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THE 8-UNIVERSALITY CRITERION IS UNIQUE

SCOTT DUKE KOMINERS

Abstract. Using the methods developed for the proof that the 2-universality
criterion is unique, we partially characterize criteria for the n-universality of
positive-definite integer-matrix quadratic forms. We then obtain the unique-
ness of Oh’s 8-universality criterion as an application of our characterization
results.

1. Introduction

A degree-two homogenous polynomial in n independent variables is called a qua-

dratic form (or just form) of rank n. For a rank-n quadratic form Q(x1, . . . , xn) =
∑

i,j aijxixj (where aij = aji), the matrix given by L = (aij) is the Gram Matrix of

a Z-lattice L equipped with a symmetric bilinear formB(·, ·) such that B(L,L) ⊆ Z.
Then, Q(x) = xTLx = B(Lx,x) for x ∈ R

n.
A rank-n quadratic form Q is said to represent an integer k if there exists an

x ∈ Z
n such that Q(x) = k. More generally, a Z-lattice L represents another

Z-lattice ℓ if there exists a Z-linear, bilinear form-preserving injection ℓ → L. A
quadratic form is called universal if it represents all positive integers. Analogously,
a lattice is called n-universal if it represents all positive-definite integer-matrix
rank-n quadratic forms. Connecting these two notions of universality, we observe
that a rank-n quadratic form Q is universal if and only if it is 1-universal, as for an
integer k,

k = Q(x1, . . . , xn) ⇐⇒ Q(x1x, . . . , xnx) = kx2.

In 1993, Conway and Schneeberger announced their celebrated Fifteen Theo-

rem, giving a criterion characterizing the universal positive-definite integer-matrix
quadratic forms. Specifically, they showed that any positive-definite integer-matrix
form which represents the set of nine critical numbers

S1 = {1, 2, 3, 5, 6, 7, 10, 14, 15}

is universal (see [C2, Bh]). Kim, Kim, and Oh [KKO2] presented an analogous
criterion for 2-universality, showing that a positive-definite integer-matrix lattice is
2-universal if and only if it represents the set of forms

S2 =

{(

1 0
0 1

)

,

(

2 0
0 3

)

,

(

3 0
0 3

)

,

(

2 1
1 2

)

,

(

2 1
1 3

)

,

(

2 1
1 4

)}

.

Oh [Oh] gave a similar criterion for 8-universality, which we state in Theorem 3 of
Section 4.
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A set S of rank-n lattices having the property that a lattice L is n-universal if
and only if L represents every lattice in S is called an n-criterion set. Thus, for
example, the set S2 obtained by Kim, Kim, and Oh [KKO2] is a 2-criterion set and
the set S1 found by Conway [C2] naturally gives the 1-criterion set

{

x2, 2x2, 3x2, 5x2, 6x2, 7x2, 10x2, 14x2, 15x2
}

.

The set S1 of the Fifteen Theorem is known to be unique (see [KKO1]), in the
sense that if S ′

1 is a set of integers such that a quadratic form is universal if and only
if it represents the full set S ′

1, then S1 ⊆ S ′

1. The author [Ko] recently obtained an
analogous uniqueness result for the 2-criterion set S2.

Kim, Kim, and Oh [KKO1] have proven that n-criterion sets exist for all positive
integers n. However, the problems of finding and determining the uniquenesses of
criterion sets have both proven to be difficult (see [KKO1]). Here, we advance both
problems: We obtain the first characterization results for arbitrary n-criterion sets,
from which we obtain the uniqueness of Oh’s 8-universality criterion as a corollary.

2. Notations and Terminology

We use the lattice-theoretic language of quadratic form theory. A complete
introduction to this approach may be found in [O’M].

For a Z-lattice (or hereafter, just lattice) L with basis {x1, . . . ,xn}, we write
L ∼= Zx1 + · · · + Zxn. If L is of the form L = L1 ⊕ L2 for sublattices L1, L2

of L and B(L1, L2) = 0 then we write L ∼= L1⊥L2 and say that L1 and L2 are
orthogonal.

For a sublattice ℓ of L1⊥L2 which can be expressed in the form

ℓ ∼= Z(x1,1 + x2,1) + · · ·+ Z(x1,n + x2,n)

with xi,j ∈ Li, we denote ℓ(Li) := Zxi,1 + · · · + Zxi,n. We naturally extend this
notation to lattices ℓ represented by L1⊥L2. We then say that a lattice is additively
indecomposable if either ℓ(L1) ∼= 0 or ℓ(L2) ∼= 0 whenever L1⊥L2 represents ℓ.
Otherwise, we say that ℓ is additively decomposable.

Finally, we use the lattice notation of Conway [C1]. In particular, In is the
rank-n lattice of the form 〈1, . . . , 1〉 and E8 is the unique even unimodular lattice
of rank 8.

3. Characterization Results for n-criterion Sets

In this section, we prove two results which partially characterize the contents of
arbitrary n-criterion sets.

Proposition 1. Any n-criterion set must include the lattice In.

Proof. If T is a finite, nonempty set of rank-n lattices not containing In, then
every lattice T ∈ T may be written in the form T ∼= Ik⊥T ′, where 0 ≤ k < n, the
sublattice T ′ is of rank n− k, and the first minimum of T ′ is larger than 1. Indeed,
any Ik-sublattice of T is unimodular and therefore splits T ; the condition on T ′

follows from Minkowski reduction.
We may therefore write T in the form

T =

n−1
⋃

k=0

{Ik⊥Tk,i}
ik
i=0

,
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where 0 < |T | =
∑n−1

k=0 ik and each Tk,i is a rank-(n−k) lattice with first minimum
greater than 1. Then, the lattice

In−1⊥
(

(

⊥i1
i=0 T0,i

)

⊥ · · ·⊥
(

⊥
in−1

i=0 Tn−1,i

))

represents all of T but has does not represent In. It follows that T is not an
n-criterion set, so any n-criterion set must contain In. �

Proposition 2. Let E be the set of additively indecomposable lattices of rank n. If

|E| > 0, then any n-criterion set must include at least one lattice E ∈ E.

Proof. If T = {Ti}ki=1 is a finite, nonempty set of rank-n lattices with T ∩ E = ∅,
then every lattice Ti ∈ T is additively decomposable. It follows that the lattice

T1⊥ · · ·⊥Tk

represents all of T but does not represent any lattice in E , since T1⊥ · · ·⊥Tk has
no rank-n additively indecomposable sublattices. Thus, T is not an n-criterion set.
It then follows that any n-criterion set must contain some lattice E ∈ E . �

Remark. It is clear that direct analogues of these two propositions hold in the
more general setting of S-universal lattices discussed in [KKO1]. In particular,
suppose that S is an infinite set of lattices. Then, if n = max {k : Ik ∈ S} > 0, any
finite set SS ⊂ S with the property that a lattice L represents every lattice ℓ ∈ S

if and only if L represents every ℓ ∈ SS must contain In. Similarly, such a set SS

must contain an additively indecomposable lattice if S does.

4. Uniqueness of the 8-criterion Set

Oh obtained the following 8-criterion set in [Oh, remark on Theorem 3.1]:

Theorem 3 (Oh). The set S8 = {I8, E8} is an 8-criterion set.

The set S8 is clearly a minimal 8-criterion set, as for each ℓ ∈ S8 there is
a lattice which represents S8 \ ℓ but does not represent ℓ. (The single lattice in
S8\ℓ suffices.) Meanwhile, our characterization results imply the following corollary
which strengthens Theorem 3:

Corollary 4. Every 8-criterion set must contain S8 as a subset.

Proof. Since E8 is the unique additively indecomposable lattice of rank 8, the result
follows directly from Propositions 1 and 2. �

Corollary 4, when combined with Theorem 3, shows that S8 is the unique minimal
8-criterion set.
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