HARVARD|BUSINESS|SCHOOL

Strategic Interactions in Two-Sided Market Oligopolies

Emmanuel Farhi Andrei Hagiu

Working Paper

08-011

Strategic Interactions in Two-Sided Market Oligopolies

Emmanuel Farhi* and Andrei Hagiu ${ }^{\dagger}$

July 23rd, 2008

Abstract

Strategic interactions between two-sided platforms depend not only on whether their decision variables are strategic complements or substitutes as for one-sided firms, but also -and crucially so- on whether or not the platforms subsidize one side of the market in equilibrium. For example, with prices being strategic complements across platforms, we show that a cost-reducing investment by one firm may have a positive effect on its rival's profits and a negative effect on its own profits when one side is subsidized in equilibrium. By contrast, if platforms make positive margins on both sides, the same investment has the regular, expected effects. Our analysis implies that the strategy space and the logic of competitive advantage are fundamentally different in two-sided markets relative to one-sided markets.

Keywords: Two-Sided Markets, Two-Sided Platforms, Strategic Complements, Strategic Substitutes, Competitive Advantage.

JEL Classifications: L1, L2, L4, L8

1 Introduction

Fudenberg Tirole (1984) (hereafter FT) and Bulow Geanakoplos and Klemperer (1985) (hereafter BGK) have proposed a typology of strategic interactions in one-sided markets oligopolies. They analyze a competition game preceded by an investment stage. Three factors are shown to determine whether an incumbent will over-invest or under-invest: whether the objective of the incumbent is to accomodate or to deter entry, whether actions in the competition game are strategic completements or substitutes and whether investment increases or decreases rivals' profits (cf. Tirole 1988).

In this paper, we show that the possibility of subsidization of one side in a two-sided market can lead to fundamentally new (and somewhat surprising) strategic configurations in oligopoly. For instance, we show that a cost-reducing investment by a two-sided platform may be a successful entry accomodation strategy and at the same time raise the profits of its rival (in a one-sided market, cost reductions by one firm unambiguously hurt its competitors). The intuition behind this result is as follows. A cost reduction by one of the platforms gives it a competitive advantage relative to its rival, so that in the new equilibrium its prices on both sides will be lower than its rival's and it will steal customers from its rival on both sides of the market relative to the initial

[^0]equilibrium. However, the ratio between the number of customers stolen from the subsidized side and the number of customers stolen from the other (profitable) side may be sufficiently high so that the rival is happy to get rid of both, and sufficiently low so that the more cost-effective platform can serve them profitably at the new equilibrium prices. In other words, the cost reduction allows a "price-rebalancing" act by both platforms ${ }^{1}$, which may end up being beneficial to both of them in stark contrast with the one-sided case.

An important application of this result concerns tying in the spirit of Whinston (1990): a twosided platform A also has a monopoly power over another product M which is homogenously valued by all customers on one side of A. Tying M and the purchase of the platfom on this side of A then acts as a commitment to price agressively by raising the opportunity cost of a foregone sale. In the pricing game that follows, it has the same effect as a reduction of the marginal cost of distribution of A on the side of the market which buys M , relative to rival two-sided platforms. In a one-sided market with price competition and homogenous valuations of the tying good, tying is always a "top dog" strategy: it decreases rivals' profits while increasing one's own. By contrast, the result mentioned above implies that in a two-sided market, tying can be part of a "fat cat" strategy: a profitable way to accomodate entry while at the same time being "soft" (i.e. benefitting rivals as well).

More broadly, our analysis reveals that the set of strategic configurations in a two-sided market is strictly larger than in a one-sided market - not in terms of the nature of the strategies but in terms of the conditions under which they emerge. This is due to the fact that in two-sided markets, the sign of the strategic effect - that determines whether the incumbent will over- or under-invest - can no longer be entirely determined by the effect on rivals' profits as in one-sided markets.

This conclusion lends significant substance and support to the contention that two-sided markets have new implications, both from a strategy and from a public policy perspective. Indeed, the recent and burgeoning literature on two-sided markets is built on this premise, but the main argument put forward up to now is that two-sided platforms are different because they might end up subsidizing one side of the market in order to recoup on the other. This argument has received significant attention from antitrust scholars (e.g. Evans (2003), Wright (2004)), which have pointed out several implications, such as for instance that below-cost pricing in a market may not be indicative of predation, but of a two-sided pricing strategy, which can be profitable regardless of the presence of competition. Our paper takes a step beyond exhibiting this type of skewed two-sided pricing structure by deriving deeper implications of this feature for strategic interactions among platforms and a systematic categorization of strategies in two-sided markets oligopolies (which we show can be very different from one-sided markets).

Relation to the literature. This paper contributes to the recent two-sided markets literature, intiated by Armstrong (2006), Caillaud and Jullien (2003) and Rochet and Tirole (2003). Most of this literature has analyzed how platforms might solve the chicken-and-egg problem associated

[^1]with two sided-markets and focused almost exclusively on the conditions determining which (if any) side is subsidized and how much. We study the implications of the two-sided pricing game between two platforms on strategic investment choices that must be made prior to the pricing game. To illustrate the conclusions of our general analysis, we borrow from Armstrong (2006)'s two-sided Hotelling competition setting, but we extend his model by allowing for "hinterlands" this extension is absolutely necessary in order to exhibit results which are different from the ones occurring in one-sided markets.

This paper is also related to the literature on tying. An important benchmark in this literature is Whinston (1990). Whinston shows that when the tying good is homogenous, then tying acts as a commitment to be more aggressive in the competition on the tied good market. As a result, tying can be a profitable strategy to deter entry. However, in this case, tying is never a profitable strategy to accomodate entry. Our results show that this insight can be overturned in a two-sided setting.

There are three papers in the two-sided market literature that focus on tying. Rochet and Tirole (2003b) provide an economic analysis of the tying practice initiated by payments card associations Visa and MasterCard in which merchants who accept their credit cards were forced also to accept their debit cards. They show that in the absence of tying, the interchange fee between the merchant's and the cardholder's banks on debit is too low and tends to be too high on credit compared to the social optimum. Tying is shown to be a mechanism to rebalance the interchange fee structure and raise social welfare. Choi (2007) analyzes the welfare effects of tying in a model of competition between two-sided platforms (connecting consumers and content providers), when one or both sides can multihome. In his model, tying simply allows one of the platforms to reach all consumers by bundling the platform product in question with another product that all consumers need (the motivating example is the tying of Windows Media Player to the Windows Operating System, which every PC user has). The impact of tying on social welfare depends on whether consumers can multihome or not, but in all cases, tying unambiguously hurts the rival platform.

Amelio and Jullien (2007) consider a setting in which two-sided platforms would like to set prices below zero on one side of the market in order to solve the demand coordination problem, but are constrained to set non-negative prices. Tying can then serve as a mechanism to introduce implicit subsidies on one side of the market in order to solve the aforementioned coordination failure. As a result, tying can raise participation on both sides and can benefit consumers in the case of monopoly platform. In a duopoly context tying also has a strategic effect on competition. Contrary to the monopoly case, tying may not be ex-post and/or ex-ante optimal for a contested platform. Moreover, the competing platform benefits from it if the equilibrium implicit subsidy is large enough. We also obtain this result, although as a particular case of a broader setting.

The remainder of the paper is organized as follows. In Section 2, we briefly review the typology introduced by FT for one sided-markets. In Section 3, we lay out a very general two-sided market oligopoly setting, derive the corresponding characterization of the strategic space and explain the key differences relative to the one-sided environment. In Section 4, we illustrate the general analysis with specific, micro-founded models, which also allow us to derive more intuition for our main results.

We conclude in Section 5.

2 One-sided markets

This section provides a brief summary of the framework and animal strategy nomenclature introduced by FT; it draws heavily on Tirole (1988), to which the reader is referred for more details.

There are two firms, an incumbent, A, and an entrant, B. The timing of the duopoly game comprises three stages. In stage 1 , firm A chooses a variable K_{A} - for example a capacity, an investment in product quality or in a cost reducing technology. In stage 2 , firm B observes K_{A} and decides whether or not to enter. In stage 3 , the stage game depends on wether or not B has entered at stage 2 . If B has not entered at stage $2, A$ chooses x_{A} - which could be a price or a quantityto maximize profits as a monopolist. If B has entered then A and B simultaneously choose x_{A} and x_{B}.

In stage 3 , if only firm A is active then its profits are denoted by $\Pi^{M}\left(K_{A}, x_{A}\right)$. If both firms are active, firm i 's profits are denoted by $\Pi^{i}\left(K_{A}, x_{A}, x_{B}\right)$. The best response functions for the two firms in this stage are denoted by $x_{A}^{*}\left(x_{B}, K_{A}\right)$ and $x_{B}^{*}\left(x_{A}, K_{A}\right)$ respectively:

$$
x_{i}^{*}\left(x_{j}, K_{A}\right)=\arg \max _{x_{i}} \Pi^{i}\left(K_{A}, x_{A}, x_{B}\right) \text { for } i, j \in\{A, B\}, i \neq j
$$

Also, denote by $\left(x_{A}^{* *}\left(K_{A}\right), x_{B}^{* *}\left(K_{A}\right)\right)$ the resulting Nash equilibrium in stage 3 given A 's choice of K_{A} in stage 1.

There are two cases to consider. If entry deterrence is the most profitable strategy for A then its choice of K_{A} is driven by Π^{B}. Firm A will choose K_{A} so as to just deter entry by firm B :

$$
K_{A}^{M}=\arg \max _{K_{A}} \Pi^{M}\left(K_{A}, x_{A}^{M}\left(K_{A}\right)\right)
$$

subject to:

$$
\begin{equation*}
\Pi^{B}\left(K_{A}, x_{A}^{* *}\left(K_{A}\right), x_{B}^{* *}\left(K_{A}\right)\right) \leq 0 \tag{1}
\end{equation*}
$$

where $x_{A}^{M}\left(K_{A}\right)=\arg \max _{x_{A}} \Pi^{M}\left(K_{A}, x_{A}\right)$.
By contrast, if entry accomodation is the most profitable strategy for firm A, then its choice of K_{A} is driven by Π^{A}. In this case, K_{A} is chosen as follows:

$$
K_{A}^{D}=\arg \max _{K_{A}} \Pi_{A}\left(K_{A}, x_{A}^{* *}\left(K_{A}\right), x_{B}^{* *}\left(K_{A}\right)\right)
$$

subject to

$$
\begin{equation*}
\Pi_{B}\left(K_{A}, x_{A}^{* *}\left(K_{A}\right), x_{B}^{* *}\left(K_{A}\right)\right) \geq 0 \tag{2}
\end{equation*}
$$

In the rest of the paper we assume that B 's participation constraint (2) is not binding. Conse-
quently, the stage 3 Nash equilibrium $\left(x_{A}^{* *}\left(K_{A}\right), x_{B}^{* *}\left(K_{A}\right)\right)$ is characterized by:

$$
\frac{\partial \Pi^{A}}{\partial x_{A}}=\frac{\partial \Pi^{B}}{\partial x_{B}}=0
$$

Following FT, in the case of entry accomodation, the overall effect of K_{A} on Π^{A} can be decomposed into a direct effect and a strategic effect:

$$
\frac{d \Pi^{A}}{d K_{A}}=\underbrace{\frac{\partial \Pi^{A}}{\partial K_{A}}}_{\text {direct effect }}+\underbrace{\frac{\partial \Pi^{A}}{\partial x_{B}} \frac{d x_{B}^{* *}}{d K_{A}}}_{\text {strategic effect }}
$$

Meanwhile, the influence of K_{A} on firm B's profits, both under entry deterrence and accomodation, is given by:

$$
\begin{equation*}
\frac{d \Pi^{B}}{d K_{A}}=\underbrace{\frac{\partial \Pi^{B}}{\partial K_{A}}}_{\text {direct effect }}+\underbrace{\frac{\partial \Pi^{B}}{\partial x_{A}} \frac{d x_{A}^{* *}}{d K_{A}}}_{\text {strategic effect }} \tag{3}
\end{equation*}
$$

Assuming by symmetry that $\operatorname{sign}\left(\frac{\partial \Pi^{A}}{\partial x_{B}}\right)=\operatorname{sign}\left(\frac{\partial \Pi^{B}}{\partial x_{A}}\right)$, we have:

$$
\begin{equation*}
\operatorname{sign}\left(\frac{\partial \Pi^{A}}{\partial x_{B}} \frac{d x_{B}^{* *}}{d K_{A}}\right)=\operatorname{sign}\left(\frac{\partial \Pi^{B}}{\partial x_{A}} \frac{\partial x_{B}^{*}}{\partial x_{A}}\right) \operatorname{sign}\left(\frac{d x_{A}^{* *}}{d K_{A}}\right) \tag{4}
\end{equation*}
$$

where $\frac{\partial x_{B}^{*}}{\partial x_{A}}>0(<0)$ if the variables $\left(x_{A}, x_{B}\right)$ are strategic complements (substitutes).
The focus of the analysis is on the strategic effects. Direct effects would exist even if firm B did not observe K_{A} (open loop solution). Therefore, the sign of the strategic effect - under both entry deterrence and accomodation - determines whether firm A should over- or under-invest relative to the level of investment which would prevail in the open loop equilibrium. FT adopt the convention that investment makes firm A "tough" ("soft") if the strategic effect of K_{A} on firm B 's profits is negative (positive). We will maintain this convention throughout our paper. They then define the following strategies: (i) "top dog", be big (i.e. overinvest) in order to look tough (aggressive); (ii)"lean and hungry look", stay small (i.e. underinvest) in order to look tough (aggressive), (iii) "puppy dog": stay small in order to look soft (inoffensive) and (iv) "fat cat": be big in order to look soft (inoffensive). These four strategies turn out to be sufficient for fuly describing firm A's desired behavior in all cases, as shown in the following table:

		Investment K_{A} is:	
	Tough	Soft	
Actions are:	Strategic complements	A: Puppy Dog D: Top Dog	
	Strategic substitutes	A: Fat Cat A: Top Dog D: Top Dog	

Table 1
where \mathbf{A} stands for entry accomodation and \mathbf{D} for entry deterrence.
We now specialize the model to the following application, to which we will refer in the next sections of the paper. Actions x_{i} are prices - $x_{i} \equiv p_{i}$ for $i=A, B$ - and K_{A} is an investment which reduces the marginal cost c_{A} of firm A. We also make three assumptions. First, profit functions are concave in own prices so that best response correspondances $p_{A}^{*}\left(p_{B}, c_{A}\right)$ and $p_{B}^{*}\left(p_{A}, c_{A}\right)$ are well-defined and single-valued. Second, for each c_{A} there is a unique Nash equilibrium in prices $\left(p_{A}^{* *}\left(c_{A}\right), p_{B}^{* *}\left(c_{A}\right)\right)$ and it is stable. Third, prices are strategic complements (this is the case with linear demand models): $\frac{\partial p_{i}^{*}}{\partial p_{-i}}>0$ for $i \in\{1,2\}$.

In the appendix we prove that these assumptions guarantee that:

$$
\frac{d p_{A}^{* *}}{d c_{A}}>0
$$

Denoting by $n_{i}\left(p_{A}, p_{B}\right)$ the demand for firm i - with the property that $\frac{\partial n_{i}}{\partial p_{-i}}>0>\frac{\partial n_{i}}{\partial p_{i}}$, for $i \in\{1,2\}$ - we have:

$$
\frac{d \Pi^{B}}{d K_{A}}=\frac{d}{d K_{A}}\left(\left(p_{B}-c_{B}\right) n_{B}\right)=\underbrace{\left(p_{B}^{*}-c_{B}\right)}_{>0} \underbrace{\frac{\partial n_{B}}{\partial p_{A}}}_{>0} \underbrace{\frac{d p_{A}^{*}}{d c_{A}}}_{>0} \underbrace{\frac{d c_{A}}{d K_{A}}}_{<0}<0
$$

where the first term is positive because firm B 's profits have to be positive in equilibrium in order for firm B to be active.

Thus, a cost-reducing investment by firm A in a one-sided market can only be tough. This is quite intuitive: a marginal cost reduction by one firm can only hurt its rival in a one-sided context when firms compete in prices ${ }^{2}$. As we will see in the next section, things change radically in a two-sided context.

[^2]
3 Two-sided markets

We now move to a two-sided context, in which the two firms A and B are competing not for just one type of customers, but for two interrelated groups of customers 1 and 2. Each platform $i \in\{A, B\}$ chooses 2 actions p_{1}^{i} and p_{2}^{i}, which correspond to sides 1 and 2 respectively. Although in principle these could be any strategic actions, we will henceforth only consider the case in which they correspond to prices that the platforms have to set on both sides of the market. ${ }^{3}$

Two-sidedness is captured by assuming that the demand a platform faces on each side is decreasing in the price it charges to that side, increasing in the price charged by the rival platform on the same side, increasing in the realized demand on the other side of the same platform and decreasing in the realized demand on the other side of the rival platform. In short, the demand for platform i on side j is given by:

$$
\begin{equation*}
N_{j}^{i}=\hat{n}_{j}^{i}\left(p_{j}^{i}, p_{j}^{-i}, N_{-j}^{i}, N_{-j}^{-i}\right) \tag{5}
\end{equation*}
$$

with $\frac{\partial \hat{n}_{j}^{i}}{\partial p_{j}^{i}}<0<\frac{\partial \hat{n}_{j}^{i}}{\partial p_{j}^{--}} ; \frac{\partial \hat{n}_{j}^{i}}{\partial N_{-j}^{i}}>0>\frac{\partial \hat{n}_{j}^{i}}{\partial N_{-j}^{-i}}$.
Let c_{j}^{i} denote the marginal costs of platform i on side j, which we all assume to be constant.
The timing of the game is the same as in the previous section. In stage 1 , firm A chooses an investment K_{A}. In stage 2 , firm B observes K_{A} and decides whether or not to enter. In stage 3: if B has not entered at stage 2 , then A chooses p_{1}^{A} and p_{2}^{A} as a monopolist; if B has entered then A and B simultaneously choose p_{1}^{i} and $p_{2}^{i}, i \in\{A, B\}$.

Throughout the rest of the paper, we focus on the case in which K_{A} is a cost-reducing investment on side 1 for platform A :

$$
\frac{d c_{1}^{A}}{d K_{A}}<0 \text { and } \frac{d c_{2}^{A}}{d K_{A}}=\frac{d c_{1}^{B}}{d K_{A}}=\frac{d c_{2}^{B}}{d K_{A}}=0
$$

To simplify things, we assume that K_{A} has no direct effect on platform B's profits, so the total effect is equal to

We also make the following four assumptions in order simplify the analysis (the substance of our conclusions is not affected).

Assumption 1 (non-singularity) For any set of prices $\left\{p_{j}^{i}\right\}$, the four equations (5), determine a unique, stable, configuration of demands:

$$
N_{j}^{i}=n_{j}^{i}\left(\left\{p_{l}^{k}\right\}\right)
$$

where $\frac{\partial n_{j}^{i}}{\partial p_{j}^{2}}<0<\frac{\partial n_{j}^{i}}{\partial p_{j}^{-i}}$ and $\frac{\partial n_{j}^{i}}{\partial p_{-j}^{i}}<0<\frac{\partial n_{j}^{i}}{\partial p_{-j}^{-i}}$.
The profits of platform i can then be written as:

$$
\Pi^{i}=\left(p_{1}^{i}-c_{1}^{i}\right) n_{1}^{i}+\left(p_{2}^{i}-c_{2}^{i}\right) n_{2}^{i}
$$

[^3]Assumption 2 (concavity) Each platform's profits are concave in both of its prices holding the rival platform's prices constant and there always exists a unique Nash equilibrium in the stage 3 pricing game denoted by $\left\{p_{j}^{* * i}\right\}$ with $i \in\{1,2\}, j \in\{A, B\}$.

We continue to denote the platforms' best response functions by $p_{j}^{i *}\left(p_{1}^{-i}, p_{2}^{-i}, c_{1}^{i}, c_{2}^{i}\right), i \in\{A, B\}$, $j \in\{1,2\}$.

Assumption 3 (strategic complementarity) Prices are strategic complements: $\partial p_{j}^{i *} / \partial p_{l}^{-i}>0$ and equilibrium prices for each platform are increasing in its own costs:

$$
\begin{equation*}
\frac{\partial p_{j}^{i * *}}{\partial c_{j^{\prime}}^{i}}>0 \text { for all } i \in\{A, B\}, j, j^{\prime} \in\{1,2\} \tag{6}
\end{equation*}
$$

Note that this assumption implies that ${ }^{4}$:

$$
\begin{gathered}
\frac{d p_{i}^{A * *}}{d K_{A}}=\frac{\partial p_{i}^{A * *}}{\partial c_{1}^{A}} \frac{d c_{1}^{A}}{d K_{A}}<0 \\
\frac{d p_{i}^{B * *}}{d K_{A}}=\frac{\partial p_{i}^{B *}}{\partial p_{1}^{A}} \frac{d p_{1}^{A * *}}{d K_{A}}+\frac{\partial p_{i}^{B *}}{\partial p_{2}^{A}} \frac{d p_{2}^{A * *}}{d K_{A}}<0
\end{gathered}
$$

for $i=1,2$.
In a one-sided market, the condition corresponding to (6) is automatically verified and can be seen at the most general level as an application of the monotone comparative statics results in Milgrom and Shannon (1994). These principles, however, cannot be invoked in the two-sided context analyzed in this section.

Assumption 4 (symmetry) For $K_{A}=0$ and the corresponding Nash equilibrium, we have:

$$
\frac{\partial \Pi^{i}}{\partial p_{j}^{-i}}\left(\left\{p_{l}^{* * k}\right\}\right)=\frac{\partial \Pi^{-i}}{\partial p_{j}^{i}}\left(\left\{p_{l}^{* * k}\right\}\right)
$$

Indeed, instead of solving the last two stages of the game for all values of K_{A}, we will only perform a local comparative statics analysis in K_{A} around $K_{A}=0$, which is sufficient for our purposes.

3.1 Strategic interactions with variable prices on both sides

We are interested in determining the strategic effects of K_{A} on the rival platform (B)'s profits as well as on platform A 's own profits. The notion of under/over-investment is relative to a situation

[^4]in which only the direct effects exists. Hence our interest lies in determining the signs of $\frac{d \Pi^{A}}{d K_{A}}-\frac{\partial \Pi^{A}}{\partial K_{A}}$ and $\frac{d \Pi^{B}}{d K_{A}}-\frac{\partial \Pi^{B}}{\partial K_{A}}{ }^{5}$.

Using the envelope theorem, the sign of the strategic effect on platform B 's profits is:

$$
\begin{align*}
& \operatorname{sign}\left\{\frac{d \Pi^{B}}{d K_{A}}-\frac{\partial \Pi^{B}}{\partial K_{A}}\right\}=\operatorname{sign}\left\{\frac{\partial \Pi^{B}}{\partial p_{1}^{A}} \frac{d p_{1}^{A * *}}{d K_{A}}+\frac{\partial \Pi^{B}}{\partial p_{2}^{A}} \frac{d p_{2}^{A * *}}{d K_{A}}\right\} \\
= & \operatorname{sign}\left\{\sum_{j \in\{1,2\}}\left(\left(p_{1}^{B}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{j}^{A}}+\left(p_{2}^{B}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{j}^{A}}\right) \frac{d p_{j}^{A * *}}{d K_{A}}\right\} \tag{7}
\end{align*}
$$

The sign of the strategic effect of K_{A} on firm A 's own profits is:

$$
\begin{gather*}
\operatorname{sign}\left\{\frac{d \Pi^{A}}{d K_{A}}-\frac{\partial \Pi^{A}}{\partial K_{A}}\right\}=\operatorname{sign}\left\{\frac{\partial \Pi^{A}}{\partial p_{1}^{B}} \frac{d p_{1}^{B *}}{d K_{A}}+\frac{\partial \Pi^{A}}{\partial p_{2}^{B}} \frac{d p_{2}^{B * *}}{d K_{A}}\right\}=\operatorname{sign}\left\{\frac{\partial \Pi^{B}}{\partial p_{1}^{A}} \frac{d p_{1}^{B * *}}{d K_{A}}+\frac{\partial \Pi^{B}}{\partial p_{2}^{A}} \frac{d p_{2}^{B * *}}{d K_{A}}\right\} \\
=\operatorname{sign}\left\{\sum_{j \in\{1,2\}}\left(\left(p_{1}^{B}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{j}^{A}}+\left(p_{2}^{B}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{j}^{A}}\right) \frac{d p_{j}^{B * *}}{d K_{A}}\right\} \tag{8}
\end{gather*}
$$

These two expressions constitute the core of our analysis. Note that the respective signs of the strategic effects for firms A and B are disconnected. This is a crucial difference with BGK and FT, which analyze the same kind of strategic interactions, but in one-sided oligopolies. In one-sided contexts the terms $\frac{d p_{i}^{A * *}}{d K_{A}}$ and $\frac{d p_{j}^{B * *}}{d K_{A}}$ are negative when the "actions" $\left(p_{i}^{A}, p_{j}^{B}\right)$ are strategic complements ${ }^{6}$. By contrast, here the fact that the prices $\left(p_{i}^{A}, p_{j}^{B}\right)$ are strategic complements does not pin down the sign of the terms $\frac{\partial \Pi^{B}}{\partial p_{i}^{A}}$.

As a consequence, the set of strategic configurations in a two-sided market is strictly larger than in a one-sided market - not in terms of the nature of the strategies but in terms of the conditions under which they emerge. Equations (7) and (8) imply that the following four configurations are possible ${ }^{7}$: (i) $\frac{d \Pi^{A}}{d K_{A}}-\frac{\partial \Pi^{A}}{\partial K_{A}}>0$ and $\frac{d \Pi^{B}}{d K_{A}}-\frac{\partial \Pi^{B}}{\partial K_{A}}>0$; (ii) $\frac{d \Pi^{A}}{d K_{A}}-\frac{\partial \Pi^{A}}{\partial K_{A}}>0$ and $\frac{d \Pi^{B}}{d K_{A}}-\frac{\partial \Pi^{B}}{\partial K_{A}}<0$; (iii) $\frac{d \Pi^{A}}{d K_{A}}-\frac{\partial \Pi^{A}}{\partial K_{A}}<0$ and $\frac{d \Pi^{B}}{d K_{A}}-\frac{\partial \Pi^{B}}{\partial K_{A}}>0$; (iv) $\frac{d \Pi^{A}}{d K_{A}}-\frac{\partial \Pi^{A}}{\partial K_{A}}<0$ and $\frac{d \Pi^{B}}{d K_{A}}-\frac{\partial \Pi^{B}}{\partial K_{A}}<0$.

Under entry accomodation, these cases lead to the following strategies for platform A : (i) fat cat; (ii) top dog; (iii) puppy dog; (iv) lean and hungry look.

By contrast, in a one-sided market with competition in prices, the optimal strategy for entry accomodation by A can only take two forms: fat cat and puppy dog (cf. Table 1). This is because in this case the two strategic effects of K_{A} necessarily have the same sign.

Consequently, Table 1 above needs to be adjusted in order to allow for the full range of strategic scenarios in a two-sided market. We say that investment K_{A} is "self-serving" ("self-harming") for firm A if the strategic effect on A is positive (negative). Note that we focus on the case where entry

[^5]accomodation is the optimal strategy for A.

Prices are strategic complements Entry accommodation regime		Effect of K_{A} on platform B:	
		Tough	Soft
Effect of K_{A} on platform A:	Self-serving	Top Dog	Fat Cat
	Self-harming	Puppy Dog	Lean and Hungry

Table 2

First, note that it is possible for K_{A} to have a positive effect on platform B 's profits - so that K_{A} is "soft" - without violating the condition that B 's profits are positive in equilibrium:

$$
\left(p_{1}^{B * *}-c_{1}^{B}\right) n_{1}^{B}+\left(p_{2}^{B * *}-c_{2}^{B}\right) n_{2}^{B}>0
$$

The possibility for a cost reduction by one platform to increase the profits of its rival is novel. This situation never occurs in one-sided markets - as we showed in the previous section. In a two-sided market setting, it is possible that in equilibrium the platforms subsidize one side of the market - say side 2 - and recoup the losses on the other side: $p_{2}^{B * *}-c_{2}^{B}<0$ and $p_{1}^{B * *}-c_{1}^{B}>0$. Note that for K_{A} to be soft in this case and for B to make positive profits it is necessary that:

$$
\frac{n_{1}^{B}}{n_{2}^{B}}>\frac{-\left(p_{2}^{B * *}-c_{2}^{B}\right)}{p_{1}^{B * *}-c_{1}^{B}}>\frac{\partial n_{1}^{B} / \partial p_{j}^{A}}{\partial n_{2}^{B} / \partial p_{j}^{A}}
$$

for at least one $j \in\{1,2\}$, which implies:

$$
\begin{equation*}
\frac{\partial n_{2}^{B} / \partial p_{j}^{A}}{n_{2}^{B}}>\frac{\partial n_{1}^{B} / \partial p_{j}^{A}}{n_{1}^{B}} \tag{9}
\end{equation*}
$$

for at least one $j \in\{1,2\}$. This condition can be interpreted in the following way: softness is more likely to occur when the "business stealing" effect on the subsidized side $\left(n_{2}^{B}\right)^{-1}\left(\partial n_{2}^{B} / \partial p_{j}^{A}\right)$ is higher relative to the business stealing effect on the profitable side $\left(n_{1}^{B}\right)^{-1}\left(\partial n_{1}^{B} / \partial p_{j}^{A}\right)$.

Equation (9) holds the key to interpreting the surprising result above. By the envelope theorem, a small change in K_{A} impacts Π^{B} only through A 's equilibrium prices. Given that K_{A} reduces c_{1}^{A}, we know that A 's prices will be lower in the new equilibrium on both sides $\left(\frac{d p_{1}^{A * *}}{d K_{A}}, \frac{d p_{2}^{A * *}}{d K_{A}}<0\right)$, which means that A steals customers from B on both sides of the market. However, if the proportion of
customers stolen by A from B on the loss-making side is sufficiently high relative to the proportion of customers stolen on the profit-making side, this might increase B 's profits. Getting new customers on both sides in these proportions can also be profitable for A because it has now gained some competitive advantage relative to B (recall that $\frac{d c_{1}^{A}}{d K_{A}}<0$). Thus, the investment K_{A} can be both soft and self-serving. Inspecting (8), it should be clear however that K_{A} can also be self-harming, just as in one-sided markets.

A complementary intuition can be obtained in the following way. Imagine that the initial situation is a symmetric equilibrium where prices are given by p_{1} and p_{2}, and market shares are given by n_{1} and n_{2}, with $p_{1}-c_{1}>0$ and $p_{2}-c_{2}<0$. As we move to the new equilibrium, in which platform A has gained a very small competitive advantage $\Delta c_{1}^{A}<0$, we have ${ }^{8}$:

$$
\Delta \Pi^{i}-\Delta c_{1}^{i} n_{1}=\Delta p_{1}^{i} n_{1}+\Delta p_{2}^{i} n_{2}+\left(p_{1}-c_{1}\right) \Delta n_{1}^{i}+\left(p_{2}-c_{2}\right) \Delta n_{2}^{i}
$$

for $i=\{A, B\}$. Note that under our assumptions, $\Delta p_{1}^{i}<0$ and $\Delta p_{2}^{i}<0$ so that

$$
\Delta p_{1}^{i} n_{1}+\Delta p_{2}^{i} n_{2}<0 \text { for all } i
$$

Hence a necessary condition for $\Delta \Pi^{i}-\Delta c_{1}^{i} n_{1}$ to be positive for all i (i.e. to be in a fat cat scenario) is that

$$
\begin{equation*}
\left(p_{1}-c_{1}\right) \Delta n_{1}^{i}+\left(p_{2}-c_{2}\right) \Delta n_{2}^{i}>0 \text { for all } i \in\{A, B\} \tag{10}
\end{equation*}
$$

Clearly, if the total market size is fixed on each side, then $\Delta n_{j}^{A}=-\Delta n_{j}^{B}$ for all $j \in\{1,2\}$ so that:

$$
\left(p_{1}-c_{1}\right) \Delta n_{1}^{A}+\left(p_{2}-c_{2}\right) \Delta n_{2}^{A}=-\left(p_{1}-c_{1}\right) \Delta n_{1}^{B}-\left(p_{2}-c_{2}\right) \Delta n_{2}^{B}
$$

and (10) cannot be verified. Hence, a cost-reducing investment being a fat cat strategy requires market expansion on at least one side. Indeed, suppose that on side 1 , total market size is not fixed. Denote by $\Delta m_{1} \equiv \Delta m_{1}^{A}+\Delta m_{1}^{B}>0$ the total expansion in market size on side 1 (it is positive because both platforms' prices decrease). We now have:

$$
\left(p_{1}-c_{1}\right) \Delta n_{1}^{A}+\left(p_{2}-c_{2}\right) \Delta n_{2}^{A}=-\left(p_{1}-c_{1}\right) \Delta n_{1}^{B}-\left(p_{2}-c_{2}\right) \Delta n_{2}^{B}+\left(p_{1}-c_{1}\right) \Delta m_{1}
$$

with $\left(p_{1}-c_{1}\right) \Delta m_{1}>0$. Therefore, if the market size expansion is strong enough, (10) can be verified. The cost-reducing investment allows for a better balancing act between the two sides which benefits both platforms through a market expansion on the profit-making side.

Tying. Tying can be analyzed as a reduction in marginal costs on one side of the market. Configuration (i) above is then a case in which tying makes the incumbent soft and is profitable at the same time. In other words, tying becomes a fat cat strategy. We have therefore uncovered the

[^6]possibility that tying can be a profitable entry-accomodation strategy, in stark contrast with the case of one-sided markets.

To put this result in perspective, it is worth reviewing the logic of the argument in Whinston (1990). Whinston considers a model with two firms A and B. Firm A produces two different goods 1 and 2_{A}. The market for good 1 is monopolized by firm A. Goods 2_{A} and 2_{B} are imperfect substitutes and give rise to price competition: the demand for good 2_{i} is given by $x_{2}^{i}\left(p_{2}^{A}, p_{2}^{B}\right)$ with $\frac{\partial x_{2}^{i}}{\partial p_{2}^{\prime}} \geq 0$ if $i \neq j$ and $\frac{\partial x_{2}^{i}}{\partial p_{2}^{\prime}}<0$ if $i=j$. Firm B however, needs to pay an entry cost K_{B} in order to operate. In addition to its pricing decisions, firm A can offer bundles of its products. Two cases have to be distinguished. The commitment case occurs when firm A commits to a specific bundle of products before entry and pricing decisions are made. The no-commitment case occurs when bundling decisions are made at the same time as pricing decisions.

Whinston's main result corresponds to the case that is closest to our setup, where valuation for the tying good 1 is homogenous across all consumers. Whinston shows that tying is useless in the no-commitment case: firm A can make sure that all customers purchase good 1 and replicate the bundling equilibrium in the independent pricing game (where bundling is prohibited).

In the commitment case tying acts on the best responses as a reduction in marginal cost for firm A : every sale of good 2_{A} comes with the extra benefit of a sale of good 1 , lowering the effective corresponding marginal cost of this sale. Tying therefore acts as a commitment by firm A to be more aggressive. If firm B remains active, this reduces the profits of both firms. Tying is a selfdeafeating strategy to accomodate entry. However, tying can result in foreclosure whereby firm B decides not to pay the fixed cost. Firm A then monopolizes the market for good 2. The benfit for firm A is reduced competition for good 2. The potential loss comes from the fact that firm A will be a monopolist who can only offer a bundle. Thus, the presence of a large number of consumers who dislike poduct 2_{A} may make a commitment to bundling unprofitable, even when it leads to exclusion. The conclusion is that in this context, tying is a top dog strategy that is always unprofitable to accomodate entry, and can sometimes be profitable to deter entry. ${ }^{9}$

3.2 Strategic interactions with prices fixed on one side

It is useful to briefly compare the results above with a situation in which platforms' margins on one side of the market, say side 2 , are exogenously fixed, i.e. $p_{2}^{A}-c_{2}^{A}=p_{2}^{B}-c_{2}^{B} \equiv \pi_{2}$. This may be

[^7]interpreted as a context in which regulation, common practice or other institutions put prices on one side of the market beyond the control of the two platforms. Then each platform i only has one variable to choose - p_{1}^{i} - and the demand functions can be written as $N_{j}^{i}=n_{j}^{i}\left(\left\{p_{1}^{A}, p_{1}^{B}\right\}\right)$.

The strategic effect of K_{A} on platform B is:

$$
\frac{d \Pi^{B}}{d K_{A}}=\frac{\partial \Pi^{B}}{\partial p_{1}^{A}} \frac{d p_{1}^{A *}}{d K_{A}}=\left[\left(p_{1}^{B *}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}+\pi_{2} \frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}\right] \frac{d p_{1}^{A *}}{d K_{A}}
$$

whereas the strategic effect on platform A's own profits is:

$$
\frac{\partial \Pi^{A}}{\partial p_{1}^{B}} \frac{d p_{1}^{B *}}{d K_{A}}=\frac{\partial \Pi^{B}}{\partial p_{1}^{A}} \frac{d p_{1}^{B *}}{d p_{1}^{A}} \frac{d p_{1}^{A *}}{d K_{A}}=\left[\left(p_{1}^{B *}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}+\pi_{2} \frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}\right] \frac{d p_{1}^{B *}}{d p_{1}^{A}} \frac{d p_{1}^{A *}}{d K_{A}}=\frac{d \Pi^{B}}{d K_{A}} \frac{d p_{1}^{B *}}{d p_{1}^{A}}
$$

The first expression above implies that the possibility of K_{A} being soft survives. If for example $\pi_{2}<0$ and $\left(n_{2}^{B}\right)^{-1}\left(\partial n_{2}^{B} / \partial p_{1}^{A}\right)>\left(n_{1}^{B}\right)^{-1}\left(\partial n_{1}^{B} / \partial p_{1}^{A}\right)$, then we can have simultaneously $\frac{d \Pi^{B}}{d K_{A}}>0$ and $\Pi^{B}>0$ in equilibrium. However, given that $\operatorname{sign}\left(\frac{\partial \Pi^{A}}{\partial p_{1}^{B}} \frac{d p_{1}^{B^{*}}}{d K_{A}}\right)=\operatorname{sign}\left(\frac{d \Pi^{B}}{d K_{A}}\right) \operatorname{sign}\left(\frac{d p_{1}^{A *}}{d p_{1}^{A}}\right)$, if $\frac{d p_{1}^{B *}}{d p_{1}^{A}}>0$ - which is always the case with linear demands and prices fixed on one side - then the two strategic effects have the same sign, just like in a one-sided market. Hence, by fixing prices on one side, the set of possible optimal strategies for entry accomodation for platform A is reduced back to \{puppy dog, fat cat $\}$.

4 Examples

In this section we use specific models to prove that the results anticipated by the general analysis above are indeed possible. In particular, for each example, our goal is to exhibit the possibility of a small cost reduction by platform A being "soft" (i.e., increasing platform B's profits), while prices are strategic complements across platforms. An additional benefit of working through these examples is that they allow us to gain further intuition regarding the two-sided strategic interactions we are illustrating.

4.1 Fixed prices on one side

We begin with the simpler case, in which platform prices - or markups - are fixed on one side of the market. In this case, we can write without loss of generality the profits of platform $i \in\{A, B\}$ as:

$$
\Pi^{i}=\left(p_{1}^{i}-c_{1}^{i}\right) n_{1}^{i}\left(p_{1}^{i}, p_{1}^{j}\right)+\pi_{2} f\left(n_{1}^{i}, n_{1}^{j}\right)
$$

where $n_{1}^{i}\left(p_{1}^{i}, p_{1}^{j}\right)$ is non-negative, decreasing in p_{1}^{i} and increasing in $p_{1}^{j} ; f(.,$.$) is non-negative,$ increasing in its first argument - $f_{1}>0-$ and decreasing in its second argument $-f_{2} \leq 0$.

We want to show that the strategic effect of a decrease in c_{1}^{A} on Π^{B} can be positive, i.e.
$\frac{\partial \Pi^{B}}{\partial p_{1}^{A}}\left(p_{1}^{B *}, p_{1}^{A *}\right)<0^{10}$. This is equivalent to ${ }^{11}:$

$$
\begin{equation*}
\left(p_{1}^{B *}-c_{1}^{B}\right)+\pi_{2}\left[f_{1}+f_{2} \frac{\partial n_{1}^{A}}{\partial p_{1}^{A}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right)^{-1}\right]<0 \tag{11}
\end{equation*}
$$

The first order condition in p_{1}^{B} yields:

$$
\begin{equation*}
\left(p_{1}^{B *}-c_{1}^{B}\right)+\pi_{2}\left[f_{1}+f_{2} \frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}\right]=-n_{1}^{B}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}>0 \tag{12}
\end{equation*}
$$

Thus, in order for our example to work, we need to have $f_{2}<0$ and either:

$$
\begin{equation*}
\pi_{2}>0 \text { and }\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{A}} \frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right|<\left|\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}} \frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\right| \tag{13}
\end{equation*}
$$

or:

$$
\begin{equation*}
\pi_{2}<0 \text { and }\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{A}} \frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right|>\left|\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}} \frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\right| \tag{14}
\end{equation*}
$$

Stability of the demand system in $\left(p_{1}^{A}, p_{1}^{B}\right)$ requires $\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{A}} \frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right|>\left|\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}} \frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\right|$, hence we must have $\pi_{2}<0^{12}$.

Most models found in the two-sided market literature up to now - Armstrong (2006) in particular - have a symmetic linear strucuture which implies $\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{A}}\right|=\left|\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right|=\left|\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right|=\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\right|$. Hence they cannot satisify our conditions (13) or (14). We therefore need to depart from the symmetry assumption and look to obtain the following type of expression:

$$
n_{1}^{i}\left(p_{1}^{i}, p_{1}^{j}\right)=N-p_{1}^{i}+\gamma p_{1}^{j}
$$

with $0<\gamma<1$. In other words, we need the elasticity of a platform's demand in its own price to be strictly higher in absolute value than the elasticity in the rival platform's price. This can be achieved by adding "hinterlands" on side 1 to the two-sided Hotelling model considered in Armstrong (2006).

In the appendix we provide the detailed micro-foundations of this model, which allows us to

[^8]obtain:
\[

$$
\begin{align*}
& n_{1}^{i}=N_{1}-p_{1}^{i}+\gamma p_{1}^{j} \\
& n_{2}^{i}=\frac{N_{2}}{2}+\frac{N_{2} \alpha_{2}}{2 t_{2}}\left(n_{1}^{i}-n_{1}^{j}\right) \\
& \Pi^{i}=\left(p_{1}^{i}-c_{1}^{i}\right) n_{1}^{i}+\pi_{2} n_{2}^{i} \tag{15}
\end{align*}
$$
\]

where $N_{1}>0, N_{2}>0, t_{2}>0, \alpha_{2}>0, \pi_{2}<0$ (necessary as we have seen above) and $\left.\gamma \in\right] 0,1[$ are all constants.

The linearity of demand in prices implies that platform i 's profits are concave in p_{1}^{i}, which in turn implies $\frac{d p_{1}^{A}}{d c_{1}^{A}}>0$, and that platform prices are strategic complements, i.e. $\frac{d p_{1}^{i}}{d p_{1}^{j}}>0$ for all $i \neq j \in\{A, B\}$ (so that assumptions 1-4 are satisfied).

In the appendix we prove:

Proposition 1 A necessary and sufficient condition for a cost reduction by platform A to be profit enhancing for platform $B-$ (11) above - is:

$$
\begin{equation*}
N_{1}-c_{1}(1-\gamma)-\left|\pi_{2}\right| \frac{N_{2} \alpha_{2}}{2 t_{2}}(1+\gamma) \frac{2(1-\gamma)}{\gamma}<0 \tag{16}
\end{equation*}
$$

Condition (16) can be compared to the condition for n_{1} to be positive in equilibrium ${ }^{13}$:

$$
\begin{equation*}
N_{1}-c_{1}(1-\gamma)-\left|\pi_{2}\right| \frac{N_{2} \alpha_{2}}{2 t_{2}}(1+\gamma)(1-\gamma)>0 \tag{17}
\end{equation*}
$$

and to the condition for platform profits to be positive in equilibrium:

$$
\begin{equation*}
\frac{\left[N_{1}-c_{1}(1-\gamma)+\left|\pi_{2}\right| \frac{N_{2} \alpha_{2}}{2 t_{2}}(1+\gamma)\right]\left[N_{1}-c_{1}(1-\gamma)-\left|\pi_{2}\right| \frac{N_{2} \alpha_{2}}{2 t_{2}}(1+\gamma)(1-\gamma)\right]}{(2-\gamma)^{2}}>\left|\pi_{2}\right| \frac{N_{2}}{2} \tag{18}
\end{equation*}
$$

It is then easily verified that the last three conditions can hold simultaneously for a range of parameter values. Note that $\gamma<1$ is absolutely necessary in making it possible that (16) and (17) hold at the same time.

To gain some intuition, note that (16), (17) (18) are clearly satisfied when $\gamma=0$ and N_{1} is sufficiently large relative to N_{2}. In this case, (15) yields $n_{1}^{i}=N_{1}-p_{1}^{i}$ and so there is no competition between platforms on side 1. Meanwhile, on side 2 platforms are "forced" to lose money and each gains unprofitable side 2 customers in proportion to its market share advantage relative to its rival on side 1. Consequently, plaform A is always happy to lose market share on side 2 (since that

[^9]entails no loss in market share on side 1) and this happens whenever platform B 's marginal cost c_{1}^{B} decreases because it leads to lower p_{1}^{B}, higher n_{1}^{B} and higher n_{2}^{B}. The condition that N_{1} is sufficiently large relative to N_{2} simply ensures that the market of unprofitable customers (side 2) is sufficiently small relative to the market of profitable customers (side 1) so that the platforms can make positive profits in equilibrium.

The result is thus straightforward when the two platforms are sufficiently differentiated so that they don't compete too much on side 1 . When inter-platform competition on side 1 becomes more intense (i.e. γ increases), it becomes less and less likely that a cost reduction by one platform on side 1 will benefit its rival. This is because each platform is now ambivalent about losing customers on side 2: although that rids it of unprofitable customers, it also decreases its market share of profitable side 1 customers. One can confirm this intuition by noting that the left hand side of (16) is increasing in γ and strictly positive for $\gamma=1$. Therefore, for γ high enough, a cost reduction by one platform always hurts its rival, as standard intuition suggests.

4.2 Fully two-sided pricing

Let us now turn to the general case, when prices on both sides of the market are flexible. An investment that reduces platform A's marginal $\operatorname{cost} c_{1}^{A}$ is soft if and only if (recall 7):

$$
\left[\left(p_{1}^{B *}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}+\left(p_{2}^{B *}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}\right] \frac{d p_{1}^{A *}}{d c_{1}^{A}}+\left[\left(p_{1}^{B *}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{2}^{A}}+\left(p_{2}^{B *}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{2}^{A}}\right] \frac{d p_{2}^{A *}}{d c_{1}^{A}}<0
$$

which means we want at least one of the two terms in-between square brackets to be negative. Assume then that:

$$
\left(p_{1}^{B *}-c_{1}^{B}\right) \frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}+\left(p_{2}^{B *}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}<0
$$

or, equivalently

$$
\begin{equation*}
\left(p_{1}^{B *}-c_{1}^{B}\right)+\left(p_{2}^{B *}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right)^{-1}<0 \tag{19}
\end{equation*}
$$

Just like in the previous example, the main issue is also satisfying the first order conditions. In particular, the first order condition in p_{1}^{B} is:

$$
\begin{equation*}
\left(p_{1}^{B *}-c_{1}^{B}\right)+\left(p_{2}^{B *}-c_{2}^{B}\right) \frac{\partial n_{2}^{B}}{\partial p_{1}^{B}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}=-n_{1}^{B}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}>0 \tag{20}
\end{equation*}
$$

To simplify things somewhat, assume that ${ }^{14} \frac{\partial \hat{n}_{2}^{B}}{\partial N_{1}^{B}}=-\frac{\partial \hat{n}_{2}^{B}}{\partial N_{1}^{A}}>0$ (recall (5)). Then:
$\frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right)^{-1}=\frac{\partial \hat{n}_{2}^{B}}{\partial N_{1}^{B}}\left(1+\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{A}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right)^{-1}\right|\right)$ and $\left.\frac{\partial n_{2}^{B}}{\partial p_{1}^{B}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}=\frac{\partial \hat{n}_{2}^{B}}{\partial N_{1}^{B}}\left(1+\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}\right|\right) \right\rvert\,$

[^10]Stability requires $\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{B}} \frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right| \leq\left|\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}} \frac{\partial n_{1}^{A}}{\partial p_{1}^{A}}\right|$, therefore, in order to satisfy (19) and (20) simultaneously, we must have:

$$
p_{2}^{B *}-c_{2}^{B}<0 \text { and }\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}\right|<\left|\frac{\partial n_{1}^{A}}{\partial p_{1}^{A}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right)^{-1}\right|
$$

Again, this condition cannot be satisfied in the Armstrong (2006) model. Just like in the previous example, we need to have:

$$
\frac{\partial n_{1}^{A}}{\partial p_{1}^{B}}=\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}=-\gamma \frac{\partial n_{1}^{A}}{\partial p_{1}^{A}}=-\gamma \frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}
$$

with $0<\gamma<1^{15}$. In this case:

$$
\frac{\partial n_{2}^{B}}{\partial p_{1}^{A}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{A}}\right)^{-1}=\frac{\partial \hat{n}_{2}^{B}}{\partial N_{1}^{B}}\left(1+\frac{1}{\gamma}\right)>\frac{\partial \hat{n}_{2}^{B}}{\partial N_{1}^{B}}(1+\gamma)=\frac{\partial n_{2}^{B}}{\partial p_{1}^{B}}\left(\frac{\partial n_{1}^{B}}{\partial p_{1}^{B}}\right)^{-1}
$$

To obtain this, we posit the following demand functions:

$$
\begin{gather*}
n_{1}^{i}=\frac{1}{2}+\frac{u_{1}^{i}-u_{1}^{j}}{2 t_{1}}+\frac{x_{1}}{2 t_{1}}\left(V_{1}+u_{1}^{i}\right) \tag{21}\\
n_{2}^{i}=N_{2}\left[\frac{1}{2}+\frac{u_{2}^{i}-u_{2}^{j}}{2 t_{2}}\right] \tag{22}
\end{gather*}
$$

with:

$$
\begin{equation*}
u_{1}^{i}=\alpha_{1} n_{2}^{i}-p_{1}^{i} \quad \text { and } \quad u_{2}^{i}=\alpha_{2} n_{1}^{i}-p_{2}^{i} \tag{23}
\end{equation*}
$$

where:

$$
\begin{equation*}
\alpha_{1}, \alpha_{2}, t_{1}, t_{2}, x_{1}, V_{1}, N_{2}>0 \tag{24}
\end{equation*}
$$

We also assume that marginal costs are symmetric and non-negative for both platforms:

$$
\begin{align*}
c_{1}^{A} & =c_{1}^{B} \equiv c_{1}>0 \\
c_{2}^{A} & =c_{2}^{B} \equiv c_{2} \geq 0 \tag{25}
\end{align*}
$$

Note that we have:

$$
n_{2}^{A}+n_{2}^{B}=N_{2}
$$

Relegating calculations in the appendix, we have:

Proposition 2 There exists a range of parameters $\left(\alpha_{1}, \alpha_{2}, t_{1}, t_{2}, x_{1}, V_{1}, N_{2}, c_{1}, c_{2}\right)$ for which an investment that slightly decreases platform i's marginal cost c_{1}^{i} is soft, i.e. increases the profits of platform $j \neq i, i, j \in\{A, B\}$.

The purpose of this example is to demonstrate the theoretical possibility for tying to be soft. The example is too stylized to warrant a full-blown numerical exercise. We have explored qualitatively

[^11]the factors that determine the likelihood and the strength of this effect. We leave it for future research to perform a quantitative analysis in a realistic structural model.

5 Conclusion

We have shown that strategic interactions in two-sided market duopolies are fundamentally different from those in one-sided markets. The possibility of cross-subsidization between the two sides leads to novel and counterintuitive results. In particular, a cost-reducing investment by one firm can both increase the profits of its rivals and be desirable for the firm undertaking the investment. Thus, increasing competitive advantage through cost advantage for one platform may end up benefiting both platforms (in a one sided market, cost reductions by one firm always hurt its rivals). The fundamental reason is that in the event one side of the market is subsidized, the platform gaining a cost advantage helps the rival platform by stealing customers on both sides in proportions that it was unprofitable for the latter to serve. This means that a cost-reducing investment can be part of a fat cat strategy under entry accomodation, which is never the case in a one-sided market, as shown by FT.

A prominent application is tying, which in a one-sided market is unambiguously tough. By contrast, our analysis implies that it can actually be soft in a two-sided market, which means that tying may in fact benefit both the tying firm and its rival. This can for example mean that when Microsoft is tying Windows Media Player into Windows (which can simply be interpreted as leveraging a distribution cost advantage on the consumer side over Real Networks and other rivals), everyone could possibly benefit. Of course, this possibility - in this example or other contexts could only be confirmed through empirical analysis, which we leave for future research.

References

[1] Amelio, A. and B. Jullien (2007) "Tying and Freebie in Two-Sided Markets," unpublished manuscript, June 2007.
[2] Armstrong, M. (2006) "Competition in Two-Sided Markets," Rand Journal of Economics, Vol. 37 (3), 2006.
[3] Bulow, J. I., J. D. Geanakoplos, and P. D. Klemperer (1985) "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, 93(3), 488-511.
[4] Choi, J. P. (2007) "Tying in Two-Sided Markets with Multi-Homing," unpublished manuscript, May 2007.
[5] Evans, D. S. (2003) "The Antitrust Economics of Multi-Sided Platform Markets," Yale Journal on Regulation, 20(2), 325-82.
[6] Fudenberg, D., and J. Tirole (1984) "The Fat-Cat Effect, the Puppy-Dog Ploy, and the Lean and Hungry Look," American Economic Review, 74(2), 361-366.
[7] Hagiu, A. (2006a) "Pricing and Commitment by Two-Sided Platforms," Rand Journal of Economics, Vol. 37 (3), 2006.
[8] Milgrom, P. and C. Shannon (1994) "Monotone Comparative Statics," Econometrica, Vol. 62(1), 157-80, 1994.
[9] Rochet, J.-C., and J. Tirole (2003a) "Platform Competition in Two-Sided Markets," Journal of the European Economic Association, 1(4), 990-1029.
[10] Rochet, J.-C. and J. Tirole (2003b) "Tying in Two-Sided Markets and the Impact of the Honor All Cards Rule," unpublished manuscript, September 2003.
[11] Rochet, J.-C., and J. Tirole (2006) "Two-Sided Markets: Where We Stand," Rand Journal of Economics, Vol. 37 (3), 2006.
[12] Tirole, J. (1988) "The Theory of Industrial Organization," MIT Press.
[13] Whinston, M. D. (1990) "Tying, Foreclosure, and Exclusion", American Economic Review, September 1990, 80, 837-859.
[14] Wright, J. (2004) "One-Sided Logic in Two-Sided Markets," Review of Network Economics, 2004, 3, 42-63.

6 Appendix

Proof. $\left(\frac{d p_{A}^{*}}{d c_{A}}>0\right.$ in section 2)
Let:

$$
H\left(p_{A}, p_{B}, c_{A}\right) \equiv\left(p_{A}-c_{A}\right) \frac{\partial n_{A}}{\partial p_{A}}\left(p_{A}, p_{B}\right)+n_{A}\left(p_{A}, p_{B}\right)
$$

Then we can write the first order condition in p_{A} as:

$$
H\left(p_{A}^{*}, p_{B}, c_{A}\right)=0
$$

for all p_{B} and c_{A}. In particular:

$$
H\left(p_{A}^{* *}, p_{B}^{* *}, c_{A}\right)=0
$$

Given that $\frac{\partial n_{A}}{\partial p_{A}}<0$ and assuming the second order condition in p_{A} is satisfied, we have $\frac{\partial H}{\partial p_{A}}<0$ and $\frac{\partial H}{\partial c_{A}}>0$. Totally differentiating $H\left(p_{A}^{* *}, p_{B}^{* *}, c_{A}\right)$ with respect to c_{A} we obtain:

$$
-\frac{\partial H}{\partial c_{A}}=\frac{d p_{A}^{* *}}{d c_{A}}\left[\frac{\partial H}{\partial p_{A}}+\frac{\partial H}{\partial p_{B}} \frac{\partial p_{B}^{*}}{\partial p_{A}}\right]
$$

Meanwhile, total differentiation of $H\left(p_{A}^{*}, p_{B}, c_{A}\right)$ with respect to p_{B} yields:

$$
\frac{\partial H}{\partial p_{B}}+\frac{\partial H}{\partial p_{A}} \frac{\partial p_{A}^{*}}{\partial p_{B}}=0
$$

Evaluating the last two equations in $\left(p_{A}^{* *}, p_{B}^{* *}, c_{A}\right)$, we obtain:

$$
\frac{d p_{A}^{* *}}{d c_{A}}=\frac{-\frac{\partial H}{\partial c_{A}}}{\frac{\partial H}{\partial p_{A}}\left(1-\frac{\partial p_{B}^{*}}{\partial p_{A}} \frac{\partial p_{A}^{*}}{\partial p_{B}}\right)}
$$

Finally, the stability of the Nash equilibrium $\left(p_{A}^{* *}, p_{B}^{* *}\right)$ implies that $1>\frac{\partial p_{B}^{*}}{\partial p_{A}} \frac{\partial p_{A}^{*}}{\partial p_{B}}$, therefore $\frac{d p_{A}^{* *}}{d c_{A}}>0$.

Micro-foundations leading to the demand system (15)

We assume that on side i there is a Hotelling segment of consumers with linear transportation costs t_{i}, standalone valuation for either platform V_{i} and additional utility α_{i} per customer on side j of the same platform, with $i \neq j \in\{1.2\}$. We assume the total mass of these customers is 1 on side 1 and M_{2} on side 2. Furthermore, on side 1, each platform faces a downward-sloping demand of "loyal" customers (i.e. who are never interested in the rival platform), with standalone valuation V_{1}, utility per side 2 customer on the same platform β_{1} and transportation costs $\frac{2 t_{1}}{x}$. This yields the following expression of for platform i 's demands:

$$
\begin{aligned}
& n_{1}^{i}=\frac{1}{2}+\frac{\alpha_{1}\left(n_{2}^{i}-n_{2}^{j}\right)+\left(p_{1}^{j}-p_{1}^{i}\right)}{2 t_{1}}+\frac{x}{2 t_{1}}\left(V_{1}+\beta_{1} n_{2}^{i}-p_{1}^{i}\right) \\
& n_{2}^{i}=M_{2}\left(\frac{1}{2}+\frac{\alpha_{2}\left(n_{1}^{i}-n_{1}^{j}\right)}{2 t_{2}}\right)
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}, x, V_{1}, \beta_{1}, t_{1}, t_{2}>0$.
Solving this demand system for $\left(n_{1}^{i}, n_{2}^{i}\right)$ as functions of prices only, we obtain:

$$
n_{1}^{i}=M_{1}-\theta p_{1}^{i}+\lambda p_{2}^{j}
$$

with:

$$
\begin{aligned}
M_{1} & =\frac{t_{1}+x V_{1}+\beta_{1} \frac{M_{2}}{2}}{2 t_{1}} \\
\theta & =\frac{(1+x)\left(1-\frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}\right)+\frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}}{4 t_{1}\left(\frac{1}{2}-\frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}\right)} \\
\lambda & =\frac{\left(1-\frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}\right)+(1+x) \frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}}{4 t_{1}\left(\frac{1}{2}-\frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}\right)}
\end{aligned}
$$

We need to impose:

$$
\frac{1}{2}>\frac{M_{2} \alpha_{2} \alpha_{1}+M_{2} \alpha_{2} x \beta_{1}}{4 t_{1} t_{2}}
$$

which not surprisingly implies:

$$
0<\lambda<\theta
$$

To simplify things, we let then $\gamma=\frac{\lambda}{\theta}<1$ and $N_{1}=\frac{M_{1}}{\theta} ; N_{2}=\frac{M_{2}}{\theta}$, since we can factor all profits by θ without changing anything.

So everything is as if we had:

$$
\begin{aligned}
& n_{1}^{i}=N_{1}-p_{1}^{i}+\gamma p_{1}^{j} \\
& n_{2}^{i}=\frac{N_{2}}{2}+\frac{N_{2} \alpha_{2}}{2 t_{2}}\left(n_{1}^{i}-n_{1}^{j}\right)
\end{aligned}
$$

with $\gamma<1$.
Proof. (Proposition 1) The first order condition ((12) in the text) at the symmetric equilibrium ($p_{1}^{A}=p_{1}^{B}=p_{1}$ and $n_{1}^{A}=n_{1}^{B}=n_{1}$) can be written as:

$$
p_{1}-c_{1}+\pi_{2} \frac{N_{2} \alpha_{2}}{2 t_{2}}(1+\gamma)=n_{1}>0
$$

At the symmetric equilibrium:

$$
n_{1}=N_{1}-(1-\gamma) p_{1}
$$

Plugging in the first order condition above, we obtain:

$$
p_{1}=\frac{c_{1}}{2-\gamma}+\frac{N_{1}-\pi_{2} \frac{N_{2} \alpha_{2}}{2 t_{2}}(1+\gamma)}{2-\gamma}
$$

The condition for a cost reduction by platform A to be profit enhancing for platform B ((11) above) is then:

$$
p_{1}-c_{1}+\pi_{2} \frac{N_{2} \alpha_{2}}{2 t_{2}} \frac{\gamma+1}{\gamma}<0
$$

Replacing p_{1} with its expression as a function of the model parameters, this condition is equivalent to $(16)^{16}$.

Proof. (Proposition 2) Solving (21), (22) and (23) for n_{1}^{i} and $n_{2}^{i}, i=A, B$, we obtain:

$$
\begin{aligned}
& n_{2}^{A}=\frac{N_{2}}{2}+\frac{\alpha_{2}\left(2+x_{1}\right) N_{2}\left(p_{1}^{B}-p_{1}^{A}\right)+2 t_{1}\left(p_{2}^{B}-p_{2}^{A}\right)}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \\
& n_{2}^{B}=\frac{N_{2}}{2}+\frac{\alpha_{2}\left(2+x_{1}\right) N_{2}\left(p_{1}^{A}-p_{1}^{B}\right)+2 t_{1}\left(p_{2}^{A}-p_{2}^{B}\right)}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}}
\end{aligned}
$$

[^12]\[

$$
\begin{aligned}
n_{1}^{A}= & \frac{t_{1}+V_{1} x_{1}+\frac{\alpha_{1} N_{2}}{2}}{2 t_{1}}+\frac{\alpha_{1}\left(2+x_{1}\right)\left(p_{2}^{B}-p_{2}^{A}\right)}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \\
& +\frac{4 t_{1} t_{2}+\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \times \frac{p_{1}^{B}}{2 t_{1}}-\frac{4 t_{1} t_{2}\left(1+x_{1}\right)-\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \times \frac{p_{1}^{A}}{2 t_{1}} \\
n_{1}^{B}= & \frac{t_{1}+V_{1} x_{1}+\frac{\alpha_{1} N_{2}}{2}}{2 t_{1}}+\frac{\alpha_{1}\left(2+x_{1}\right)\left(p_{2}^{A}-p_{2}^{B}\right)}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \\
& +\frac{4 t_{1} t_{2}+\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \times \frac{p_{1}^{A}}{2 t_{1}}-\frac{4 t_{1} t_{2}\left(1+x_{1}\right)-\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \times \frac{p_{1}^{B}}{2 t_{1}}
\end{aligned}
$$
\]

We need to impose the following condition in order for this demand system to be well-defined:

$$
\begin{equation*}
4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}>0 \tag{26}
\end{equation*}
$$

In order to simplify notation for the calculation of the pricing equilibrium, let:

$$
\begin{gathered}
\gamma_{1} \equiv \frac{\alpha_{1}\left(2+x_{1}\right)}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} ; \gamma_{2} \equiv \frac{\alpha_{2}\left(2+x_{1}\right) N_{2}}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} \\
\delta \equiv \frac{2 t_{1}}{4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}} ; \quad \varepsilon \equiv \frac{4 t_{1} t_{2}+\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}{2 t_{1}\left[4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}\right]} \\
N_{1} \equiv \frac{t_{1}+V_{1} x_{1}+\frac{\alpha_{1} N_{2}}{2}}{2 t_{1}} ; 1+u \equiv \frac{4 t_{1} t_{2}\left(1+x_{1}\right)-\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}{4 t_{1} t_{2}+\alpha_{1} \alpha_{2} x_{1}\left(2+x_{1}\right) N_{2}}
\end{gathered}
$$

Clearly $u>0$ since we must have $4 t_{1} t_{2}-2 \alpha_{1} \alpha_{2}\left(2+x_{1}\right) N_{2}>0$. We can now write:

$$
\begin{gathered}
n_{1}^{A}=\frac{N_{1}}{2}+\gamma_{1}\left(p_{2}^{B}-p_{2}^{A}\right)+\varepsilon p_{1}^{B}-\varepsilon(1+u) p_{1}^{A} \\
n_{1}^{B}=\frac{N_{1}}{2}+\gamma_{1}\left(p_{2}^{A}-p_{2}^{B}\right)+\varepsilon p_{1}^{A}-\varepsilon(1+u) p_{1}^{B} \\
n_{2}^{A}=\frac{N_{2}}{2}+\gamma_{2}\left(p_{1}^{B}-p_{1}^{A}\right)+\delta\left(p_{2}^{B}-p_{2}^{A}\right) \\
n_{2}^{B}=\frac{N_{2}}{2}+\gamma_{2}\left(p_{1}^{A}-p_{1}^{B}\right)+\delta\left(p_{2}^{A}-p_{2}^{B}\right)
\end{gathered}
$$

Recall that platform profits are:

$$
\begin{aligned}
& \Pi^{A}=\left(p_{1}^{A}-c_{1}^{A}\right) n_{1}^{A}+\left(p_{2}^{A}-c_{2}^{A}\right) n_{2}^{A} \\
& \Pi^{B}=\left(p_{1}^{B}-c_{1}^{B}\right) n_{1}^{B}+\left(p_{2}^{B}-c_{2}^{B}\right) n_{2}^{B}
\end{aligned}
$$

We start from a symmetric situation with $c_{1}^{A}=c_{1}^{B}=c_{1}$ and $c_{2}^{A}=c_{2}^{B}=c_{2}$ and consider a slight decrease
in c_{1}^{A}. Using the demand expressions above, the first order conditions in prices are:

$$
\begin{gather*}
\left(p_{1}^{A}-c_{1}^{A}\right) \times \varepsilon(1+u)+\left(p_{2}^{A}-c_{2}^{A}\right) \gamma_{2}=\frac{N_{1}}{2}+\gamma_{1}\left(p_{2}^{B}-p_{2}^{A}\right)+\varepsilon p_{1}^{B}-\varepsilon(1+u) p_{1}^{A} \tag{27}\\
\left(p_{1}^{A}-c_{1}^{A}\right) \times \gamma_{1}+\left(p_{2}^{A}-c_{2}^{A}\right) \delta=\frac{N_{2}}{2}+\gamma_{2}\left(p_{1}^{B}-p_{1}^{A}\right)+\delta\left(p_{2}^{B}-p_{2}^{A}\right) \tag{28}\\
\left(p_{1}^{B}-c_{1}^{B}\right) \times \varepsilon(1+u)+\left(p_{2}^{B}-c_{2}^{B}\right) \gamma_{2}=\frac{N_{1}}{2}+\gamma_{1}\left(p_{2}^{A}-p_{2}^{B}\right)+\varepsilon p_{1}^{A}-\varepsilon(1+u) p_{1}^{B} \tag{29}\\
\left(p_{1}^{B}-c_{1}^{B}\right) \times \gamma_{1}+\left(p_{2}^{B}-c_{2}^{B}\right) \delta=\frac{N_{2}}{2}+\gamma_{2}\left(p_{1}^{A}-p_{1}^{B}\right)+\delta\left(p_{2}^{A}-p_{2}^{B}\right) \tag{30}
\end{gather*}
$$

We can use (29) and (30) to determine platform B's best response prices $\left(p_{1}^{B}, p_{2}^{B}\right)$ as a function of platform A's prices $\left(p_{1}^{A}, p_{2}^{A}\right)$:

$$
\begin{aligned}
& p_{1}^{B}=\frac{1}{4 \delta \varepsilon(1+u)-\left(\gamma_{1}+\gamma_{2}\right)^{2}} \times\left\{\begin{array}{c}
2 \delta \frac{N_{1}}{2}-\left(\gamma_{1}+\gamma_{2}\right) \frac{N_{2}}{2} \\
+\left[2 \delta \varepsilon(1+u)-\left(\gamma_{1}+\gamma_{2}\right) \gamma_{1}\right] c_{1}^{B}+\delta\left(\gamma_{2}-\gamma_{1}\right) c_{2}^{B} \\
+\left[2 \delta \varepsilon-\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2}\right] p_{1}^{A}+\delta\left(\gamma_{1}-\gamma_{2}\right) p_{2}^{A}
\end{array}\right\} \\
& p_{2}^{B}=\frac{1}{4 \delta \varepsilon(1+u)-\left(\gamma_{1}+\gamma_{2}\right)^{2}} \times\left\{\begin{array}{c}
2 \varepsilon(1+u) \frac{N_{2}}{2}-\left(\gamma_{1}+\gamma_{2}\right) \frac{N_{1}}{2} \\
+\varepsilon(1+u)\left(\gamma_{1}-\gamma_{2}\right) c_{1}^{B}+\left[2 \varepsilon \delta(1+u)-\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2}\right] c_{2}^{B} \\
+\varepsilon\left[\gamma_{2}(1+2 u)-\gamma_{1}\right] p_{1}^{A}+\left[2 \varepsilon \delta(1+u)-\gamma_{1}\left(\gamma_{1}+\gamma_{2}\right)\right] p_{2}^{A}
\end{array}\right\}
\end{aligned}
$$

Therefore, prices are strategic complements across platforms $\left(\frac{\partial p_{i}^{k}}{\partial p_{j}^{l}}>0\right.$ for all $i, j \in\{1,2\}$ and $k \neq l \in$ $\{A, B\})$ if and only if the following 5 conditions hold:

$$
\left\{\begin{array}{c}
4 \delta \varepsilon(1+u)-\left(\gamma_{1}+\gamma_{2}\right)^{2}>0 \tag{31}\\
2 \delta \varepsilon-\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2}>0 \\
\gamma_{1}-\gamma_{2}>0 \\
\gamma_{2}(1+2 u)-\gamma_{1}>0 \\
2 \varepsilon \delta(1+u)-\gamma_{1}\left(\gamma_{1}+\gamma_{2}\right)>0
\end{array}\right.
$$

Taking the derivative in c_{1}^{A} of both sides of the equality in (27), (28), (29) and (30) above, we obtain the following system of 4 equations with 4 unknowns $\left(\frac{d p_{1}^{A}}{d c_{1}^{A}}, \frac{d p_{2}^{A}}{d c_{1}^{A}}, \frac{d p_{1}^{B}}{d c_{1}^{A}}, \frac{d p_{2}^{B}}{d c_{1}^{A}}\right)$:

$$
\begin{gathered}
\frac{d p_{1}^{A}}{d c_{1}^{A}} \times 2 \varepsilon(1+u)+\frac{d p_{2}^{A}}{d c_{1}^{A}} \times\left(\gamma_{1}+\gamma_{2}\right)-\frac{d p_{1}^{B}}{d c_{1}^{A}} \times \varepsilon-\frac{d p_{2}^{B}}{d c_{1}^{A}} \times \gamma_{1}=\varepsilon(1+u) \\
\frac{d p_{1}^{A}}{d c_{1}^{A}} \times\left(\gamma_{1}+\gamma_{2}\right)+\frac{d p_{2}^{A}}{d c_{1}^{A}} \times 2 \delta-\frac{d p_{1}^{B}}{d c_{1}^{A}} \times \gamma_{2}-\frac{d p_{2}^{B}}{d c_{1}^{A}} \times \delta=\gamma_{1} \\
\frac{d p_{1}^{B}}{d c_{1}^{A}} \times 2 \varepsilon(1+u)+\frac{d p_{2}^{B}}{d c_{1}^{A}} \times\left(\gamma_{1}+\gamma_{2}\right)-\frac{d p_{1}^{A}}{d c_{1}^{A}} \times \varepsilon-\frac{d p_{2}^{A}}{d c_{1}^{A}} \times \gamma_{1}=0 \\
\frac{d p_{1}^{B}}{d c_{1}^{A}} \times\left(\gamma_{1}+\gamma_{2}\right)+\frac{d p_{2}^{B}}{d c_{1}^{A}} \times 2 \delta-\frac{d p_{1}^{A}}{d c_{1}^{A}} \times \gamma_{2}-\frac{d p_{2}^{A}}{d c_{1}^{A}} \times \delta=0
\end{gathered}
$$

Taking the difference between the first and third equalities, then between the second and fourth, we obtain:

$$
\begin{gathered}
\left(\frac{d p_{1}^{A}}{d c_{1}^{A}}-\frac{d p_{1}^{B}}{d c_{1}^{A}}\right) \times \varepsilon(3+2 u)+\left(\frac{d p_{2}^{A}}{d c_{1}^{A}}-\frac{d p_{2}^{B}}{d c_{1}^{A}}\right) \times\left(2 \gamma_{1}+\gamma_{2}\right)=\varepsilon(1+u) \\
\left(\frac{d p_{1}^{A}}{d c_{1}^{A}}-\frac{d p_{1}^{B}}{d c_{1}^{A}}\right) \times\left(\gamma_{1}+2 \gamma_{2}\right)+\left(\frac{d p_{2}^{A}}{d c_{1}^{A}}-\frac{d p_{2}^{B}}{d c_{1}^{A}}\right) \times 3 \delta=\gamma_{1}
\end{gathered}
$$

Similarly, summing first and third, then second and fourth, we also have:

$$
\begin{gathered}
\left(\frac{d p_{1}^{A}}{d c_{1}^{A}}+\frac{d p_{1}^{B}}{d c_{1}^{A}}\right) \times \varepsilon(1+2 u)+\left(\frac{d p_{2}^{A}}{d c_{1}^{A}}+\frac{d p_{2}^{B}}{d c_{1}^{A}}\right) \times \gamma_{2}=\varepsilon(1+u) \\
\left(\frac{d p_{1}^{A}}{d c_{1}^{A}}+\frac{d p_{1}^{B}}{d c_{1}^{A}}\right) \times \gamma_{1}+\left(\frac{d p_{2}^{A}}{d c_{1}^{A}}+\frac{d p_{2}^{B}}{d c_{1}^{A}}\right) \times \delta=\gamma_{1}
\end{gathered}
$$

Solving the two systems above, we finally obtain:

$$
\begin{gathered}
\frac{d p_{1}^{A}}{d c_{1}^{A}}-\frac{d p_{1}^{B}}{d c_{1}^{A}}=\frac{3 \delta \varepsilon(1+u)-\gamma_{1}\left(2 \gamma_{1}+\gamma_{2}\right)}{3 \delta \varepsilon(3+2 u)-\left(\gamma_{1}+2 \gamma_{2}\right)\left(2 \gamma_{1}+\gamma_{2}\right)} \\
\frac{d p_{2}^{A}}{d c_{1}^{A}}-\frac{d p_{2}^{B}}{d c_{1}^{A}}=\frac{\gamma_{1} \varepsilon(3+2 u)-\left(\gamma_{1}+2 \gamma_{2}\right) \varepsilon(1+u)}{3 \delta \varepsilon(3+2 u)-\left(\gamma_{1}+2 \gamma_{2}\right)\left(2 \gamma_{1}+\gamma_{2}\right)}=\frac{\varepsilon\left[\gamma_{1}(2+u)-\gamma_{2}(2+2 u)\right]}{3 \delta \varepsilon(3+2 u)-\left(\gamma_{1}+2 \gamma_{2}\right)\left(2 \gamma_{1}+\gamma_{2}\right)} \\
\frac{d p_{1}^{A}}{d c_{1}^{A}}+\frac{d p_{1}^{B}}{d c_{1}^{A}}=\frac{\delta \varepsilon(1+u)-\gamma_{1} \gamma_{2}}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}} \\
\frac{d p_{2}^{A}}{d c_{1}^{A}}+\frac{d p_{2}^{B}}{d c_{1}^{A}}=\frac{\gamma_{1} \varepsilon(1+2 u)-\gamma_{1} \varepsilon(1+u)}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}}=\frac{\gamma_{1} \varepsilon u}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}}
\end{gathered}
$$

We then immediately get the two terms we are interested in:

$$
\begin{align*}
& \frac{d p_{1}^{A}}{d c_{1}^{A}}=\frac{1}{2}\left[\frac{3 \delta \varepsilon(1+u)-\gamma_{1}\left(2 \gamma_{1}+\gamma_{2}\right)}{3 \delta \varepsilon(3+2 u)-\left(\gamma_{1}+2 \gamma_{2}\right)\left(2 \gamma_{1}+\gamma_{2}\right)}+\frac{\delta \varepsilon(1+u)-\gamma_{1} \gamma_{2}}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}}\right] \tag{32}\\
& \frac{d p_{2}^{A}}{d c_{1}^{A}}=\frac{1}{2}\left[\frac{\varepsilon\left[\gamma_{1}(2+u)-\gamma_{2}(2+2 u)\right]}{3 \delta \varepsilon(3+2 u)-\left(\gamma_{1}+2 \gamma_{2}\right)\left(2 \gamma_{1}+\gamma_{2}\right)}+\frac{\gamma_{1} \varepsilon u}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}}\right] \tag{33}
\end{align*}
$$

We want both of these terms to be positive.
Finally, we also have to determine the symmetric equilibrium $p_{i}^{A}=p_{i}^{B}=p_{i}$ and $n_{i}^{A}=n_{i}^{B}=n_{i}$ for $i=1,2$ and $c_{1}^{A}=c_{1}^{B}=c_{1}$. It suffices to use the four first order conditions above (27, 28, 29, 30) in order to obtain:

$$
\begin{gathered}
p_{1} \times \varepsilon(1+2 u)+p_{2} \times \gamma_{2}=\frac{N_{1}}{2}+c_{1} \times \varepsilon(1+u)+c_{2} \times \gamma_{2} \\
p_{1} \times \gamma_{1}+p_{2} \times \delta=\frac{N_{2}}{2}+c_{1} \times \gamma_{1}+c_{2} \times \delta
\end{gathered}
$$

which we can immediately solve to get:

$$
p_{1}-c_{1}=\frac{-\delta \varepsilon u}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}} c_{1}+\frac{N_{1} \delta-N_{2} \gamma_{2}}{2\left[\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}\right]}
$$

$$
p_{2}-c_{2}=\frac{\gamma_{1} \varepsilon u}{\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}} c_{1}+\frac{N_{2} \varepsilon(1+2 u)-N_{1} \gamma_{1}}{2\left[\delta \varepsilon(1+2 u)-\gamma_{1} \gamma_{2}\right]}
$$

We can now write all the conditions that need to be satisfied in order for an equilibrium in which a slight reduction in c_{1}^{A} increases B's profits while prices are strategic complements across platforms to exist.

Using the expressions of $n_{i}^{k}(i \in\{1,2\}, k \in\{A, B\})$ as functions of $\left(p_{1}^{A}, p_{2}^{A}, p_{1}^{B}, p_{2}^{B}\right)$, the softness condition is:

$$
\left[\varepsilon\left(p_{1}-c_{1}\right)+\gamma_{2}\left(p_{2}-c_{2}\right)\right] \frac{d p_{1}^{A}}{d c_{1}^{A}}+\left[\gamma_{1}\left(p_{1}-c_{1}\right)+\delta\left(p_{2}-c_{2}\right)\right] \frac{d p_{2}^{A}}{d c_{1}^{A}}<0
$$

which can be rewritten as:

$$
\begin{equation*}
\left(p_{1}-c_{1}\right)\left(\varepsilon \frac{d p_{1}^{A}}{d c_{1}^{A}}+\gamma_{1} \frac{d p_{2}^{A}}{d c_{1}^{A}}\right)+\left(p_{2}-c_{2}\right)\left(\gamma_{2} \frac{d p_{1}^{A}}{d c_{1}^{A}}+\delta \frac{d p_{2}^{A}}{d c_{1}^{A}}\right)<0 \tag{34}
\end{equation*}
$$

At the same time, just like in the previous example, we need to make sure that the equilibrium n_{1} is positive:

$$
\begin{equation*}
n_{1}=\frac{1}{2}+\frac{x_{1}}{2 t_{1}}\left(V_{1}+\alpha_{1} \frac{N_{2}}{2}-p_{1}\right)>0 \tag{35}
\end{equation*}
$$

Finally, platforms must make positive profits in equilibrium:

$$
\begin{equation*}
\left(p_{1}-c_{1}\right)\left[\frac{1}{2}+\frac{x_{1}}{2 t_{1}}\left(V_{1}+\alpha_{1} \frac{N_{2}}{2}-p_{1}\right)\right]+\left(p_{2}-c_{2}\right) \frac{N_{2}}{2}>0 \tag{36}
\end{equation*}
$$

Together with (24), (25), (26), (31), (32) and (33), (34), (35) and (36) complete the set of necessary conditions.

We have then used Mathematica to show that this system of necessary conditions can be satisfied for a range of initial parameter values $\left(\varepsilon, \delta, u, \gamma_{1}, \gamma_{2}, N_{1}, N_{2}, c_{1}, c_{2}\right)$ or of the primitive parameters $\left(\alpha_{1}, \alpha_{2}\right.$, $\left.t_{1}, t_{2}, x_{1}, V_{1}, N_{2}, c_{1}, c_{2}\right)$. One such solution is:

$$
\left(\alpha_{1}, \alpha_{2}, t_{1}, t_{2}, x_{1}, V_{1}, N_{2}, c_{1}, c_{2}\right)=\left(1,1.001, \frac{23}{16}, 2, \frac{1}{160}, 3, \frac{127}{128}, 106,1.1\right)
$$

[^0]: *Harvard University, efarhi@fas.harvard.edu
 ${ }^{\dagger}$ Harvard Business School, ahagiu@hbs.edu

[^1]: ${ }^{1}$ Cf. Rochet and Tirole (2006).

[^2]: ${ }^{2}$ It can easily be shown that the same holds when firms compete in quantities.

[^3]: ${ }^{3}$ In fact, we are unaware of any model of two-sided markets in which platforms compete in variables other than prices.

[^4]: ${ }^{4}$ The Nash equilibrium prices $\left(p_{j}^{i * *}\right)$ are a function of the four costs $\left(c_{j}^{i}\right)$, which in turn depend solely on K_{A}. With a slight abuse of notation, we denote by $p_{j}^{i * *}\left(K_{A}\right)$ the resulting function of K_{A}. The total derivative $\frac{d p_{j}^{i * *}}{d K_{A}}$ refers to this latter function whereas the partial derivatives $\frac{\partial p_{j}^{i * *}}{\partial c_{j^{\prime}}^{i}}$ refer to the function of costs.

[^5]: ${ }^{5}$ Note that by assumption $\frac{\partial \Pi^{B}}{\partial K_{A}}=0$.
 ${ }^{6}$ In one-sided markets, even in the case when actions are strategic substitutes (e.g. competition in quantities), the signs are flipped - they are negative. Therefore, in one-sided contexts are always entirely determined by whether actions are strategic complements or substitutes.
 ${ }^{7}$ And while still maintaining the condition that B's profits are positive.

[^6]: ${ }^{8}$ We ignore second order terms.

[^7]: ${ }^{9}$ Whinston then investigates the consequences of relaxing the assumption that the valuations for good 1 are homogenous. The results are modified as follows. First and most related to this paper, a commitment to tying need not always result in foreclosure: it can be the case that firm B 's profits increase as a result of a commitment to tying by firm A. The reason is twofold. Enough consumers may find good 1 unattractive so that the margin on every bundle sale is lower than the margin on an independent sale of good 1_{A} (it is always higher in the homogenous case) - the monopoly power of firm A is too weak. Also, the elasticity of bundle sales to the price of the bundle is not identical anymore to that arising in market 2 - indeed, when 2_{A} and 2_{B} are nearly homogenous, tying essentially transorms the nearly homogenous market 2 into a vertically differentiated market, potentially raising firm B 's profits.

 Second, tying can be a profitable strategy even in the absence of the ability to commit, and when it is, it may lower firm B 's profits.

 Note however that with non-homogeneous valuations for good 1, tying in the Whinston model can no longer be interpreted as a marginal cost reduction for good 1, like in our model.

[^8]: ${ }^{10}$ Recall that, with fixed prices on one side, $\frac{d p_{1}^{A *}}{d c_{1}^{A}}>0$ whenever Π^{A} is concave in p_{1}^{A}.
 ${ }^{11}$ All terms are evaluated at $\left(p_{1}^{B *}, p_{1}^{A *}\right)$.
 ${ }^{12}$ Note that the requirement $f_{2}<0$ rules out multihoming by all side 2 agents, since in that case demands for each platform on side 2 would be independent of each other (assuming away economies of scale in multihoming) and hence $f\left(n_{1}^{B}, n_{1}^{A}\right)$ would only depend on n_{1}^{B}.

[^9]: ${ }^{13}$ We use the equilibrium expressions of p_{1} and n_{1} provided in the proof of Proposition 1 in the appendix.

[^10]: ${ }^{14}$ This holds for example when platforms compete a la Hotelling with no hinterlands on side 2.

[^11]: ${ }^{15}$ In the Armstrong (2006) model, $\gamma=1$.

[^12]: ${ }^{16}$ Recall that $\pi_{2}<0$ so that $\left|\pi_{2}\right|=-\pi_{2}>0$.

