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Abstract

One-sided assignment problems combine important features of two well-known matching models.
First, as in roommate problems, any two agents can be matched and second, as in two-sided
assignment problems, the payoffs of a matching can be divided between the agents. We take a
similar approach to one-sided assignment problems as Sasaki (1995) for two-sided assignment
problems and we analyze various desirable properties of solutions including consistency and weak
pairwise-monotonicity. We show that for the class of solvable one-sided assignment problems
(i.e., the subset of one-sided assignment problems with a non-empty core), if a subsolution
of the core satisfies [indifference with respect to dummy agents, continuity, and consistency]
or [Pareto indifference and consistency], then it coincides with the core (Theorems 1 and 2).
However, we also prove that on the class of all one-sided assignment problems (solvable or not),
no solution satisfies consistency and coincides with the core whenever the core is non-empty
(Theorem 3). Finally, we comment on the difficulty in obtaining further positive results for the
class of solvable one-sided assignment problems in line with Sasaki’s (1995) characterizations of
the core for two-sided assignment problems.

JEL classification: C71, C78, D63.

Keywords: (One-sided) assignment problems, consistency, core, matching.

1 Introduction

Most racket sports (tennis, squash, badminton, etc.) have established top level doubles competi-
tions. At the start of each season there is a predefined time frame in which players have to organize
themselves into pairs. Once pairs are formed, partners cannot be changed during the season. If
a player fails to form a pair she cannot participate in the doubles competition. The players, with
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very few exceptions, are professionals who are driven by their passion for the sport but also by
pecuniary interests. The latter plays an important role as the prizes at stake in the tournaments
throughout the year represent the players most significant source of revenue. This situation leads
to a problem, where (rational) players have to simultaneously decide upon how to form pairs and
how to distribute payoffs. Since reshuffling of the pairs throughout the seasons is minor, we assume
that there are many instances where the problem faced by the players has a stable solution. But
what properties would this solution to the problem satisfy? What would happen to the solution if
some pairs dropped out of the competition with their gains? Considering that the changes in the
doubles hierarchy are relatively small from one season to another, players estimations with respect
to the potential gains of each pair in the competition are likely to be adjusted from one season to
another by small amounts. Does the adjustment affect the solution? Finally, would the solution be
affected if one focuses on pecuniary driven players who are indifferent with respect to the identity
of their partners as long as their revenue is kept invariant? We call the situation described in this
example a one-sided assignment problem and we call the properties of the solutions described above
consistency, continuity, respectively Pareto indifference.

A one-sided assignment problem has many similarities with two well known models in matching:
roommate problems (Gale and Shapley, 1962) and assignment problems (Shapley and Shubik, 1972).
In roommate problems, agents have preferences over other agents and being alone (or consuming
an outside option) and any two agents can either be matched as pairs or remain single. If the value
a single agent creates can be consumed by herself and if the value a pair of agents creates is divided
between them according to a fixed division, then a roommate problem as described above is the
result. With a one-sided assignment problem we model a roommate problem where the assumption
that the payoffs to agents are fixed ex-ante is relaxed. In two-sided assignment problems, the set of
agents is partitioned into two sets and only agents from different sets can be paired. Then, based
on how agents are matched in such a two-sided market, the division of payoffs to agents is flexible
as part of the solution.

Here, we generalize both models by allowing for one-sided matching as in roommate problems
and for flexible division of payoffs as in two-sided assignment problems. Eriksson and Karlander
(2001) and Sotomayor (2005) modeled and analyzed one-sided assignment problems. A one-sided
assignment problem consists of a set of agents and a value function that specifies the worth of
trade gain or the payoff of working together for each pair of agents. A feasible outcome for a
one-sided assignment problem is a matching that partitions the set of agents in pairs and singletons
and a payoff vector that divides the total value of the matching between the agents. A solution
assigns to any one-sided assignment problem a non-empty subset of feasible outcomes. As in many
other economies, a concept of special interest is the core. Eriksson and Karlander (2001) give a
characterization of the core by a forbidden minors criterion while Sotomayor (2005) shows that
there are one-sided assignment problems with an empty core and identifies necessary and sufficient
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conditions for the non-emptiness of the core. Hence, strictly speaking, the core is not a solution
for the class of all one-sided assignment problems.

We call a one-sided assignment problem with a non-empty core solvable. First, with Exam-
ple 2, we show that a solvable one-sided assignment problem is not essentially equal to a two-sided
assignment problem, that is, a solvable one-sided assignment problem cannot always be mapped
onto a core-isomorphic two-sided assignment problem. Then, we aim to extend insights from the
normative analysis of two-sided assignment problems to solvable one-sided assignment problems.

For two-sided assignment problems, there are several characterizations of the core using con-
sistency as a central property. Consistency is an invariance requirement of the solutions if some
couples and singles decide to leave with their payoffs. To understand this property, suppose that
after agents are matched and payoffs are divided according to the solution, some of the agents
decide to leave with their payoffs and with their match, and the remaining agents decide to apply
the same solution to the restricted one-sided assignment problem. A solution would be considered
to be “inconsistent” if it solves such a restricted one-sided assignment problem differently than
before. For a comprehensive survey on consistency, see Thomson (2009).

In the first characterization, Sasaki (1995, Theorem 2) considers consistency in conjunction
with individual rationality, couple rationality, Pareto optimality, continuity, and weak pairwise-
monotonicity. In the second characterization, Sasaki (1995, Theorem 4) replaces continuity by
Pareto indifference. Sasaki (1995) proves both characterizations by showing that (Step 1 ) the core
satisfies all properties used in both characterizations, (Step 2 ) a solution that satisfies all properties
as stated in each of the characterizations is a subsolution of the core, and (Step 3 ) a solution that is
a subsolution of the core and satisfies all properties as stated in each of the characterizations equals
the core. For a two-sided assignment problem closely related to the one investigated by Sasaki
(1995), Toda (2005) also obtains two characterizations of the core (see Toda, 2005, Theorems 3.1
and 3.2, and the discussion of how his results relate to Sasaki’s results on page 249).

We adopt the same properties as considered by Sasaki (1995) to see in how far his results for
two-sided assignment problems can be extended to one-sided assignment problems. Since Sasaki
(1995) characterized the core, we start by restricting attention to the class of solvable one-sided
assignment problems. First, and corresponding to Step 1 of Sasaki’s analysis, we prove that on the
class of solvable one-sided assignment problems, the core satisfies all properties as considered by
Sasaki (1995) (Proposition 1). Second, and corresponding to Step 3 of Sasaki’s analysis, we show
that for the class of solvable one-sided assignment problems, if a subsolution of the core satisfies
[indifference with respect to dummy agents, continuity, and consistency] or [Pareto indifference
and consistency], then it coincides with the core (Theorems 1 and 2). Note that indifference with
respect to dummy agents is a new property that we introduce, and that without this property
neither our Theorem 1 nor Sasaki’s corresponding Theorem 1 would be correct (see Remark 3 and
the counterexample therein). Adapting Sasaki’s Step 2 directly to solvable one-sided assignment
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problems turns out to be impossible because certain steps in the proof would transform a solvable
one-sided assignment problem into one with an empty core. We discuss this issue with Step 2 for
solvable one-sided assignment problems in Subsection 4.2 in more detail. It is currently an open
problem if Sasaki’s (1995, Theorems 2 and 4) characterizations of the core can be extended to the
class of solvable one-sided assignment problems. Finally, we prove that on the class of all one-sided
assignment problems (solvable or not), no solution satisfies consistency and coincides with the core
whenever the core is non-empty (Theorem 3).

2 Model and Definitions

We first introduce the one-sided version of Shapley and Shubik’s (1972) well-known (two-sided)
assignment problems. Our model extends Sasaki (1995) and it coincides with the roommate model
with transferable utility introduced by Eriksson and Karlander (2001) and with the one-sided
assignment model introduced by Sotomayor (2005).

Let N be the set of potential agents and N be the set of all non-empty finite subsets of N, i.e.,
N = {N ⊆ N | ∞ > |N | > 0}. For any N ∈ N we denote the set of distinct pairs that agents in
N can form (including the degenerate case where only one agent i ∈ N forms a “pair” (i, i)) by
P (N) = {(i, j) ∈ N × N | i ≤ j}. For any N ∈ N a function π : P (N) → R+ such that for each
i ∈ N , π(i, i) = 0, is a characteristic function for N . For each pair (i, j) ∈ P (N), π(i, j) ≥ 0 is
the monetary benefit or value that i and j can jointly obtain; in particular, π(i, i) = 0 denotes the
(fixed) reservation value of agent i. Let Π(N) be the set of all characteristic functions on P (N).

A one-sided assignment problem γ is a pair (N, π) ∈ N×Π(N). A two-sided assignment problem
is a one-sided assignment problem where the set of agents N can be partitioned in two subsets M
and W , i.e., N = M ∪W and M ∩W = ∅, and all coalitions from the same side of the market fail
to generate additional value, i.e., for each (i, j) ∈ M ×M and (i, j) ∈ W ×W , π(i, j) = 0. We
denote the set of all one-sided (two-sided) assignment problems for N ∈ N by ΓN (Γ̃N ) and the
set of all one-sided (two-sided) assignment problems by Γ = ∪N∈NΓN (Γ̃ = ∪N∈N Γ̃N ).

A matching µ for γ ∈ ΓN is a function µ : N → N of order two, i.e., for each i ∈ N , µ(µ(i)) = i.
Two agents i, j ∈ N are matched if µ(i) = j (or equivalently µ(j) = i); for notational convenience
we also use the notation (i, j) ∈ µ. If i 6= j, then we say that agents i and j are paired and they
form a couple. If i = j, we say that agent i is paired to herself and she remains single. Thus, at
any matching µ the set of agents is partitioned into a set of couples C(µ) = {(i, j) ∈ P (N) | µ(i) =
j, i 6= j} and a set of singles S(µ) = {i ∈ N | µ(i) = i}, with |N | = 2|C(µ)| + |S(µ)|. For N ∈ N ,
let M(N) denote the set of matchings.

A matching that generates maximal value is (socially) optimal. That is, for γ ∈ ΓN , a matching
µ ∈ M(N) is optimal if for each µ′ ∈ M(N),

∑
(i,j)∈µ π(i, j) ≥

∑
(i,j)∈µ′ π(i, j). For γ ∈ ΓN , let

OM(γ) denote the set of optimal matchings. Note that for any γ ∈ ΓN , OM(γ) 6= ∅.
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For γ ∈ ΓN , a feasible outcome is a pair (µ, u) where µ ∈ M(N) is a matching and u ∈ R|N |

is a payoff vector such that
∑

i∈N ui =
∑

(i,j)∈µ π(i, j) =
∑

(i,j)∈C(µ) π(i, j). For γ ∈ ΓN , let F(γ)
denote the set of feasible outcomes.

For γ ∈ ΓN , a feasible outcome (µ, u) is Pareto optimal if for each µ′ ∈ M(N),
∑

i∈N ui =∑
(i,j)∈µ π(i, j) ≥

∑
(i,j)∈µ′ π(i, j). That is, for γ ∈ ΓN a feasible outcome (µ, u) is Pareto optimal,

if µ ∈ OM(γ). For γ ∈ ΓN , let PO(γ) denote the set of Pareto optimal outcomes.

Individual rationality is a voluntary participation condition based on the idea that agents cannot
be forced to enter in agreements that yield negative payoffs. For γ ∈ ΓN , a feasible outcome (µ, u) is
individually rational if for each i ∈ N , ui ≥ 0. For γ ∈ ΓN , let IR(γ) denote the set of individually
rational outcomes.

Couple rationality ensures that paired agents receive a payoff greater or equal to their own value.
For γ ∈ ΓN , a feasible outcome (µ, u) is couple rational if for each (i, j) ∈ C(µ), ui + uj ≥ π(i, j).
Note that the non-negativity of values and feasibility imply that if (µ, u) ∈ F(γ) is couple rational,
then for each (i, j) ∈ C(µ), ui + uj = π(i, j) and for each i ∈ S(µ), ui = π(i, i). For γ ∈ ΓN , let
CR(γ) denote the set of couple rational outcomes.1

Let γ ∈ ΓN and (µ, u) ∈ F(γ). If there are two agents (i, j) ∈ P (N) such that i 6= j and
ui+uj < π(i, j), then i and j have an incentive to form a couple in order to obtain a higher payoff.
In this case, {i, j} is a blocking pair for the outcome (µ, u).

For γ ∈ ΓN , a feasible outcome (µ, u) is stable if it is individually rational and no blocking pairs
exist, i.e., (µ, u) ∈ IR(γ) and for each (i, j) ∈ P (N) such that i 6= j, ui +uj ≥ π(i, j). For γ ∈ ΓN ,
let S(γ) denote the set of stable outcomes. Let γ ∈ ΓN be solvable if S(γ) 6= ∅. The following
example shows that the set of stable outcomes may be empty.

Example 1. A one-sided assignment problem that is not solvable.

Let N = {1, 2, 3}, π such that π(1, 2) = π(2, 3) = π(1, 3) = 1, and γ = (N, π). Then, for
each (µ, u) ∈ F(γ), u1 + u2 + u3 ≤ 1 and there exist two agents i and j, i 6= j, such that
ui + uj < π(i, j) = 1. Thus, S(γ) = ∅. �

Remark 1. On the class of solvable one-sided assignment problems, the set of stable outcomes
coincides with the core (Sotomayor, 2005, Proposition 1), i.e., for each γ ∈ Γ, S(γ) = C(γ), where
C(γ) denotes the core for problem γ.2 �

Since for the class of solvable one-sided assignment problems the set of stable outcomes and the
core coincide, from now on we will use the two notions interchangeably.

1Our definition of couple rationality is identical to the one in Sasaki (1995) and it implies (pairwise) feasibility in
Toda (2005) and Sotomayor (2005).

2Alternatively, we could model a one-sided assignment problem γ ∈ ΓN as the following cooperative game with
transferable utility (TU). Let υ be the associated TU characteristic function that assigns to each coalition S, υ(S) ≡
maxµ∈M(S){

∑
(i,j)∈µ π(i, j)} with υ(∅) = 0. The core of γ ∈ ΓN equals C(γ) = {(µ, u) ∈ F(γ) | for all S ⊆

N,
∑
i∈S ui ≥ υ(S)}. Thus, a feasible outcome is in the core if no coalition of agents S ⊆ N can improve their payoffs

by rematching among themselves.
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Investigating the precise conditions which guarantee the solvability of a one-sided assignment
problem and a full comparison of solvable one-sided assignment problems to two-sided assignment
problems is beyond the purpose of this paper. However, we note that Eriksson and Karlander
(2001) find that there are many similarities between solvable one-sided assignment problems and
two-sided assignment problems. The impression one might get is that in the core of solvable one-
sided assignment problems there always exists a “two-sided” partition of the agents. Then, it could
be possible that for each solvable one-sided assignment problem there exists a core-isomorphic
two-sided assignment problem, i.e., by choosing the appropriate partition of agents (setting the
values of now incompatible pairs equal to zero) one can convert the one-sided assignment problem
into a two-sided assignment problem without changing the set of core outcomes. The following
example shows that a solvable one-sided assignment problem cannot always be mapped onto a
core-isomorphic two-sided assignment problem.

Example 2. Two-sided and solvable one-sided problems are not core-isomorphic.

Let N = {1, 2, 3}, π such that π(1, 2) = 2, π(2, 3) = π(1, 3) = 1, and γ = (N, π). Then, γ is solvable
because S(γ) = {(µ, u) | µ = (2, 1, 3) and u = (1, 1, 0)}. The unique stable matching µ induces a
natural partition of the set of agents N = M ∪W where agents 1 and 2 have different genders.
Assume that this solvable one-sided assignment problem can be mapped onto a core-isomorphic two-
sided assignment problem and, without loss of generality, M = {1, 3} and W = {2}. Then, formally
we can associate with γ a two-sided assignment problem γ′ ≡ (M ∪W,π′), where we define π′ as
the restriction of π to feasible (man-woman) pairs, i.e., π′(1, 2) = 2, π′(2, 3) = 1, and in difference
to π, π′(1, 3) = 0 (agents 1 and 3 are both male and now do not create any positive surplus). The
problem γ′ is still solvable since S(γ′) = {(µ, u′) | µ = (2, 1, 3) and u′ = (α, 2− α, 0) for α ∈ [0, 1]}.
Observe that u′1 ≤ u1, u′2 ≥ u2, and u′3 = u3, and that the same matching µ is part of both S(γ)
and S(γ′). Thus, S(γ)  S(γ′). Therefore, γ′ has additional stable outcomes and it is not, as
suspected, core-isomorphic to γ. �

A solution specifies how to form couples and how to distribute payoffs among the agents.
Formally, a solution ϕ is a correspondence that associates with each γ ∈ Γ a non-empty subset of
feasible outcomes, i.e., for each γ ∈ Γ, ϕ(γ) ⊆ F(γ) and ϕ(γ) 6= ∅. A solution ϕ′ is a subsolution of
solution ϕ if for each γ ∈ Γ, ϕ′(γ) ⊆ ϕ(γ).

3 Properties of Solutions

In this section we introduce desirable properties of solutions.

Definition 1. Individual rationality

For each γ ∈ Γ, ϕ(γ) ⊆ IR(γ).

6



Definition 2. Couple rationality

For each γ ∈ Γ, ϕ(γ) ⊆ CR(γ).

Definition 3. Pareto optimality

For each γ ∈ Γ, ϕ(γ) ⊆ PO(γ).

Pareto indifference requires that if an outcome is chosen by the solution, then all feasible
outcomes containing the same payoff vector have to be part of the solution.

Definition 4. Pareto indifference

For each γ ∈ Γ and each (µ, u) ∈ ϕ(γ), if (µ′, u) ∈ F(γ), then (µ′, u) ∈ ϕ(γ).

For our next property we introduce the notion of dummy agents: agents who when paired at
a given matching do not create any positive surplus. For γ ∈ ΓN , µ ∈ M(N), i and j are dummy
agents for µ if π(i, j) = 0 and (i, j) ∈ C(µ). For γ ∈ ΓN , µ ∈ M(N), let DA(γ, µ) denote the set
of dummy agents for µ.

Indifference with respect to dummy agents requires that if an outcome for which the match-
ing pairs some dummy agents is chosen by the solution, then all feasible outcomes obtained by
“unmatching” some of the dummy agents have to be part of the solution.

Definition 5. Indifference with respect to dummy agents

For each γ ∈ Γ, each (µ, u) ∈ ϕ(γ), and all (µ′, u) ∈ F(γ) such that C(µ′) ⊆ C(µ) and S(µ′)\S(µ) =
DA(γ, µ), (µ′, u) ∈ ϕ(γ).3

Note that indifference with respect to dummy agents has no bite if DA(γ, µ) = ∅. Furthermore,
Pareto indifference implies indifference with respect to dummy agents.

Continuity, loosely speaking requires that small changes in the value function induce small
changes in solution outcomes.

Definition 6. Continuity

For each N ∈ N , for any natural number k, and each γ, γk ∈ Γ, where γ = (N, π) and γk = (N, πk)
such that (µ, uk) ∈ ϕ(N, πk), if for each (i, j) ∈ P (N), πk(i, j) −−−→

k→∞
π(i, j) and for each i ∈ N ,

uki −−−→
k→∞

ui, then (µ, u) ∈ ϕ(N, π).

To define the next property we first introduce the notion of a subproblem. Let γ = (N, π),
N ′ ⊆ N , and P (N ′) = {(i, j) ∈ N ′×N ′ | i ≤ j}. We denote by π|N ′ the restriction of value function
π to P (N ′), i.e., π|N ′ : P (N ′)→ R|N

′|
+ such that for each (i, j) ∈ P (N ′), π|N ′(i, j) = π(i, j). Then,

γ|N ′ = (N ′, π|N ′) ∈ ΓN
′

is a subproblem of γ.

Let N ∈ N and N ′ ⊆ N . For any matching µ ∈ M(N), we denote by µ(N ′) the set of agents
that are matched to agents in N ′, i.e., µ(N ′) = {i ∈ N | µ−1(i) ∈ N ′}. Furthermore, for any

3Note that C(µ′) ⊆ C(µ) implies S(µ′) ⊇ S(µ).
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u ∈ R|N |, let u|N ′ denote the restriction of vector u to N ′, i.e., u|N ′ ≡ u′ ∈ R|N
′| such that for each

i ∈ N ′, u′i = ui.

Consistency is an invariance requirement of the solutions if some couples and singles decide to
leave with their payoffs. For a comprehensive survey on consistency, see Thomson (2009).

Definition 7. Consistency

For each N ∈ N , each γ ∈ ΓN , each (µ, u) ∈ ϕ(γ), and each N ′ ⊆ N such that µ(N ′) = N ′,
(µ|N ′ , u|N ′) ∈ ϕ(γ|N ′).

Weak pairwise-monotonicity requires that if the value of a couple is increased, then the total
payoff of the couple should not decrease.

Definition 8. Weak pairwise-monotonicity

For each γ ∈ Γ, where γ = (N, π), each (i, j) ∈ P (N), i 6= j, and all γ∗ = (N, π∗) such that

π∗(i, j) ≥ π(i, j) and (1)

π∗(i′, j′) = π(i′, j′), otherwise, (2)

if (µ, u) ∈ ϕ(γ), then there exists (µ∗, u∗) ∈ ϕ(γ∗) such that u∗i + u∗j ≥ ui + uj .

4 Results

4.1 Positive results on the class of solvable one-sided assignment problems

Our first positive result shows that the core of solvable one-sided assignment problems satisfies all
of the above properties, which extends a similar result by Sasaki (1995, Propositions 3 and 4) for
two-sided assignment problems to solvable one-sided assignment problems.4

Proposition 1. On the class of solvable problems, the core satisfies individual rationality, cou-
ple rationality, Pareto optimality, Pareto indifference, indifference with respect to dummy agents,
continuity, consistency, and weak pairwise-monotonicity.

Proof.

Individual rationality, couple rationality, and Pareto optimality : For each solvable γ ∈ Γ, if (µ, u) ∈
S(γ), then it is immediate that (µ, u) ∈ PO(γ) ∩ IR(γ) ∩ CR(γ).

Pareto indifference and indifference with respect to dummy agents: For each solvable γ ∈ Γ, assume
(µ, u) ∈ S(γ). Let (µ′, u) ∈ F(γ). Then, since any blocking pair for (µ′, u) would also be a blocking
pair for (µ, u), (µ′, u) ∈ S(γ). Furthermore, Pareto indifference implies indifference with respect to
dummy agents.

4It is also easy to show that the core of solvable one-sided assignment problems satisfies converse consistency.
However, since we do not use converse consistency in the sequel, we do not include it in this paper.
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Continuity : Let γ, γk ∈ Γ be solvable, (µ, uk) ∈ S(γk) as in the definition of continuity, and
uki −−−→

k→∞
ui, πk(i, j) −−−→

k→∞
π(i, j). Since the correspondence of feasible outcomes is continuous,

(µ, u) is feasible. By stability, for each i ∈ N , uki ≥ 0 and for each (i, j) ∈ P (N), uki +ukj ≥ πk(i, j).
Letting k → ∞, for each i ∈ N , ui ≥ 0 and for each (i, j) ∈ P (N), ui + uj ≥ π(i, j). Hence,
(µ, u) ∈ S(γ).

Consistency : For each solvable γ ∈ Γ, if (µ, u) ∈ S(γ), then there do not exist any blocking pairs
for (µ, u). Hence, no blocking pairs exist in any of the (smaller) reduced problems and all reduced
problems are solvable.

Weak pairwise-monotonicity : Let γ, γ∗ ∈ Γ be solvable and (i, j) ∈ P (N) as in the definition of
weak pairwise-monotonicity. We show that (µ, u) ∈ S(γ) implies that there exists (µ∗, u∗) ∈ S(γ∗)
such that u∗i + u∗j ≥ ui + uj .

Let (µ, u) ∈ S(γ). Then, µ ∈ OM(γ) and for each (i′, j′) ∈ P (N), i′ 6= j′, ui′ + uj′ ≥ π(i′, j′).

Case 1 : Assume µ(i) = j.

Let µ∗ = µ and define u∗ as follows: u∗i = ui + [π∗(i, j)− π(i, j)]/2, u∗j = uj + [π∗(i, j)− π(i, j)]/2
and for each i′ ∈ N \ {i, j}, u∗i′ = ui′ . By (1), π∗(i, j) ≥ π(i, j) and consequently u∗i , u

∗
j ≥ 0. Thus,

(µ∗, u∗) ∈ IR(γ∗). Since (i, j) ∈ C(µ∗), u∗i + u∗j = π∗(i, j). By definition of u∗, for each (i′, j′) 6=
(i, j), u∗i′ + u∗j′ = ui′ + uj′ . Since (µ, u) ∈ S(γ), ui′ + uj′ ≥ π(i′, j′) and by (2), π(i′, j′) = π∗(i′, j′).
Thus, for each (i′, j′) ∈ P (N) such that i′ 6= j′ we have u∗i′ + u∗j′ ≥ π∗(i′, j′), i.e., (µ∗, u∗) ∈ S(γ∗).
Note that u∗i + u∗j = ui + uj + [π∗(i, j)− π(i, j)] which by (1) yields u∗i + u∗j ≥ ui + uj .

Case 2 : Assume µ(i) 6= j.

Let (µ∗, u∗) ∈ S(γ∗). Then, µ∗ ∈ OM(γ∗) and consequently,
∑

(i′,j′)∈µ∗ π
∗(i′, j′) ≥∑

(i′,j′)∈µ π
∗(i′, j′). By (2) and since (i, j) /∈ C(µ),

∑
(i′,j′)∈µ π

∗(i′, j′) =
∑

(i′,j′)∈µ π(i′, j′). Thus,

∑
(i′,j′)∈µ∗ π

∗(i′, j′) ≥
∑

(i′,j′)∈µ π(i′, j′). (3)

Case 2.1 : Assume µ∗(i) = j.

By (3) and feasibility,
∑

i′∈N u
∗
i′ =

∑
(i′,j′)∈µ∗ π

∗(i′, j′) ≥
∑

(i′,j′)∈µ π(i′, j′) =
∑

i′∈N ui′ . Suppose
u∗i + u∗j < ui + uj . Then,

∑
i′∈N\{i,j} u

∗
i′ =

∑
(i′,j′)∈µ∗\{(i,j)} π

∗(i′, j′) >
∑

i′∈N\{i,j} ui′ . Thus,
there exists (i′′, j′′) 6= (i, j) such that (i′′, j′′) ∈ C(µ∗) and π∗(i′′, j′′) > ui′′ + uj′′ . But by (2),
π∗(i′′, j′′) = π(i′′, j′′). Hence, π(i′′, j′′) > ui′′ + uj′′ , which is a contradiction to (µ, u) ∈ S(γ).
Therefore, u∗i + u∗j ≥ ui + uj .

Case 2.2 : Assume µ∗(i) 6= j.

Further, assume µ /∈ OM(γ∗). Then, (3) is strict and by (2),
∑

(i′,j′)∈µ∗ π
∗(i′, j′) =∑

(i′,j′)∈µ∗ π(i′, j′). Consequently,
∑

(i,j)∈µ∗ π(i, j) >
∑

(i,j)∈µ π(i, j), which is a contradiction to
µ ∈ OM(γ). Alternatively, now assume µ ∈ OM(γ∗). Then, we could have chosen u∗ = u, which
gives u∗i + u∗j = ui + uj .
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Remark 2. The class of solvable one-sided assignment problems is closed

An immediate consequence of the continuity of the core (Proposition 1) is that the class of solvable
one-sided assignment problems is closed, i.e., if for all k ∈ N, γk ∈ ΓN is solvable and γk −−−→

k→∞
γ ∈

ΓN , then γ is also solvable.

We next prove that if a consistent subsolution of the core satisfies indifference with respect to
dummy agents and continuity, then it coincides with the core. Note that Sasaki (1995, Theorem 1)
states this result without using indifference with respect to dummy agents for two-sided assignment
problems. We show in Remark 3 that adding indifference with respect to dummy agents is indeed
necessary (also for two-sided assignment problems).

Theorem 1. On the class of solvable problems, if ϕ is a subsolution of the core satisfying in-
difference with respect to dummy agents, continuity, and consistency, then ϕ coincides with the
core.

Proof. Let γ ∈ ΓN be a solvable problem. Then, since ϕ is a subsolution of the core, ϕ(γ) ⊆ S(γ).
We prove that ϕ(γ) ⊇ S(γ), i.e., we show that (µ, u) ∈ S(γ) implies (µ, u) ∈ ϕ(γ).

Step 1 : Intuitively, we start from γ and a stable outcome (with a maximal number of dummy agents)
by adding a new agent n. By construction, we preserve the original set of optimal matchings and
we extend each optimal matching with the single new agent n. Further, we require that any paired
agent can maintain the same utility as the one obtained within her current partnership when pairing
with n.

Formally, let (µ, u) ∈ S(γ). We will not work with matching µ directly, but with a matching
µDA (possibly µDA = µ) that has a maximal number of dummy agents such that the only possible
difference between µDA and µ is that some dummy agents for µDA are single at matching µ, i.e.,
C(µDA) ⊇ C(µ) and S(µ) \ S(µDA) = DA(γ, µDA) and there exists no matching µ̂ such that
C(µ̂) ⊇ C(µ), S(µ) \S(µ̂) = DA(γ, µ̂), and |DA(γ, µ̂)| > |DA(γ, µDA)|. Note that (µDA, u) ∈ S(γ)
and that at µDA at most one agent is single: if more than one agent is single, then the matching µDA

is not optimal (two single agents have a positive value) or it does not match the maximal number
of dummy agents (two single agents have value 0). In the remainder of the proof we distinguish
the two Cases (a) S(µDA) = {d} and (b) S(µDA) = ∅.

Let n ∈ N \N and N∗ = N ∪ {n}. For Case (a) we define µ∗ such that for each i ∈ N \ {d},
µ∗(i) = µDA(i), µ∗(d) = d, and µ∗(n) = n and µ̄∗ such that for each i ∈ N \ {d}, µ̄∗(i) = µDA(i)
and µ̄∗(d) = n. For Case (b) we define µ∗ such that for each i ∈ N , µ∗(i) = µDA(i) and µ∗(n) = n.
Hence, (a) S(µ∗) = {d, n} and S(µ̄∗) = ∅ and (b) S(µ∗) = {n}.

For each i ∈ N , let π∗(i, n) = ui = u∗i and for each (i, j) ∈ P (N), π∗(i, j) = π(i, j). Let
γ∗ = (N∗, π∗). Because the entrant n does not create any new blocking pairs, it follows that (a)

(µ∗, u∗), (µ̄∗, u∗) ∈ S(γ∗) and (b) (µ∗, u∗) ∈ S(γ∗). Note that (a)DA(γ∗, µ∗) = ∅ andDA(γ∗, µ̄∗) =
{d, n} and (b) DA(γ∗, µ∗) = ∅.
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Step 2 : Next, starting from γ∗ we construct γε as follows: ceteris paribus, we increase the value
of all couples at µ∗ that do not include agent n by ε and we symmetrically distribute the benefits
within these couples.

Formally, for Case (a) for each (i, j) ∈ C(µDA),5 [πε(i, j) = π∗(i, j) + ε, uεi = u∗i + ε
2 , and uεj =

u∗j + ε
2 ], πε(d, n) = π∗(d, n), and uεd = uεn = 0. For each (i, j) ∈ P (N) \ C(µDA), πε(i, j) = π∗(i, j).

For Case (b) for each (i, j) ∈ C(µ∗) = C(µDA), [πε(i, j) = π∗(i, j)+ε, uεi = u∗i + ε
2 , and uεj = u∗j + ε

2 ]
and uεn = 0. For each (i, j) ∈ P (N) \ C(µ∗), πε(i, j) = π∗(i, j).

Let γε = (N∗, πε). Because the change in couples’ values does not create any new blocking
pairs, it follows that (a) (µ∗, uε), (µ̄∗, uε) ∈ S(γε) and (b) (µ∗, uε) ∈ S(γε). Hence, (a) {µ∗, µ̄∗} ⊆
OM(γε) and (b) {µ∗} ⊆ OM(γε). Note that (a) DA(γε, µ∗) = ∅ and DA(γε, µ̄∗) = {d, n} and
(b) DA(γε, µ∗) = ∅.

Claim 1 : (a) OM(γε) = {µ∗, µ̄∗} and (b) OM(γε) = {µ∗}.

Let µ′ ∈ M(N∗) with (a) µ′ 6= µ∗, µ̄∗ or (b) µ′ 6= µ∗. Since for (a) and (b) (µ∗, u∗) ∈ S(γ∗),
µ∗ ∈ OM(γ∗). By construction,∑

(i,j)∈µ∗ π
ε(i, j) =

∑
(i,j)∈µ∗ π

∗(i, j) + |C(µDA)| ε and (4)∑
(i,j)∈µ′ π

ε(i, j) =
∑

(i,j)∈µ′ π
∗(i, j) + |C(µDA) ∩ C(µ′)| ε. (5)

Observe that
|C(µDA) ∩ C(µ′)| ≤ |C(µDA)|. (6)

By construction of µDA, (a) |C(µDA)| = |N∗|−2
2 or (b) |C(µDA)| = |N∗|−1

2 . Hence, if |C(µDA) ∩
C(µ′)| = |C(µDA)|,6 then C(µ′) = C(µDA) = C(µ∗) and S(µ′) = S(µ∗). Consequently, µ′ = µ∗, a
contradiction. Thus, (6) is strict, which taken together with (4) and (5) yields

∑
(i,j)∈µ∗ π

ε(i, j) >∑
(i,j)∈µ′ π

ε(i, j). Hence, (a) OM(γε) = {µ∗, µ̄∗} and (b) OM(γε) = {µ∗}.

By Claim 1, (a) µ∗ and µ̄∗ are and (b) µ∗ is the only optimal matching(s) for γε. However,
there might be infinitely many payoff vectors associated with these optimal matching(s) (Sotomayor,
2003, Theorem 1).

Claim 2 : Let (µ∗, ũ) ∈ S(γε). Then, for each i ∈ N , |ũi − uεi | ≤ ε
2 .

For Case (a) S(µ∗) = {d, n}, ũd = uεd = 0, and ũn = uεn = 0. Hence, |ũd − uεd| = |ũn − uεn| = 0.
For Case (b) S(µ∗) = {n} and ũn = uεn = 0. Hence, |ũn − uεn| = 0. Now consider couples’ payoffs.
Recall that compared to γ∗, in γε the value of each couple is increased by ε. Intuitively, we show
that any payoff renegotiations within each pair should be limited to ε, as any attempt of a paired
agent to negotiate a payoff in excess of ε would induce her partner to leave the couple in favor of
a partnership with agent n. Formally, let (i, j) ∈ C(µ∗).

5Note that for Case (a) C(µDA) = C(µ∗) = C(µ̄∗) \ {(d, n)}.
6Recall that in Case (a) we also assume µ′ 6= µ̄∗.
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Case 1 : ũi − uεi < − ε
2

Then ũi < uεi − ε
2 = u∗i = ui. By construction, for each i ∈ N , π∗(i, n) = ui. Thus, (i, n) forms a

blocking pair, and (µ∗, ũ) /∈ S(γε).

Case 2 : ũi − uεi > ε
2

Since µ∗ ∈ OM(γε), for any (i, j) ∈ C(µ∗), ũi + ũj = uεi + uεj . Then ũi − uεi = uεj − ũj > ε
2 . Thus,

ũj − uεj < − ε
2 and similarly as in Case 1, it follows that (µ∗, ũ) /∈ S(γε).

In Case (a) we in addition have (µ∗, ũ) ∈ S(γε) if and only if (µ̄∗, ũ) ∈ S(γε).

Step 3 : By assumption, ϕ(γε) ⊆ S(γε). Thus, S(γε) ∩ ϕ(γε) 6= ∅. For Case (a), assume that
(µ̄∗, ū) ∈ S(γε)∩ϕ(γε). Then, by indifference with respect to dummy agents, (µ∗, ū) ∈ S(γε)∩ϕ(γε).
Hence, for both cases, there exists (µ∗, ū) ∈ S(γε)∩ϕ(γε). By Claim 2, for each i ∈ N , |ūi−uεi | ≤ ε

2 .
Letting ε → 0, for each i ∈ N , |ūi − uεi | → 0 and uεi → u∗i . By continuity, (µ∗, u∗) ∈ ϕ(γ∗).
Note that N ⊆ N∗ such that µ∗(N) = N , γ∗|N = γ, and (µ∗|N , u

∗
|N ) = (µDA, u). By consistency,

(µ∗|N , u
∗
|N ) ∈ ϕ(γ∗|N ). Thus, (µDA, u) ∈ ϕ(γ). Since (µ, u) ∈ F(γ), by indifference with respect to

dummy agents, (µ, u) ∈ ϕ(γ).

Remark 3. Indifference with respect to dummy agents and Sasaki’s (1995) Theorem 1

For Theorem 1 to hold, the requirement that the subsolution of the core ϕ satisfies indifference
with respect to dummy agents is necessary.

Proof. For each solvable γ ∈ Γ, define ϕ̃ as the subsolution of the core with a maximum number of
matched (dummy) agents. To illustrate the way ϕ̃ selects from the core, consider the construction
of (µDA, u) starting from a stable outcome (µ, u) in the proof of Theorem 1: if µ has fewer matched
agents than µDA, then (µDA, u) ∈ ϕ̃(γ) and (µ, u) 6∈ ϕ̃(γ). For N = {1, 2}, π such that π(1, 2) = 0,
and γ = (N, π) define µ = (2, 1) and µ′ = (1, 2). Then, ϕ̃(γ) = {(µ, u)}  {(µ, u), (µ′, u)} = S(γ),
where u = (0, 0). It is easy to see that ϕ̃ is a subsolution of the core that satisfies continuity and
consistency, but not indifference with respect to dummy agents.

Note that for the two-sided assignment model Sasaki (1995, Theorem 1) states that ”If ϕ is
a subsolution of the core satisfying consistency and continuity, then ϕ = S.” However, solution
ϕ̃ establishes a counterexample to Sasaki’s result where only ϕ̃  S, but not ϕ = S holds (in
problem γ above we can assume that agent 1 is a man and agent 2 is a woman). For two-sided
and solvable one-sided assignment problems where reservation values are not fixed but are allowed
to vary (see, for instance, Toda, 2005), our Theorem 1 holds without requiring indifference with
respect to dummy agents.7 Hence, fixing reservation values in our one-sided (or in classic two-sided)
assignment model is not without loss of generality. �

The next theorem extends a result by Sasaki (1995, Theorem 3) for two-sided assignment
problems to solvable one-sided assignment problems.

7For completeness, we include the proof of this result in Appendix A.
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Theorem 2. On the class of solvable problems, if ϕ is a subsolution of the core satisfying consis-
tency and Pareto indifference, then ϕ coincides with the core.

Proof. Let γ ∈ ΓN be a solvable problem. Then, since ϕ is a subsolution of the core, ϕ(γ) ⊆ S(γ).
We prove that ϕ(γ) ⊇ S(γ), i.e., we show that (µ, u) ∈ S(γ) implies (µ, u) ∈ ϕ(γ).

Let (µ, u) ∈ S(γ). Let n ∈ N \ N and N∗ = N ∪ {n}. Let µ∗(n) = n and for each i ∈ N ,
µ∗(i) = µ(i). For each i ∈ N , let π∗(i, n) = ui = u∗i and for each (i, j) ∈ P (N), π∗(i, j) = π(i, j).
Let γ∗ = (N∗, π∗). Because the entrant n does not create any new blocking pairs, it follows that
(µ∗, u∗) ∈ S(γ∗) and µ∗ ∈ OM(γ∗). From the definition of π∗ and u∗, observe that every agent
i ∈ N can maintain his utility level u∗i by matching with the new agent n. Let (µ̃, ũ) ∈ S(γ∗). It is
well-known that if an agent is single at a stable outcome than at any stable outcome she will get
exactly her reservation value (e.g., Roth and Sotomayor, 1990, Lemma 8.5). Thus, since µ∗(n) = n,
u∗n = ũn = 0. Since (µ̃, ũ) ∈ S(γ∗), for each i ∈ N , ũi = ũi + ũn ≥ π∗(i, n) = u∗i . Note that the
inequality cannot be strict as it would contradict µ∗ ∈ OM(γ∗). Thus, we have shown that ũ = u∗,
i.e., (µ̃, u∗) ∈ S(γ∗).

By assumption, ϕ(γ∗) ⊆ S(γ∗). Thus, S(γ∗) ∩ ϕ(γ∗) 6= ∅, i.e., there exists (µ̃, u∗) ∈ S(γ∗) such
that (µ̃, u∗) ∈ ϕ(γ∗). Since (µ∗, u∗) ∈ F(γ∗), by Pareto indifference (µ∗, u∗) ∈ ϕ(γ∗). Note that
N ⊆ N∗ such that µ∗(N) = N , γ∗|N = γ, and (µ∗|N , u

∗
|N ) = (µ, u). By consistency, (µ∗|N , u

∗
|N ) ∈

ϕ(γ∗|N ). Thus, (µ, u) ∈ ϕ(γ).

4.2 Impossibilities and limitations

Recall that for two-sided assignment problems, the core is always non-empty. However, for one-
sided assignment problems, this need not be the case (see Example 1). The positive results centered
around consistency in the previous subsection were obtained when restricting attention to the class
of solvable one-sided assignment problems. Next, it is natural to ask if it is possible to obtain
consistency and nice “core properties” whenever possible for the entire class of one-sided assignment
problems. The following theorem and corollary shows some impossibilities.

Theorem 3. There exists no solution ϕ that coincides with the core whenever the core is nonempty
and that satisfies consistency.

Proof. Let ϕ be a consistent solution such that for each solvable one-sided assignment problem
γ ∈ Γ, ϕ(γ) = S(γ). Let N = {1, 2, 3, 4, 5}, π such that π(1, 2) = π(2, 3) = π(3, 4) = π(4, 5) =
π(1, 5) = 1, for all (i, j) ∈ P (N) \ {(1, 2), (2, 3), (3, 4), (4, 5), (1, 5)}, π(i, j) = 0, and γ = (N, π).
Note that for any µ ∈ M(γ), 2|C(µ)|+ |S(µ)| = |N | = 5. One can easily show that S(γ) = ∅ (the
proof is similar to the arguments used in Example 1).
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Case 1 : Let (µ, u) ∈ ϕ(γ) such that [|C(µ)| = 0 and |S(µ)| = 5] or [|C(µ)| = 1 and |S(µ)| = 3].

Hence, there exists {i, j} ∈ S(µ) such that j = i+ 1 (modulo 5). Thus, π(i, j) = 1. Let N ′ = {i, j}
and consider the subproblem γ|N ′ . Then, S(γ|N ′) = {(µ′, u′) | µ′(i) = j and u′ = (α, 1− α) for α ∈
[0, 1]} and (µ|N ′ , u|N ′) /∈ S(γ|N ′) (because ui = uj = 0). Since S(γ|N ′) 6= ∅, ϕ(γ|N ′) = S(γ|N ′).
Hence, in contradiction to ϕ being consistent, (µ|N ′ , u|N ′) /∈ ϕ(γ|N ′).

Case 2 : Let (µ, u) ∈ ϕ(γ) such that |C(µ)| = 2 and |S(µ)| = 1.

Without loss of generality, assume C(µ) = {(1, 2), (3, 4))} and S(µ) = {5}.

Step 1 : Let N ′ = {1, 2, 5} and consider the subproblem γ|N ′ . Then, S(γ|N ′) = {(µ′, u′), (µ̃, u′) |
µ′ = (2, 1, 5), µ̃ = (5, 2, 1), and u′ = (1, 0, 0)}. Since S(γ|N ′) 6= ∅, ϕ(γ|N ′) = S(γ|N ′).

If u1 6= 1, then in contradiction to ϕ being consistent, (µ|N ′ , u|N ′) /∈ ϕ(γ|N ′). Hence, u1 = 1.

Step 2 : Let N ′′ = {3, 4, 5} and consider the subproblem γ|N ′′ . Then, S(γ|N ′′) = {(µ′′, u′′), (µ̄, u′′) |
µ′′ = (4, 3, 5), µ̄ = (3, 5, 4) and u′′ = (0, 1, 0)}. Since S(γ|N ′′) 6= ∅, ϕ(γ|N ′′) = S(γ|N ′′).

If u4 6= 1, then in contradiction to ϕ being consistent, (µ|N ′′ , u|N ′′) /∈ ϕ(γ|N ′′). Hence, u4 = 1.

Step 3 : Let N∗ = {1, 2, 3, 4} and consider the subproblem γ|N∗ . Note that S(γ|N∗) 6= ∅ (e.g.,
(µ|N∗ , (0, 1, 1, 0)) ∈ S(γ|N∗)). Hence, ϕ(γ|N∗) = S(γ|N∗).

By consistency, (µ|N∗ , u|N∗) ∈ ϕ(γ|N∗). Recall that µ|N∗ = (2, 1, 4, 3), π(1, 2) + π(3, 4) = 2, and
by Steps 1 and 2, u1 = u4 = 1. But then, u2 = u3 = 0 and π(2, 3) = 1 imply that (2, 3) is a
blocking pair for (µ|N∗ , u|N∗); contradicting ϕ(γ|N∗) = S(γ|N∗).

Theorem 3 together with Theorems 1 and 2 implies the following two impossibility results.

Corollary 1.

(a) There exists no solution ϕ that is subsolution of the core whenever the core is nonempty and
that satisfies indifference with respect to dummy agents, continuity, and consistency.
(b) There exists no solution ϕ that is subsolution of the core whenever the core is nonempty and
that satisfies Pareto indifference and consistency.

Sasaki (1995) provides the following two characterizations of the core for two-sided assignment
problems (similarly as for Sasaki’s, 1995, Theorem 1, we have corrected his Theorem 2 by adding
indifference with respect to dummy agents.8).

Sasaki’s (1995), Theorem 2. On the class of two-sided assignment problems, the core is the
unique solution satisfying individual rationality, couple rationality, Pareto optimality, indifference
with respect to dummy agents, continuity, consistency, and weak pairwise-monotonicity.

Sasaki’s (1995) Theorem 4. On the class of two-sided assignment problems, the core is the unique
solution satisfying individual rationality, couple rationality, Pareto optimality, Pareto indifference,
consistency, and weak pairwise-monotonicity.

8Recall that solution ϕ̃  S as defined in Remark 3 satisfies all properties stated in Sasaki’s (1995) Theorem 2.
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On the class of two-sided assignment problems, Sasaki (1995) proves his characterizations of
the core as follows.

Step 1. Sasaki (1995, Propositions 3 and 4) proves that the core satisfies all properties used in
both characterizations

Step 2. Sasaki (1995, Proof of Theorems 2 and 4) shows that a solution that satisfies all properties
as stated in each of the characterizations is a subsolution of the core.

Step 3. Finally, using Sasaki (1995, Theorems 1 and 3), the characterizations follow.

Note that with Proposition 1 and Theorems 1 and 2 we have established Sasaki’s Steps 1 and 3
for solvable one-sided assignment problems. Observe, however, that in these steps weak pairwise-
monotonicity has not been actively used. A close look at the proofs related to Sasaki’s proof Step 2
reveals that this is where weak pairwise-monotonicity is heavily used. Even though the core is
a weakly pairwise-monotonic solution on the class of solvable one-sided assignment problems, the
strength of weak pairwise-monotonicity as a property on that class of assignment problems turns
out to be quite different from its strength on the class of two-sided assignment problems. The main
difference is that in Sasaki’s two-sided assignment model any pairwise-monotonic transformation
of a characteristic function (see Definition 8) leads to another two-sided assignment problem and
therefore to solvability by default. However, for solvable one-sided assignment problems, a small
pairwise-monotonic transformation can transform a solvable one-sided assignment problem into a
one-sided assignment problem with an empty core. In other words, for problems on the boundary
of the class of solvable one-sided assignment problems, we are not able to use weak pairwise-
monotonicity in the same way as Sasaki (1995) does because it would lead us outside the class of
solvable one-sided assignment problems. The validity of Sasaki’s (1995) characterizations of the
core on the class of solvable one-sided assignment problems is currently an open problem.

We conclude with an illustrative example that shows that for the class of solvable one-sided
assignment problems, increasing the value of a couple (i, j) might change the position of a one-
sided assignment problem within the class of one-sided assignment problems. In particular, the
solvable one-sided assignment problem γ′ is one on the boundary of the class of solvable one-sided
assignment problems for which a direct adaptation of Sasaki’s proof Step 2 would not work (for
instance, the pairwise-monotonic transformation from γ′ to γ∗ transforms a solvable one-sided
assignment problem in one with an empty core).

Example 3. Changes of the core when the value of a couple changes.

Let N = {1, 2, 3} and ε ∈ (0, 1). Consider the following characteristic functions: π such that
π(1, 2) = 2, π(1, 3) = 1, π(2, 3) = 1 − ε, π′ such that π′(1, 2) = 2, π′(1, 3) = 1, π′(2, 3) = 1, and
π∗ such that π∗(1, 2) = 2, π∗(1, 3) = 1, π∗(2, 3) = 1 + ε. Then for the corresponding one-sided
assignment problems γ = (N, π), γ′ = (N, π′), and γ∗ = (N, π∗), we have S(γ) = {(µ, u) | µ =
(2, 1, 3) and u = (1 + α, 1 − α, 0) for α ∈ [0, ε]}; S(γ′) = {(µ, u) | µ = (2, 1, 3) and u = (1, 1, 0)};
and S(γ∗) = ∅. �
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For the solvable one-sided assignment problem γ in Example 3 there is a unique optimal match-
ing and an infinite number of payoff vectors associated with it; so |S(γ)| =∞. Furthermore, these
properties are maintained for small changes of the characteristic function. Without introducing
the formal definitions here, we state that the one-sided assignment problem γ is in the interior of
the set of solvable one-sided assignment problems. More generally, one can show that a one-sided
assignment problem is in the interior of the set of solvable one-sided assignment problems whenever
the core exhibits an infinite set of payoff vectors.

For the solvable one-sided assignment problem γ′ in Example 3 there is a unique optimal match-
ing and a unique payoff vector; so |S(γ′)| = 1. Furthermore, small changes of the characteristic
function (e.g., as represented by γ or γ∗ for small ε), completely change the core: either from a
finite set to an infinite set (if γ′ is changed to γ) or from a finite set to an empty set (if γ′ is changed
to γ∗). More generally, one can show that a one-sided assignment problem is on the boundary of
the set of solvable one-sided assignment problems whenever the core exhibits a unique payoff vector
(and thus, a finite outcome set).

Any one-sided assignment problem that is not solvable, e.g., γ∗ in Example 3, is clearly outside
of the set of solvable one-sided assignment problems.

We conjecture, that if Sasaki’s (1995, Theorems 2 and 4) characterizations hold on the class of
solvable one-sided assignment problems, the proof techniques for the interior and the boundary of
the class differ.

A Appendix

We slightly modify the model as introduced in Section 2 by extending the definition of a characteris-
tic function π to allow for variable reservation values, i.e., for any N ∈ N a function π : P (N)→ R+

is a characteristic function for N . In particular, we now do not require that for each agent i ∈ N ,
the reservation value π(i, i) is fixed to equal 0.

Theorem 4. On the class of solvable one-sided problems with nonnegative reservation values that
are allowed to vary, if ϕ is a subsolution of the core satisfying continuity and consistency, then ϕ

coincides with the core.

Proof. Let γ ∈ ΓN be a solvable problem. Then, since ϕ is a subsolution of the core, ϕ(γ) ⊆ S(γ).
We prove that ϕ(γ) ⊇ S(γ), i.e., we show that (µ, u) ∈ S(γ) implies (µ, u) ∈ ϕ(γ). The proof
strategy is similar to Theorem 1.

Step 1 : Let (µ, u) ∈ S(γ). Let n ∈ N\N and N∗ = N ∪{n}. We define µ∗ such that for each i ∈ N ,
µ∗(i) = µ(i) and µ∗(n) = n. For each i ∈ N , let π∗(i, n) = ui = u∗i and for each (i, j) ∈ P (N),
π∗(i, j) = π(i, j). Let γ∗ = (N∗, π∗). Because the entrant n does not create any new blocking pairs,
it follows that (µ∗, u∗) ∈ S(γ∗).
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Step 2 : For each (i, j) ∈ C(µ∗), πε(i, j) = π∗(i, j) + ε, uεi = u∗i + ε
2 , and uεj = u∗j + ε

2 , and for
each i ∈ S(µ∗), πε(i, j) = uεi = ε

2 .9 For each (i, j) ∈ P (N) \ C(µ∗), πε(i, j) = π∗(i, j). Let
γε = (N∗, πε). Because the change in agents’ values does not create any new blocking pairs, it
follows that (µ∗, uε) ∈ S(γε).

Claim 1 : µ∗ is the unique optimal matching for γε, i.e, OM(γε) = {µ∗}.

Let µ′ ∈M(N∗) with µ′ 6= µ∗. Since (µ∗, u∗) ∈ S(γ∗), µ∗ ∈ OM(γ∗). By construction,∑
(i,j)∈µ∗ π

ε(i, j) =
∑

(i,j)∈µ∗ π
∗(i, j) + |C(µ∗)| ε+ |S(µ∗)| ε2 and (7)∑

(i,j)∈µ′ π
ε(i, j) =

∑
(i,j)∈µ′ π

∗(i, j) + |C(µ∗) ∩ C(µ′)| ε+ |S(µ∗) ∩ S(µ′)| ε2 . (8)

Observe that

|C(µ∗) ∩ C(µ′)| ≤ |C(µ∗)| and |S(µ∗) ∩ S(µ′)| ≤ |S(µ∗)|. (9)

Since the number of agents |N∗| at both µ′ and µ∗ is invariant, if |S(µ∗) ∩ S(µ′)| = |S(µ∗)| and
|C(µ∗) ∩ C(µ′)| = |C(µ∗)|, then S(µ′) = S(µ∗) and C(µ′) = C(µ∗). Consequently, µ′ = µ∗, a
contradiction. Thus, at least one of the inequalities in (9) is strict, which taken together with (7)
and (8) yields

∑
(i,j)∈µ∗ π

ε(i, j) >
∑

(i,j)∈µ′ π
ε(i, j). Hence, OM(γε) = {µ∗}.

By Claim 1, µ∗ is the unique optimal matching for γε.

Claim 2 : Let (µ∗, ũ) ∈ S(γε). Then, for each i ∈ N , |ũi − uεi | ≤ ε
2 .

For each i ∈ S(µ∗), ũi = uεi = 0. Hence, |ũi − uεi | = 0. Let (i, j) ∈ C(µ∗).

Case 1 : ũi − uεi < − ε
2

Then ũi < uεi − ε
2 = u∗i = ui. By construction, for each i ∈ N , π∗(i, n) = ui. Thus, (i, n) forms a

blocking pair, and (µ∗, ũ) /∈ S(γε).

Case 2 : ũi − uεi > ε
2

Since µ∗ ∈ OM(γε), for any (i, j) ∈ C(µ∗), ũi + ũj = uεi + uεj . Then ũi − uεi = uεj − ũj > ε
2 . Thus,

ũj − uεj < − ε
2 and similarly as in Case 1, it follows that (µ∗, ũ) /∈ S(γε).

Step 3 : By assumption, ϕ(γε) ⊆ S(γε). Thus, S(γε) ∩ ϕ(γε) 6= ∅, i.e., there exists (µ∗, ū) ∈
S(γε)∩ϕ(γε). By Claim 2, for each i ∈ N , |ūi−uεi | ≤ ε

2 . Letting ε→ 0, for each i ∈ N , |ūi−uεi | → 0
and uεi → u∗i . By continuity, (µ∗, u∗) ∈ ϕ(γ∗). Note that N ⊆ N∗ such that µ∗(N) = N , γ∗|N = γ,
and (µ∗|N , u

∗
|N ) = (µ, u). By consistency, (µ∗|N , u

∗
|N ) ∈ ϕ(γ∗|N ). Hence, (µ, u) ∈ ϕ(γ).

9Note that we increase the reservation values of single agents at µ∗ – this is only possible if we change the
assignment model to allow reservation values to vary.
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