2
2

+ [2δε (1 + u)− (γ1 + γ2) γ1] c
B
1 + δ (γ2 − γ1) c

B
2

+ [2δε− (γ1 + γ2) γ2] p
A
1 + δ (γ1 − γ2) p

A
2

⎫⎪⎬⎪⎭
pB2 =

1

4δε (1 + u)− (γ1 + γ2)
2 ×

⎧⎪⎨⎪⎩
2ε (1 + u) N2

2
− (γ1 + γ2)

N1
2

+ε (1 + u) (γ1 − γ2) c
B
1 + [2εδ (1 + u)− (γ1 + γ2) γ2] c

B
2

+ε [γ2 (1 + 2u)− γ1] p
A
1 + [2εδ (1 + u)− γ1 (γ1 + γ2)] p

A
2

⎫⎪⎬⎪⎭
Therefore, prices are strategic complements across platforms (∂p

k
i

∂plj
> 0 for all i, j ∈ {1, 2} and k 6= l ∈

{A,B}) if and only if the following 5 conditions hold:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4δε (1 + u)− (γ1 + γ2)
2 > 0

2δε− (γ1 + γ2) γ2 > 0

γ1 − γ2 > 0

γ2 (1 + 2u)− γ1 > 0

2εδ (1 + u)− γ1 (γ1 + γ2) > 0

(31)

Taking the derivative in cA1 of both sides of the equality in (27), (28), (29) and (30) above, we obtain the

following system of 4 equations with 4 unknowns (dp
A
1

dcA1
,dp

A
2

dcA1
,dp

B
1

dcA1
,dp

B
2

dcA1
):

dpA1
dcA1

× 2ε (1 + u) +
dpA2
dcA1

× (γ1 + γ2)−
dpB1
dcA1

× ε− dpB2
dcA1

× γ1 = ε (1 + u)

dpA1
dcA1

× (γ1 + γ2) +
dpA2
dcA1

× 2δ − dpB1
dcA1

× γ2 −
dpB2
dcA1

× δ = γ1

dpB1
dcA1

× 2ε (1 + u) +
dpB2
dcA1

× (γ1 + γ2)−
dpA1
dcA1

× ε− dpA2
dcA1

× γ1 = 0

dpB1
dcA1

× (γ1 + γ2) +
dpB2
dcA1

× 2δ − dpA1
dcA1

× γ2 −
dpA2
dcA1

× δ = 0
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Taking the difference between the first and third equalities, then between the second and fourth, we obtain:µ
dpA1
dcA1
− dpB1

dcA1

¶
× ε (3 + 2u) +

µ
dpA2
dcA1
− dpB2

dcA1

¶
× (2γ1 + γ2) = ε (1 + u)

µ
dpA1
dcA1
− dpB1

dcA1

¶
× (γ1 + 2γ2) +

µ
dpA2
dcA1
− dpB2

dcA1

¶
× 3δ = γ1

Similarly, summing first and third, then second and fourth, we also have:µ
dpA1
dcA1

+
dpB1
dcA1

¶
× ε (1 + 2u) +

µ
dpA2
dcA1

+
dpB2
dcA1

¶
× γ2 = ε (1 + u)

µ
dpA1
dcA1

+
dpB1
dcA1

¶
× γ1 +

µ
dpA2
dcA1

+
dpB2
dcA1

¶
× δ = γ1

Solving the two systems above, we finally obtain:

dpA1
dcA1
− dpB1

dcA1
=

3δε (1 + u)− γ1 (2γ1 + γ2)

3δε (3 + 2u)− (γ1 + 2γ2) (2γ1 + γ2)

dpA2
dcA1
− dpB2

dcA1
=

γ1ε (3 + 2u)− (γ1 + 2γ2) ε (1 + u)

3δε (3 + 2u)− (γ1 + 2γ2) (2γ1 + γ2)
=

ε [γ1 (2 + u)− γ2 (2 + 2u)]

3δε (3 + 2u)− (γ1 + 2γ2) (2γ1 + γ2)

dpA1
dcA1

+
dpB1
dcA1

=
δε (1 + u)− γ1γ2
δε (1 + 2u)− γ1γ2

dpA2
dcA1

+
dpB2
dcA1

=
γ1ε (1 + 2u)− γ1ε (1 + u)

δε (1 + 2u)− γ1γ2
=

γ1εu

δε (1 + 2u)− γ1γ2

We then immediately get the two terms we are interested in:

dpA1
dcA1

=
1

2

∙
3δε (1 + u)− γ1 (2γ1 + γ2)

3δε (3 + 2u)− (γ1 + 2γ2) (2γ1 + γ2)
+

δε (1 + u)− γ1γ2
δε (1 + 2u)− γ1γ2

¸
(32)

dpA2
dcA1

=
1

2

∙
ε [γ1 (2 + u)− γ2 (2 + 2u)]

3δε (3 + 2u)− (γ1 + 2γ2) (2γ1 + γ2)
+

γ1εu

δε (1 + 2u)− γ1γ2

¸
(33)

We want both of these terms to be positive.

Finally, we also have to determine the symmetric equilibrium pAi = pBi = pi and nAi = nBi = ni for

i = 1, 2 and cA1 = cB1 = c1. It suffices to use the four first order conditions above (27, 28, 29, 30) in order

to obtain:

p1 × ε (1 + 2u) + p2 × γ2 =
N1

2
+ c1 × ε (1 + u) + c2 × γ2

p1 × γ1 + p2 × δ =
N2

2
+ c1 × γ1 + c2 × δ

which we can immediately solve to get:

p1 − c1 =
−δεu

δε (1 + 2u)− γ1γ2
c1 +

N1δ −N2γ2
2 [δε (1 + 2u)− γ1γ2]
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p2 − c2 =
γ1εu

δε (1 + 2u)− γ1γ2
c1 +

N2ε (1 + 2u)−N1γ1
2 [δε (1 + 2u)− γ1γ2]

We can now write all the conditions that need to be satisfied in order for an equilibrium in which a

slight reduction in cA1 increases B’s profits while prices are strategic complements across platforms to exist.

Using the expressions of nki (i ∈ {1, 2}, k ∈ {A,B}) as functions of
¡
pA1 , p

A
2 , p

B
1 , p

B
2

¢
, the softness

condition is:

[ε (p1 − c1) + γ2 (p2 − c2)]
dpA1
dcA1

+ [γ1 (p1 − c1) + δ (p2 − c2)]
dpA2
dcA1

< 0

which can be rewritten as:

(p1 − c1)

µ
ε
dpA1
dcA1

+ γ1
dpA2
dcA1

¶
+ (p2 − c2)

µ
γ2
dpA1
dcA1

+ δ
dpA2
dcA1

¶
< 0 (34)

At the same time, just like in the previous example, we need to make sure that the equilibrium n1 is

positive:

n1 =
1

2
+

x1
2t1

µ
V1 + α1

N2

2
− p1

¶
> 0 (35)

Finally, platforms must make positive profits in equilibrium:

(p1 − c1)

∙
1

2
+

x1
2t1

µ
V1 + α1

N2

2
− p1

¶¸
+ (p2 − c2)

N2

2
> 0 (36)

Together with (24), (25), (26), (31), (32) and (33), (34), (35) and (36) complete the set of necessary

conditions.

We have then used Mathematica to show that this system of necessary conditions can be satisfied for

a range of initial parameter values (ε, δ, u, γ1, γ2, N1, N2, c1, c2) or of the primitive parameters (α1, α2,

t1, t2, x1, V1, N2, c1, c2). One such solution is:

(α1,α2,t1,t2,x1,V1,N2, c1, c2) =

µ
1, 1.001,

23

16
, 2,

1

160
, 3,
127

128
, 106, 1.1

¶
¥
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