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Abstract

We consider one-to-one, one-sided matching (roommate) problems in which agents
can either be matched as pairs or remain single. We introduce a so-called bi-choice
graph for each pair of stable matchings and characterize its structure. Exploiting
this structure we obtain as a corollary the “lone wolf” theorem and a decompos-
ability result. The latter result together with transitivity of blocking leads to an
elementary proof of the so-called stable median matching theorem, showing how
the often incompatible concepts of stability (represented by the political economist
Adam Smith) and fairness (represented by the political philosopher John Rawls) can
be reconciled for roommate problems. Finally, we extend our results to two-sided
matching problems.

JEL classification: C62, C78.
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1 Introduction

Gale and Shapley (1962, Example 3) introduced the so-called roommate problems as
follows: “An even number of boys wish to divide up into pairs of roommates.” A very
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common extension is to allow also for odd numbers of agents and to consider the formation
of pairs and singletons (rooms can be occupied either by one or by two agents). Therefore,
an outcome for a roommate problem, a matching, is a partition of agents in pairs (of
matched agents) and singletons. The class of roommate problems include as special cases
the well-known marriage problems (Gale and Shapley, 1962).1

In a roommate problem, each agent has preferences over being matched with any of
the other agents and remaining unmatched. A key property of a matching is stability:
a matching is stable if it satisfies individual rationality and no pair of agents that are
not matched with one another prefer to be so. Gale and Shapley (1962) exhibited an
unsolvable roommate problem, i.e., a roommate problem in which there is no stable
matching. Instead of focusing on necessary and/or sufficient conditions on the preferences
for the existence of a stable matching,2 we directly study the class of solvable roommate
problems. For a solvable roommate problem there are typically multiple stable matchings.
Our quest is to single out particularly appealing stable matchings. However, before dealing
with this selection problem, we introduce for any two stable matchings a so-called bi-
choice graph and characterize its structure (Lemma 1). This graphical tool will allow us
to provide elementary and illustrative proofs of various well-known results.

A first idea to find appealing stable matchings is to select stable matchings that
maximize the number of matched agents. However, Gusfield and Irving (1989) have
shown that an agent who is single at any stable matching is also single at all other stable
matchings. Using the bi-choice graph structure, we provide an elementary graphical proof
of this “lone wolf” theorem (Theorem 1). The bi-choice graph structure can also be used
to derive an elementary proof of the so-called decomposability lemma (Lemma 2), which
turns out to be crucial for later results.

Then, since no selection can be based on the set of matched students, we try to find
a stable matching that will be perceived as fair by the agents. Imagine that we ask each
agent to rank all his matches at the stable matchings according to his preferences. Note
that since an agent might be matched to the same agent in several stable matchings,
this ranking is not strict. Clearly, we cannot always give the best match to every agent,
but can we implement fairness by finding a matching that matches each agent to his
l-th ranked match for some natural number l? We show that this idea of fairness or
compromise is feasible if there is an odd number of stable matchings: the so-called median
matching that assigns to each agent his median (ranked) match is well-defined and stable
(Theorem 2). In a similar fashion, fairness is “almost” feasible if there is an even number
of stable matchings (Corollary 1). Hence, stability (represented by the political economist

1There is a large literature on the marriage problem; see, for instance, Roth and Sotomayor (1990)
and the two-sided matching bibliography on Al Roth’s game theory, experimental economics, and market
design page. In comparison, relatively few papers and books deal with roommate problems; some of the
key references concerning roommate problems are Gusfield and Irving (1989); Tan (1991); Chung (2000);
Diamantoudi et al. (2004).

2See, for instance, Tan (1991) and Chung (2000).
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Adam Smith3) and fairness (represented by the political philosopher John Rawls4) can
be reconciled for solvable roommate problems and “Smith and Rawls (almost) share a
room.” This result was already stated by Sethuraman and Teo (2001). Here we provide
an elementary proof that does not recur to linear programming tools.

In the second part of the paper we turn to two-sided matching problems. A mar-
riage problem is a roommate problem where the set of agents is exogenously partitioned
into two sets such that each agent can only be matched with an agent of the other set.
A further generalization of marriage problems are college admissions problems (with re-
sponsive preferences5), where one side of the market has several positions (seats or slots).
Unlike roommate problems, marriage and college admissions problems (with responsive
preferences) always allow for stable matchings.

Using linear programming tools, Teo and Sethuraman (1998) and Sethuraman et al.
(2006) established the existence of natural compromise mechanisms for marriage and
college admissions problems, respectively. Specifically, they showed that “generalized
median matchings” are well-defined and stable. More formally, if all agents order again
their matches at the, say, k stable matchings from best to worst, then the map that assigns
to each agent of one side of the market its l-th best match and to each agent of the other
side its (k − l + 1)-st best match constitutes a stable matching. Fleiner (2002) and Klaus
and Klijn (2006) independently provided alternative, short proofs for the above mentioned
generalized median result for college admissions problems based on the so-called lattice
structure of the set of stable matchings. Here we show that a slight adaptation of our
elementary proof of the “Smith and Rawls share a room” theorem immediately leads to
the stronger result of stable generalized median matchings for the (more specific) class
of marriage problems (Theorem 3). Essentially the same proof is also valid for college
admissions problems (Theorem 4). Unfortunately, in this case the extended proof can no
longer be considered elementary because the decomposability lemma for college admissions
problems (Lemma 3) is not an elementary result and in addition we have to establish
a (non-elementary) “transitivity of blocking” property for college admissions problems
(Lemma 4).

Our paper is organized as follows. Sections 2 and 3 contain the results as discussed in
detail above for roommates and two-sided matching problems, respectively. We conclude
in Section 4 with two examples of more general models in which a “median outcome” is
either not well-defined or not stable.

3Adam Smith (1723–1790) propagated the view that individuals even though interested only in their
own gains will still advance public interest (Smith, 1796).

4John Rawls (1921–2002) discussed important aspects of fairness and justice particularly suited for
economic applications (Rawls, 1971).

5By responsiveness (Roth, 1985), a college’s preference relation over sets of students is related to its
ranking of single students in the following way: the college always prefers to add an acceptable student
to any set of students (provided this does not violate the capacity constraint) and it prefers to replace
any student by a better student.
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2 Roommate Problems

A roommate problem (Gale and Shapley, 1962) is a pair (N, (�i)i∈N) where N is a finite
set of agents and, for each i ∈ N , �i is a complete, transitive, and strict preference
relation over N . For each i ∈ N , we interpret �i as agent i’s preferences over sharing a
room with any of the agents in N\{i} and having a room for himself (or consuming an
outside option such as living off-campus). Preferences are strict, i.e., k �i j and j �i k

if and only if j = k. The indifference and strict preference relation associated with �i

are denoted by ∼i and ≻i, respectively. A solution to a roommate problem, a matching
µ, is a partition of N in pairs and singletons. Alternatively, we describe a matching by
a function µ : N → N of order two, i.e., for all i ∈ N , µ(µ(i)) = i. Agent µ(i) is agent
i’s match, i.e., the agent with whom he is matched to share a room (possibly himself). If
µ(i) = i then we call i a single.

A marriage problem (Gale and Shapley, 1962) is a roommate problem (N, (�i)i∈N )
such that N is the union of two disjoint sets M and W (men and women), and each agent
in M (respectively W ) prefers being alone to being matched with any other agent in M

(respectively W ).
A matching µ is blocked by a pair {i, j} ⊆ N (possibly i = j) if j ≻i µ(i) and i ≻j µ(j).

If {i, j} blocks µ, then {i, j} is called a blocking pair for µ. A matching is individually
rational if there is no blocking pair {i, j} with i = j. A matching is stable if there is no
blocking pair. A roommate problem is solvable if the set of stable matchings is non-empty.
Gale and Shapley (1962) showed that all marriage problems are solvable and provided an
unsolvable roommate problem (Gale and Shapley, 1962, Example 3).

The following is a simplified version of Gale and Shapley’s example with three agents:
2 ≻1 3 ≻1 1, 3 ≻2 1 ≻2 2, and 1 ≻3 2 ≻3 3. Clearly, the matching where all agents are
singles is not stable (any two agents can block). So, assume two agents share a room.
Then, the single agent is the best roommate for one of these two agents and hence a
blocking pair can be formed. Tan (1991) provided a necessary and sufficient condition for
the existence of a stable matching.

Note that for marriage problems, an individually rational matching never matches two
men or two women, i.e., the partition consists of man-woman pairs and singletons.

Smith and Rawls: Stability and Fairness

The starting point of our analysis is a solvable roommate problem. Typically there are
multiple stable matchings and with choice comes the opportunity to select a particularly
appealing stable matching. Before we explore this choice in order to address fairness
in addition to stability, we introduce a so-called bi-choice graph for each pair of stable
matchings and characterize its structure.6

6It is not necessary to restrict the bi-choice graph to pairs of stable matchings. One easily verifies
that if µ, µ′, µ 6= µ′, are individually rational matching such that (a) there is no blocking pair {i′, j′} for
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2.1 Bi-Choice Graphs

Let µ and µ′ be stable matchings. We consider the following bi-choice graph G(µ, µ′) =
(V, E). The set of vertices is the set of agents, i.e., V = N . The set E consists of three
types of edges. Let i, j ∈ N . Then,

E1. there is a continuous directed edge from i to j, denoted by i j if j = µ(i) ≻i

µ′(i), i.e., agent i strictly prefers his match j = µ(i) under µ to his match under µ′;

E2. there is a discontinuous directed edge from i to j, denoted by i j if j =
µ′(i) ≻i µ(i), i.e., agent i strictly prefers his match j = µ′(i) under µ′ to his match
under µ;

E3. there is a (continuous) undirected edge between i and j, denoted by i j if
j = µ(i) ∼i µ′(i), i.e., agent i is indifferent between his match j = µ(i) under µ and
his match under µ′. Note that for j = i = µ(i) ∼i µ′(i) we allow for an undirected
edge from i to himself; we call such an edge a loop: i .

We make the following observations about the bi-choice graph G(µ, µ′).

O1. An edge i j implies j 6= µ′(i). An edge i j implies j 6= µ(i).

O2. An edge i j implies that µ′(i) = µ(i) = j, and therefore that there is no
other edge adjacent to i or j.

(Follows from strictness of preferences.)

O3. For each agent i, there is either (i) a unique undirected edge to which i is adjacent
or (ii) a unique outgoing directed edge from i.

(If there is an undirected edge to which i is adjacent, then by O2 this edge is unique.
Suppose now there is no undirected edge to which i is adjacent. By completeness
of preferences there is an outgoing directed edge (E1 or E2) from i to either µ(i) or
µ′(i). In particular, the outgoing directed edge is unique.)

O4. An edge i j or i j implies that j 6= i.

(W.l.o.g. consider the first case, i.e., i j. If j = i, then i = µ(i) ≻i µ′(i). So,
µ′ is not individually rational; contradicting stability of µ′.)

O5. An edge i j or i j implies that there is no directed edge from j to i.

(W.l.o.g. consider the first case, i.e., i j . By O4, j 6= i. An edge j i

would imply that {i, j} is a blocking pair for µ′; contradicting stability of µ′. An
edge j i would imply i = µ′(j) contradicting j 6= µ′(i) from O1.)

µ with µ′(i′) = j′ and (b) there is no blocking pair {i, j} for µ′ with µ(i) = j, then Observations O1–O7
still apply; only the proofs of O4 and O5 need a slight adaptation. As a direct consequence, for these
pairs Lemma 1 and Theorem 1 still hold. Since stability is the main requirement we consider here, we do
not deal with these two slightly generalized results.
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O6. An edge i j implies j k for some k 6= i, j.
Similarly, an edge i j implies j k for some k 6= i, j.

(W.l.o.g. consider the first case, i.e., i j . By O4, j 6= i. By O2 and O3,
there is an outgoing directed edge from j, say to k. By O4, k 6= j. By O5, k 6= i.
Finally, suppose the edge from j to k is continuous, i.e., j k. Then, the two
continuous edges imply j = µ(i) and k = µ(j), contradicting k 6= i.)

O7. Each vertex has at most 1 incoming directed edge.

(Suppose k has (at least) 2 incoming directed edges, say from i and j, i 6= j. By
O4, k 6= i, j. Note [µ(i) = k and µ′(j) = k] or [µ′(i) = k and µ(j) = k]. In either
case, by O2 and O3 there is a directed edge from k to either i or j, contradicting
O5.)

Lemma 1 (Bi-choice graph components).
Let µ and µ′ be stable matchings. Let i ∈ N . Then, agent i’s component of G(µ, µ′) either

(a) equals i j for some agent j (i.e., i if j = i), or

(b) is a directed even cycle, i.e., there is a directed path starting from i that induces
a closed cycle ci = (i1, i2, i3, . . . , ip) consisting of an even number p ≥ 4 of agents
(with i ∈ {i1, . . . , ip} and ir 6= is for all r 6= s) where continuous and discontinuous
edges alternate.

An example of such a cyclical component is

i1 i2

i3i6

i4i5 .

Proof. By O3, there is either (i) a unique undirected edge to which i is adjacent or (ii) a
unique outgoing directed edge from i.

In Case (i), it follows from O2 that agent i’s component is as described in (a). We
complete the proof by showing that in Case (ii) agent i’s component is as described in (b).
By O6, there is an “alternating” continuation of the unique outgoing directed edge from i.
By O2, O3, and O7, each agent on this path has exactly one incoming and one outgoing
directed edge. By the finiteness of the set of agents, the path then has to close to a cycle at
some point. We can label the set of agents involved in the cycle by {i = i1, i2, i3, . . . , ip}.
By the alternation pattern induced by O6, p is an even number.
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An example of a bi-choice-graph is

1

2 3

4 5

6 7

811

910

12 13

1419

18 15

1617 .

2.2 Lone Wolves, Medians, and Compromise

We now return to our quest of choosing a particularly appealing stable matching for a
solvable roommate problem with multiple stable matchings. A first idea is to select a
stable matching that maximizes the number of matched pairs. It turns out that no such
selection is possible because an agent who is single at any stable matching is also single
at all other stable matchings (Gusfield and Irving, 1989, Theorem 4.5.2). According to
Roth and Sotomayor (1990, p. 50), the first statement of this theorem for the (sub)class of
marriage problems can be found in McVitie and Wilson (1970) for the case when all men
and women are mutually acceptable and in Roth (1984) for college admissions problems.
Here we provide a new and elementary proof based on the structure of bi-choice graphs.

Theorem 1 (The lone wolf theorem).
Let µ and µ′ be stable matchings. Then, µ and µ′ have the same set of single agents, i.e.,
µ(i) = i if and only if µ′(i) = i.

Proof. Suppose w.l.o.g. µ(i) = i but µ′(i) 6= i. Consider G(µ, µ′). Since preferences
are strict and µ′ is individually rational, µ′(i) ≻i i = µ(i). Let j = µ′(i). Thus, by
E2, i j is a directed edge in G(µ, µ′) and by Lemma 1 (b), agent i is part of a
(directed) cycle, where his predecessor and successor are his two different matches under
µ and µ′. In particular, µ(i) 6= i, contradicting the initial assumption.

Since no selection can be based on the set of matched agents, we next try to find
a stable matching that will be perceived as fair by the agents. Imagine that we ask
each agent to rank all stable matchings according to his preferences. We extend agents’
preferences over the set of agents to matchings as follows. For any agent i ∈ N and any
two (stable) matchings µ and µ′, µ �i µ′ if and only if µ(i) �i µ′(i). Note that since
an agent might be matched to the same agent at different matchings, this ranking is not
strict. The indifference and strict preference relation (over matchings) associated with �i

are denoted by ∼i and ≻i, respectively.
Clearly, we cannot always give the best match to every agent, but can we implement

fairness by finding a matching that matches each agent with his l-th ranked match for
some natural number l? We explain this idea in our next example and show that this
idea of fairness or compromise is not always feasible.
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Example 1 (An even number of stable matchings and no compromise).
Consider the following roommate problem with 8 agents and preferences as listed in the
table below. The first column, for instance, means that 8 ≻1 2 ≻1 7 ≻1 4 ≻1 1 ≻1 5 ≻1

3 ≻1 6.

≻1 ≻2 ≻3 ≻4 ≻5 ≻6 ≻7 ≻8

8 3 4 2 6 7 8 5

2 5 6 1 3 5 6 7

7 1 2 3 8 4 1 1

4 4 5 5 2 2 2 2

1 6 1 6 1 6 3 8

5 8 7 8 5 1 4 6

3 7 3 7 7 3 5 4

6 2 8 4 4 8 7 3

There are 4 stable matchings:

µ1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}

µ2 = {{1, 2}, {3, 4}, {5, 8}, {6, 7}}

µ3 = {{1, 4}, {2, 3}, {5, 6}, {7, 8}}

µ4 = {{1, 4}, {2, 3}, {5, 8}, {6, 7}}

The following (weak) rankings on matchings are induced:

µ1 ∼1 µ2 ≻1 µ3 ∼1 µ4

µ3 ∼2 µ4 ≻2 µ1 ∼2 µ2

µ1 ∼3 µ2 ≻3 µ3 ∼3 µ4

µ3 ∼4 µ4 ≻4 µ1 ∼4 µ2

µ1 ∼5 µ3 ≻5 µ2 ∼5 µ4

µ2 ∼6 µ4 ≻6 µ1 ∼6 µ3

µ1 ∼7 µ3 ≻7 µ2 ∼7 µ4

µ2 ∼8 µ4 ≻8 µ1 ∼8 µ3

Agents 1, 2, and 4 order their matches at the four stable matchings as 2, 2, 4, 4; 3, 3, 1, 1;
and 1, 1, 3, 3 respectively. If agent 1 is given his first or second choice, then he is matched
with agent 2 who then receives his third or fourth choice. If agent 1 is given his third
or fourth choice, then he is matched with agent 4 who then receives his first or second
choice. It follows that matching all agents with a l-th ranked match is not possible. ⋄
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The impossibility result exhibited in the example is due to the fact that there is an
even number of stable matchings. Next, we show that for roommate problems with an
odd number of stable matchings a compromise matching where each agent is matched to
a match of the same rank is possible. In fact, we prove that for any odd number of stable
matchings, a stable matching at which each agent is matched to his “median” match
always exists. Thus, for roommate problems with an odd number of stable matchings
Adam Smith (who stands for stability) and John Rawls (who stands for fairness) represent
compatible criteria and hence “can share a room.”7

The next lemma, which appeared in Gusfield and Irving (1989, Lemma 4.3.9),8 facili-
tates the proof of our main result.

Lemma 2 (Decomposability).
Let µ and µ′ be stable matchings. Let i ∈ N . Suppose µ′(i) 6= µ(i) = j for some j ∈ N .
Then, j, µ′(i) 6= i. Moreover,

(a) µ(i) ≻i µ′(i) implies µ′(j) ≻j µ(j);

(b) µ′(i) ≻i µ(i) implies µ(j) ≻j µ′(j).

Proof. By Theorem 1, j, µ′(i) 6= i. To prove (a), assume j = µ(i) ≻i µ′(i). In terms
of the bi-choice graph G(µ, µ′), i j . By O6, j k where k = µ′(j) 6= i.
Hence, µ′(j) ≻j µ(j). To prove (b), assume µ′(i) ≻i µ(i). In terms of the bi-choice graph
G(µ, µ′), i µ′(i). By Lemma 1 (b), j is i’s predecessor in G(µ, µ′) and there is a
continuous directed edge from j to i. Hence, µ(j) = i ≻j µ′(j).

Our main result, Theorem 2, extends Theorem 4.3.5 in Gusfield and Irving (1989)
from three to any odd number of stable matchings.

Let µ1, . . . , µ2k+1 be an odd number of (possibly non-distinct) stable matchings. Let
each agent rank these matchings according to his preferences as explained before (Exam-
ple 1). We define agent i’s median match as its (k +1)-st ranked match, and denote it by
med{µ1(i), . . . , µ2k+1(i)}.

Theorem 2 (The median matching theorem or Smith and Rawls share a room).
Let µ1, . . . , µ2k+1 be an odd number of (possibly non-distinct) stable matchings. Then,
µ∗ : N → N defined by

µ∗(i) := med{µ1(i), . . . , µ2k+1(i)} for all i ∈ N

is a well-defined stable matching. We call µ∗ the median matching of µ1, . . . , µ2k+1.

7Example 1 is an example where the equilibrium and the fairness principles represented by Adam
Smith and John Rawls are incompatible: there they will never be able to share a room.

8According to Roth and Sotomayor (1990, p. 50), the first statement of this lemma for the (sub)class
of marriage problems can be found in Knuth (1976).
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In the context of the linear programming approach to so-called bistable matching
problems, Sethuraman and Teo (2001, Theorem 3.2) mentioned this result (without proof)
as an interesting structural property of stable roommate matchings. Here we provide
an elementary proof. In the first part of the proof we use the decomposability result
(Lemma 2) to show that the median matching is well-defined. In the second part of the
proof we use “transitivity of blocking” to show that the median matching is stable.

For any agent i ∈ N we define partial preferences over sets of matchings as follows.
Let U and V be two sets of matchings. If for all µU ∈ U and µV ∈ V , µU(i) ≻i µV (i),
then U ≻i V . Furthermore, if for all µU ∈ U and µV ∈ V , µU(i) ∼i µV (i), then U ∼i V .

Proof. First, we show that µ∗ is a well-defined matching, i.e., µ∗ is of order two. Let
i ∈ N with µ∗(i) 6= i. Let j := µ∗(i). We have to prove that µ∗(j) = i. W.l.o.g.
µ1(i) �i µ2(i) �i · · · �i µ2k(i) �i µ2k+1(i). Then, µ∗(i) = µk+1(i) = j and µk+1(j) = i.
Let Σ1 := {µ1, . . . , µk} and Σ2 := {µk+2, . . . , µ2k+1}. Define

SAi := {µ ∈ Σ1 | µ ≻i µk+1} (matchings that are “strictly above” µk+1),
IAi := {µ ∈ Σ1 | µ ∼i µk+1} (matchings that are “indifferent above” µk+1),
SBi := {µ ∈ Σ2 | µ ≺i µk+1} (matchings that are “strictly below” µk+1), and
IBi := {µ ∈ Σ2 | µ ∼i µk+1} (matchings that are “indifferent below” µk+1).

For notational convenience we denote the singleton set {µk+1} by µk+1. Then,

SAi ≻i IAi ∼i µk+1 ∼i IBi ≻i SBi.

Note that
µ ∈ IBi ∪ IAi ⇒ µ(i) = µk+1(i) = j. (1)

By decomposability (Lemma 2, a) and µk+1 ≻i SBi, SBi ≻j µk+1. By decomposability
(Lemma 2, b) and SAi ≻i µk+1, µk+1 ≻j SAi. By (1), IBi ∼j µk+1 ∼j IAi. Summarizing,

SBi ≻j IBi ∼j µk+1 ∼j IAi ≻j SAi.

Since SAi ∪ IAi = Σ1 and SBi ∪ IBi = Σ2, we have |SAi ∪ IAi| = |IBi ∪ SBi| = k and
therefore, µ∗(j) = µk+1(j) = i. Hence, µ∗ is a well-defined matching.

We now prove that µ∗ is stable. By definition, µ∗ is individually rational. Suppose
there is a blocking pair {i, j} with i 6= j for µ∗, i.e., j ≻i µ∗(i) and i ≻j µ∗(j). Then,
i prefers j to his match under at least k + 1 stable matchings in Σ := {µ1, . . . , µ2k+1}.
Similarly, j prefers i to his match under at least k + 1 stable matchings in Σ. Since
Σ contains only 2k + 1 matchings, for at least one matching µ ∈ Σ, both j ≻i µ(i) and
i ≻j µ(j) (it is here that we apply transitivity of blocking9). Hence, {i, j} is a blocking pair
for µ. This however contradicts stability of µ (the set Σ only contains stable matchings).
Therefore, there is no blocking pair for µ∗. Hence, µ∗ is stable.

9Note that j ≻i µ∗(i) �i . . . �i µ(i) �i . . . and i ≻j µ∗(j) �j . . . �j µ(j) �j . . . together with
transitivity implies j ≻i µ(i) and i ≻j µ(j) (for the pairwise blocking notion we consider here this is
immediate, but for more general blocking notions transitivity of blocking might not hold).
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We can easily extend the result of Theorem 2 to an even number of stable matchings
(Sethuraman and Teo, 2001, Theorem 3.3).

Corollary 1 (Smith and Rawls (almost) share a room).
Let µ1, . . . , µ2k be an even number of (possibly non-distinct) stable matchings. Then, there
exists a stable matching at which each agent is assigned a match of rank k or k + 1.

Proof. By Theorem 2, the median matching of the first 2k − 1 stable matchings, i.e.,
µ∗ = med{µ1, . . . , µ2k−1}, is a well-defined and stable matching. Then, for any i ∈ N ,

agent i is matched at µ∗ with his

{

k-th ranked match if µ∗(i) �i µ2k(i);
(k + 1)-st ranked match if µ∗(i) �i µ2k(i).

In the next example we calculate the median matching for three stable matchings and
demonstrate that the “median operator” is not closed, i.e., that the resulting median
matching is not always one of the stable matchings that were used to calculate it.

Example 2 (An odd number of stable matchings and median matchings). 10

Consider the following roommate problem with 8 agents and preferences as listed in the
table below.

≻1 ≻2 ≻3 ≻4 ≻5 ≻6 ≻7 ≻8

6 7 2 1 2 4 6 7

2 6 4 2 8 2 4 2

3 4 6 8 3 3 1 3

5 8 7 5 6 8 5 1

8 1 8 6 4 5 3 6

7 3 5 3 1 1 2 4

4 5 1 7 7 7 8 5

1 2 3 4 5 6 7 8

10Note that for this particular roommate problem the set of stable matchings induces a partition of
the set of agents N = M ∪ W into ‘men’ M = {1, 2, 3, 4} and ‘women’ W = {5, 6, 7, 8} in a natural
way. More precisely, at each stable matching, neither is any ‘man’ matched to another ‘man,’ nor is
any ‘woman’ matched to another ‘woman.’ This suggests that this roommate problem might essentially
be a marriage problem. Formally, one can associate with this roommate problem a marriage problem
(M ∪W,�′) = (M ∪W, (�′

i)i∈N ) where ‘man’ m’s preferences �′
m are obtained from �m by making the

other ‘men’ unacceptable. Similarly, ‘woman’ w’s preferences �′
w are obtained from �w by making the

other ‘women’ unacceptable. Note that in the associated marriage problem (M ∪ W,�′) there are fewer
possible blocking pairs than in (N,�). Hence, any matching that is stable in the roommate problem
is also stable in the associated marriage problem. However, the associated marriage problem has an
additional stable matching given by

ν = {{1, 7}, {2, 8}, {3, 5}, {4, 6}}.

Note that ν is not stable in the original roommate problem since it is blocked by {2, 4} (two ‘men’).
Therefore, the roommate problem is not, as suspected, essentially equal to a marriage problem.
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There are 5 stable matchings:

µ1 = {{1, 5}, {2, 6}, {3, 7}, {4, 8}}

µ2 = {{1, 5}, {2, 7}, {3, 6}, {4, 8}}

µ3 = {{1, 7}, {2, 6}, {3, 8}, {4, 5}}

µ4 = {{1, 8}, {2, 6}, {3, 7}, {4, 5}}

µ5 = {{1, 8}, {2, 7}, {3, 6}, {4, 5}}

Notice that µ4 is not only the median matching of {µ1, µ2, µ3, µ4, µ5} but also of
{µ1, µ3, µ5}. However, µ4 6∈ {µ1, µ3, µ5}. ⋄

3 Two-Sided Matching and Generalized Medians

3.1 Marriage Problems

We now turn to the subclass of marriage problems. These two-sided roommate problems
exhibit some additional structure and therefore we can strengthen the median matching
theorem. Let µ1, . . . , µk be k (possibly non-distinct) stable matchings for a marriage
problem and assume that each agent ranks these matchings according to his preferences.
Using linear programming tools, Teo and Sethuraman (1998, Theorem 2) showed that
the map that assigns to each man his l-th (weakly) best match and to each woman
her (k − l + 1)-st (weakly) best match determines a well-defined and stable matching.
Klaus and Klijn (2006) introduced and discussed (generalized) medians as compromise
solutions for two-sided matching problems. Next, we show that we can adapt the proof
of Theorem 2 to prove this stronger result for marriage problems. In contrast to previous
proofs that use the so-called lattice structure of the set of stable matchings (see Fleiner,
2002, Theorem 5.5, Klaus and Klijn, 2006, Theorem 3.2, and Yenmez and Schwarz, 2008,
Theorem 1)11 our proof is elementary.

Consider a marriage problem (M ∪ W, (�i)i∈M∪W ). Let µ1, . . . , µk be k (possibly
non-distinct) stable matchings. Let each agent rank these matchings according to his
preferences as explained before. Formally, for each i ∈ M ∪ W there is a sequence of
matchings (µi

1, . . . , µ
i
k) such that {µi

1, . . . , µ
i
k} = {µ1, . . . , µk} and for any l ∈ {1, . . . , k −

1}, µi
l(i) �i µi

l+1(i). Thus, for any l ∈ {1, . . . , k}, under µi
l agent i is assigned to his l-th

(weakly) best match (among the k stable matchings).
For any l ∈ {1, . . . , k}, we define the generalized median matching αl as the function

αl : M ∪ W → M ∪ W such that

αl(i) :=

{

µi
l(i) if i ∈ M ;

µi
(k−l+1)(i) if i ∈ W .

11Yenmez and Schwarz (2008) extend the analysis of stable median matchings from the class of marriage
problems to two-sided (one-to-one) matching problems with side payments.
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Theorem 3 (Marriage and compromise – generalized medians).
Let µ1, . . . , µk be k (possibly non-distinct) stable matchings for a marriage problem. Then,
for any l ∈ {1, . . . , k}, αl is a well-defined stable matching.

Proof. Let l ∈ {1, . . . , k}. First, we show that αl is a well-defined matching, i.e., αl

is of order two. W.l.o.g. let m ∈ M with αl(m) = w ∈ W . We have to prove that
αl(w) = m. W.l.o.g. µ1(m) �m µ2(m) �m · · · �m µl(m) �m · · · �m µk−1(m) �m µk(m)
and αl(m) = µl(m). Then, µl(m) = αl(m) = w and µl(w) = m. Using decomposability
and arguments similar to those in the first part of the proof of Theorem 2,12

µ1 �m · · · �m µl−1 �m µl �m µl+1 �m · · · �m µk

{µl+1, . . . , µk} �w µl �w {µ1, . . . , µl−1}.

In particular, µl(w) is the (k− l+1)-st ranked match for woman w and therefore αl(w) =
µl(w) = m. Therefore, αl is a well-defined matching.

We now prove that αl is stable. By definition, αl is individually rational. Suppose
there is a blocking pair {m, w} with m ∈ M and w ∈ W for αl, i.e., w ≻m αl(m) and
m ≻w αl(w). Then, m prefers w to his match under at least k− l + 1 stable matchings in
Σ := {µ1, . . . , µk}. Similarly, w prefers m to her match under at least l stable matchings
in Σ. Since Σ contains only k < (k− l+1)+ l matchings, for at least one matching µ ∈ Σ,
both w ≻m µ(m) and m ≻w µ(w) (here we apply transitivity of blocking). Hence, {m, w}
is a blocking pair for µ. This however contradicts stability of µ (the set Σ only contains
stable matchings). Therefore, there is no blocking pair for αl. Hence, αl is stable.

3.2 College Admissions Problems

Fleiner (2002, Theorem 5.5), Klaus and Klijn (2006, Theorem 3.2), and Sethuraman
et al. (2006, Theorem 9) generalized Theorem 3 to college admissions problems (Gale
and Shapley, 1962) with so-called responsive preferences in which students have to be
matched to colleges based on the students’ and the colleges’ preferences over the other
side of the market and colleges’ capacity constraints. Hence, like the roommate model,
the college admissions model is a generalization of the marriage model. (However, the
college admissions model is not a generalization of the roommate model, nor vice versa.)
Next, we show that the proof of Theorem 3 is essentially valid for the college admissions
model. More precisely, we can extend Theorem 3 to college admissions problems by using
the same steps as in the proof of Theorem 3 (or, in fact, Theorem 2). Unfortunately, the
extended proof will no longer be elementary in the sense that in order to be able to apply
the key steps we need to recur to well-known but non-trivial results for college admissions
problems.

12Recall that in the first part of the proof of Theorem 2 only the relative ranking of the stable matchings
with respect to µk+1 mattered – which exact rank µk+1 had did not play any role in that part of the
proof.
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We first extend the marriage model to the college admissions model by introducing the
following notation. There are two finite and disjoint sets of agents: a set S = {s1, . . . , sm}
of students and a set C = {C1, . . . , Cn} of colleges. We denote a generic student by s and
a generic college by C. For each college C, there is a fixed quota qC that represents the
number of positions it offers.13

Each student has a complete, transitive, and strict preference relation �s over the
colleges and the prospect of being unmatched. Hence, student s’s preferences are defined
over the elements in C ∪ {s}. If C ∈ C such that C ≻s s, then we call C an acceptable
college for student s.

A set of students S ′ ⊆ S is feasible for college C if |S ′| ≤ qC . Each college has
a complete and transitive preference relation �C over feasible sets of students. Hence,
college C’s preferences are defined over the elements in P(S, qC) := {S ′ ⊆ S : |S ′| ≤ qC}.
We make two assumptions on the preferences of a college C.14

First, C’s preferences over singleton sets of students, or equivalently over individual
students, are strict. For notational convenience we denote a singleton set {s} by s. The
second assumption describes comparisons of feasible sets of students when a single student
is added or replaced. If s ∈ S is such that s ≻C ∅, then we call s an acceptable student for
college C. If s, s′ ∈ S are such that s ≻C s′, then we call student s a better student than
student s′ for college C. We assume that each college C’s preferences over feasible sets of
students are based on preferences over individual students such that C always prefers to
add an acceptable student and it also prefers to replace any student by a better student.
More formally, we assume that C’s preferences are responsive, i.e., for all S ′ ∈ P(S, qC),

• if s 6∈ S ′ and |S ′| < qC , then (S ′ ∪ s) ≻C S ′ if and only if s ≻C ∅ and

• if s 6∈ S ′ and t ∈ S ′, then ((S ′\t) ∪ s) ≻C S ′ if and only if s ≻C t.

A college admissions problem is a triple (S, C, (�i)i∈S∪C). A matching for college ad-
missions problem (S, C, (�i)i∈S∪C) is a function µ on the set S ∪ C such that

• each student is either matched to exactly one college or unmatched, i.e., for all
s ∈ S, either µ(s) ∈ C or µ(s) = s,

• each college is matched to a feasible set of students, i.e., for all C ∈ C, µ(C) ∈
P(S, qC), and

• a student is matched to a college if and only if the college is matched to the student,
i.e., for all s ∈ S and C ∈ C, µ(s) = C if and only if s ∈ µ(C).

Given matching µ, we call µ(s) student s’s match and µ(C) college C’s match.

Similar to the roommate and marriage model, a key property of matchings in the col-
lege admissions model is stability. First, we impose a voluntary participation condition.

13The marriage model is the special case where for all C ∈ C, qC = 1.
14See Roth and Sotomayor (1989) for a discussion of these assumptions.
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A matching µ is individually rational if neither a student nor a college would be better
off by breaking a current match, i.e., if µ(s) = C, then C ≻s s and µ(C) ≻C (µ(C)\s).
By responsiveness of �C , the latter requirement can be replaced by s ≻C ∅. Thus al-
ternatively, a matching µ is individually rational if any student and any college that are
matched to one another are mutually acceptable. Second, if a student s and a college
C are not matched to one another at a matching µ but the student would prefer to be
matched to the college and the college would prefer to either add the student or replace
another student by student s, then we would expect this mutually beneficial adjustment
to be carried out. Formally, a pair (s, C) blocks (µ(s), µ(C)) if C ≻s µ(s) and

B1. [ |µ(C)| < qC and s ≻C ∅ ] or

B2. [ there exists t ∈ µ(C) such that s ≻C t ].15

A matching µ is stable if it is individually rational and there is no pair (s, C) that blocks
(µ(s), µ(C)).16 Gale and Shapley (1962) proved that each college admissions problem has
at least one stable matching.

Consider a college admissions problem (S, C, (�i)i∈S∪C). Let µ1, . . . , µk be k (possibly
non-distinct) stable matchings. Let each student rank these matchings according to his
preferences. Formally, for each s ∈ S there is a sequence of matchings (µs

1, . . . , µ
s
k) such

that {µs
1, . . . , µ

s
k} = {µ1, . . . , µk} and for any l ∈ {1, . . . , k − 1}, µs

l (s) �s µs
l+1(s). Thus,

for any l ∈ {1, . . . , k}, under µs
l student s is assigned to his l-th (weakly) best match

(among the k stable matchings). For any l ∈ {1, . . . , k}, define the function αS
l on the set

S such that for all s ∈ S, αS
l (s) := µs

l (s).
By Roth and Sotomayor (1989, Theorem 3), each college can proceed similarly.17

Formally, for each C ∈ C there is a sequence of matchings (µC
1 , . . . , µC

k ) such that
{µC

1 , . . . , µC
k } = {µ1, . . . , µk} and for any l ∈ {1, . . . , k − 1}, either µC

l (C) ≻C µC
l+1(C)

or µC
l (C) = µC

l+1(C). Thus, for any l ∈ {1, . . . , k}, under µC
l college C is assigned to its

l-th (weakly) best match (among the k stable matchings). For any l ∈ {1, . . . , k}, define
the function αC

l on the set C such that for all C ∈ C, αC
l (C) := µC

l (C).
For any l ∈ {1, . . . , k}, we define the generalized median matching αl by

αl(i) :=

{

αS
l (s) if i ∈ S;

αC
k−l+1(C) if i ∈ C.

Theorem 4 (College admissions and compromise – generalized medians).
Let µ1, . . . , µk be k (possibly non-distinct) stable matchings for a college admissions prob-
lem. Then, for any l ∈ {1, . . . , k}, αl is a well-defined stable matching.

15Recall that by responsiveness B1 implies (µ(C)∪s) ≻C µ(C) and B2 implies ((µ(C)\t)∪s) ≻C µ(C).
16Roth and Sotomayor (1989, Proposition 1) showed that this is the “correct” concept of stability in

the sense that there is no blocking coalition if and only if there is no blocking pair. Also note that in
the special case of qC = 1 (for all C ∈ C) the concept coincides with the previously introduced stability
concept for marriage problems.

17Roth and Sotomayor (1989, Theorem 3) stated that for all stable matchings µ and µ′ and all C ∈ C,
either µ(C) ≻C µ′(C), µ′(C) ≻C µ(C), or µ(C) = µ′(C).
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The proof is similar to that of Theorem 3. It is based on the two properties that were
already key in the proofs of Theorems 2 and 3: (weak) decomposability and transitivity
of blocking.

Lemma 3 (Weak decomposability, Roth and Sotomayor, 1990, Theorem 5.33).
Let µ and µ′ be stable matchings. Let C ∈ C, s ∈ S, and s ∈ µ(C) ∪ µ′(C). Then,

(a) µ(C) ≻C µ′(C) implies µ′(s) �s µ(s);

(b) µ(s) ≻s µ′(s) implies µ′(C) �C µ(C).

Note that matchings µ and µ′ play a symmetric role in Lemma 3.

Next we extend the transitivity of blocking property (see Footnote 9) used in the
proofs of Theorems 2 and 3 to college admissions problems.

Lemma 4 (Transitivity of blocking for college admissions).
Let µ and µ′ be matchings, C ∈ C, and s ∈ S. Suppose (s, C) blocks (µ(s), µ(C)). Suppose
also that C is assigned groups of students µ(C) and µ′(C) under some stable matchings.18

If µ(s) �s µ′(s) and µ(C) �C µ′(C), then (s, C) also blocks (µ′(s), µ′(C)).19

Proof. Suppose µ(s) �s µ′(s) and µ(C) �C µ′(C). We prove that (s, C) blocks
(µ′(s), µ′(C)). Since C ≻s µ(s) �s µ′(s) we only have to check that

B1’. [ |µ′(C)| < qC and s ≻C ∅ ] or
B2’. [ there exists t′ ∈ µ′(C) such that s ≻C t′ ].

Since (s, C) blocks (µ(s), µ(C)), we have that blocking condition B1 or B2 is satisfied.
Note that by Roth (1984, Theorem 9), |µ′(C)| = |µ(C)|.

Suppose B1 is satisfied. Then, |µ(C)| < qC and s ≻C ∅. So, |µ′(C)| = |µ(C)| < qC .
Hence, B1′ is satisfied.

Now suppose B2 is satisfied. Then, there exists t ∈ µ(C) such that s ≻C t. If
t ∈ µ′(C), then B2′ holds trivially with t′ = t. If |µ′(C)| < qC , then by the Rural
Hospital Theorem (Roth, 1986), µ′(C) = µ(C), t ∈ µ′(C), and therefore B2′. So, suppose
|µ′(C)| = qC and t 6∈ µ′(C). Hence, |µ(C)| = |µ′(C)| = qC and µ′(C) 6= µ(C). But then,
by Roth and Sotomayor (1989, Theorem 3) and µ(C) �C µ′(C), µ(C) ≻C µ′(C). Now
Roth and Sotomayor (1989, Theorem 4) and |µ(C)| = |µ′(C)| = qC imply that there is
a student t′ ∈ µ′(C)\µ(C) with t ≻C t′. So, s ≻C t ≻C t′ and t′ ∈ µ′(C). Hence, B2′ is
satisfied.

We are now ready to prove Theorem 4. In addition to the fact that (weak) decompos-
ability and transitivity of blocking (Lemmas 3 and 4) are not elementary results as in the
case of roommate (marriage) problems, the proof also has to be adapted because now we
can only use weak decomposability.

18That is, there are stable matchings µ̄ and µ̄′ such that µ̄(C) = µ(C) and µ̄′(C) = µ′(C).
19By “(s, C) also blocks (µ′(s), µ′(C))” we mean that C ≻s µ′(s) and B1’ [ |µ′(C)| < qC and s ≻C ∅ ]

or B2’ [ there exists t′ ∈ µ′(C) such that s ≻C t′ ].
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Proof of Theorem 4. Define Σ := {µ1, . . . , µk}. Let l ∈ {1, . . . , k}. First, we show that αl

is a well-defined matching, i.e., αS
l and αC

k−l+1 together constitute a well-defined matching.
Let s ∈ S with αS

l (s) = C ∈ C. We have to prove that s ∈ αC
k−l+1(C). Recall

that stable matchings µs
1, . . . , µ

s
k are such that {µs

1, . . . , µ
s
k} = Σ and µs

1(s) �s µs
2(s) �s

· · · �s µs
l (s) �s · · · �s µs

k−1(s) �s µs
k(s). Hence, µs

l (s) = αS
l (s) = C and s ∈ µs

l (C).
Let Σl

s := {µs ∈ Σ | µs(s) ∼s µs
l (s)} = {µs ∈ Σ | µs(s) = µs

l (s)}. Note that Σl
s =

{µs
p, µ

s
p+1, . . . , µ

s
l , . . . , µ

s
q−1, µ

s
q} for some p ≤ l ≤ q. W.l.o.g. we may assume that

µs
q(C) �C · · · �C µs

l+1(C) �C µs
l (C) �C µs

l−1(C) �C · · · �C µs
p(C). (2)

By weak decomposability (Lemma 3, b) and (2),

µs
1 �s · · · �s µs

l−1 �s µs
l �s µs

l+1 �s · · · �s µs
k

{µs
k, . . . , µ

s
l+1} �C µs

l �C {µs
l−1, . . . , µ

s
1}.

20

In particular, µs
l (C) is the (k − l + 1)-st ranked match for college C and therefore s ∈

µs
l (C) = αC

k−l+1(C).
Let C ∈ C. Let s ∈ αC

k−l+1(C). We have to prove that αS
l (s) = C. Recall that

stable matchings µC
1 , . . . , µC

k are such that {µC
1 , . . . , µC

k } = Σ and µC
1 (C) �C µC

2 (C) �C

· · · �C µC
k−l+1(C) �C · · · �C µC

k−1(C) �C µC
k (C). Hence, µC

k−l+1(C) = αC
k−l+1(C) ∋ s and

µC
k−l+1(s) = C. Let Σk−l+1

C := {µC ∈ Σ | µC(C) ∼C µC
k−l+1(C)}. Note that Σk−l+1

C =
{µC

x , µC
x+1, . . . , µ

C
k−l+1, . . . , µ

C
y−1, µ

C
y } for some x ≤ k − l + 1 ≤ y. By Roth and Sotomayor

(1989, Theorem 3), Σk−l+1
C = {µC ∈ Σ | µC(C) = µC

k−l+1(C)}. Hence, s ∈ µC(C) for all
µC ∈ Σk−l+1

C . So,

µC
y (s) ∼s · · · ∼s µC

k−l+2(s) ∼s µC
k−l+1(s) ∼s µC

k−l(s) ∼s · · · ∼s µC
x (s). (3)

By weak decomposability (Lemma 3, a) and (3),

µC
1 �C · · · �C µC

k−l �C µC
k−l+1 �C µC

k−l+2 �C · · · �C µC
k

{µC
k , . . . , µC

k−l+2} �s µC
k−l+1 �s {µ

C
k−l, . . . , µ

C
1 }.

In particular, µC
k−l+1(s) is the l-th ranked match for student s and therefore C =

µC
k−l+1(s) = αS

l (s).
Hence, we have proven that αS

l and αC
k−l+1 together constitute a well-defined matching.

Thus, αl is a well-defined matching.

We now prove that αl is stable. By definition, αl is individually rational. Suppose
there is a pair (s, C) that blocks (αl(s), αl(C)). Note that αl(s) �s µ(s) for at least k−l+1
matchings µ in Σ = {µ1, . . . , µk}. Similarly, αl(C) �C µ(C) for at least l matchings µ in
Σ. Since Σ contains only k < (k − l + 1) + l matchings, for at least one matching µ′ ∈ Σ,
both αl(s) �s µ′(s) and αl(C) �C µ′(C).

By construction there exist stable matchings under which C is assigned αl(C) and
µ′(C). By transitivity of blocking for college admissions (Lemma 4), (s, C) blocks
(µ′(s), µ′(C)). This however contradicts stability of µ′ (the set Σ only contains stable
matchings). Therefore, αl is stable. 2
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4 Conclusion

For three different matching models (roommate, marriage, and college admissions) we
have shown that certain compromise stable matchings exist in the form of so-called (gen-
eralized) median matchings. For roommate problems, we prove the existence and stability
of the median matching of an odd number of stable matchings (Theorem 2). For the two-
sided (marriage and college admissions) matching problems we prove the existence and
stability of generalized median matchings for any number of stable matchings (Theo-
rems 3 and 4). In all proofs we use a decomposability property to show that (generalized)
median matchings are well-defined and a transitivity of blocking property to show that
they are stable. The following examples demonstrate that our results can break down if
decomposability or transitivity of blocking is violated.

The following example shows how a lack of decomposability causes the median match-
ing to not be well-defined. The example also demonstrates that the “lone wolf” property
is not sufficient for median matchings to be well-defined. It is well-known that for college
admissions problems with responsive preferences the set of stable matchings is still non-
empty and has the “lone wolf” property, i.e., the set of single students does not vary from
one stable matching to another (see, for instance, Roth and Sotomayor, 1990, Lemma 5.6
and Theorem 5.12). Mart́ınez et al. (2000) introduced the domain of q-separable and
substitutable preferences for colleges that contains the domain of responsive preferences.
They prove that even for this larger domain the set of stable matchings is non-empty and
that the “lone wolf” property holds.

Example 3. No compromise for q-separable and substitutable preferences

Consider Mart́ınez et al.’s (2000, Example 2) college admissions problem with four stu-
dents s1, s2, s3, s4, two colleges C1 and C2 with two seats each, and preferences as listed in
the table below. The colleges’ preferences are q-separable and substitutable (for details
see Mart́ınez et al., 2000).

≻C1
≻C2

≻s1
≻s2

≻s3
≻s4

{s1, s2} {s3, s4} C2 C2 C1 C1

{s1, s3} {s2, s4} C1 C1 C2 C2

{s2, s4} {s1, s3}

{s3, s4} {s1, s2}

{s1, s4} {s1, s4}

{s2, s3} {s2, s3}

{s1} {s1}

{s2} {s2}

{s3} {s3}

{s4} {s4}

18



There are four stable matchings:

µ1 = {{C1, s1, s2}, {C2, s3, s4}}

µ2 = {{C1, s1, s3}, {C2, s2, s4}}

µ3 = {{C1, s2, s4}, {C2, s1, s3}}

µ4 = {{C1, s3, s4}, {C2, s1, s2}}

Considering the first three matchings, one straightforwardly checks that matching each
agent with its median match is not a matching: C1 would be matched with {s1, s3} but
at the same time s3 would be matched with C2. Hence, the median matching is not
well-defined.

We have the following violation of weak decomposability. Consider s3 and C1. Then,
s3 ∈ µ2(C1), µ2(s3) ≻s3

µ3(s3), and µ2(C1) ≻C1
µ3(C1); a violation of weak decompos-

ability (Lemma 3). ⋄

The following example demonstrates that in a more general setting a median matching
may exist but fail to be stable.

Example 4. An unstable compromise for a network formation problem

Consider the network formation problem (see Jackson and Watts, 2002) with three agents
labeled 1,2, and 3, who have preferences over all possible networks as listed in the table
below. Loosely speaking, agents like to be connected but the complete network is too
“costly.”

≻1 ≻2 ≻3

1 2

3

2 3 1

1 2 3

3 1 2

1 2 3

2 3 1

3 1 2

1 2

3

1 2

3

2 3 1

3 1 2

2 3 1

1 2 3

2 3 1

2 3 1

1 2 3

1 2 3

1 3 2

1 3 2

1 2 3

1 2 3 1 2 3 1 2 3

1 3 2
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We extend the notion of blocking for the matching problems considered so far to this
network formation problem in a natural way as follows (we use Jackson and Watts’s,
2002, definition of pairwise blocking). Two agents can block a given network by adding a
link if and only if this is beneficial for both agents. Furthermore, a single agent can block
a given network by destroying a link if that is beneficial for him.
There are three stable networks µ1, µ2, and µ3 which are given by

, , and ,1 2 3 2 3 13 1 2

respectively. Let each agent choose the median of the three sets of links with which he
can be associated. Then, each agent chooses to connect with both of the other agents.
Hence, the resulting median network is the (well-defined!) complete network

1 2

3 ,

which is not stable. Hence, the median network is well-defined but not stable.

We now demonstrate that transitivity of blocking is violated. To do so we first extend
the definition to the network formation model. Note that agents now care about the
structure of the whole network and not only about their direct links. Thus, in contrast to
all other models we considered so far this is a model with externalities. For any network
µ and any agent k, we denote by µ(k) agent k’s links at network µ.

Transitivity of blocking for network formation
Let µ and µ′ be networks and i, j agents such that {i, j} (possibly i = j) blocks network
µ. Suppose also that for all k = i, j, agent k is assigned the set of links µ(k) and µ′(k)
under some stable network.21 If µ �i µ′ and µ �j µ′, then {i, j} also blocks µ′.

To see that transitivity of blocking is violated, consider

µ =

1 2

3

and µ′ = 1 3 2 .

Note that µ2 = 3 1 2 and µ3 = 2 3 1 are stable networks with µ2(1) = µ(1)
and µ3(1) = µ′(1). Agent 1 blocks network µ by breaking either the link with agent 2 or
the link with agent 3. Furthermore, µ �1 µ′. However, in contradiction to transitivity of
blocking, agent 1 cannot block network µ′.22 ⋄

21That is, there are stable networks µ̄ and µ̄′ such that µ̄(k) = µ(k) and µ̄′(k) = µ′(k).
22Note that weak decomposability is violated as well: µ2 ≻1 µ3 and agent 1 is linked with agent 3 (at

µ2), but nevertheless µ2 ≻3 µ3. So far, we did not succeed in constructing an example where the median
outcome is well-defined but unstable, (weak) decomposability is satisfied, and transitivity of blocking is
violated.
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