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Abstract

Previous research suggests that the random coefficients logit is a highly flexible model that

overcomes the problems of the homogeneous logit by allowing for differences in tastes across

individuals. The purpose of this paper is to show that this is not true. We prove that the

random coefficients logit imposes restrictions on individual choice behavior that limit the types

of substitution patterns that can be found through empirical analysis, and we raise fundamental

questions about when the model can be used to recover individuals’ preferences from their

observed choices.

Part of the misunderstanding about the random coefficients logit can be attributed to the lack

of cross-level inference in previous research. To overcome this deficiency, we design several Monte

Carlo experiments to show what the model predicts at both the individual and the population

levels. These experiments show that the random coefficients logit leads a researcher to very

different conclusions about individuals’ tastes depending on how alternatives are presented in

the choice set. In turn, these biased parameter estimates affect counterfactual predictions. In

one experiment, the market share predictions for a given alternative in a given choice set range

between 17% and 83% depending on how the alternatives are displayed both in the data used

for estimation and in the counterfactual scenario under consideration. This occurs even though

the market shares observed in the data are always about 50% regardless of the display.

Random Coefficients Logit, Independence from Irrelevant Alternatives, IIA, Rational Choice Theory,

Similarity Critique, Heterogeneity, Ecological Fallacy, Cross-level Inference
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1 Introduction

Consider a situation in which the same choice set is presented three different ways to a group of

decision makers. On the first occasion, the choice set includes two alternatives. Denote this set

as {A,B}. On the second occasion, a duplicate for alternative A is added to the choice set, so the

set becomes {A,A,B}. On the third occasion, a duplicate for alternative B is added to the original

set, so the choice set becomes {A,B,B}. Suppose 60 out of 100 individuals choose alternative A

on all three occasions. What do these choices reveal about the individuals’ preferences? Observing

these data, it would seem reasonable to infer that the individuals’ preferences do not depend on

how the alternatives are displayed in the choice set. In other words, the individuals have rational

preferences. Surprisingly, estimating a random coefficients logit on these data would not lead us to

this conclusion.

The purpose of this paper to show that the random coefficients logit is a less flexible model than

previous research suggests. We prove that the random coefficients logit imposes restrictions on

individual choice behavior that limit the types of substitution patterns that can be found through

empirical analysis. It implies that overall demand for an alternative must rise if a perfect substitute

for it is added to the choice set. This means that a group of individuals cannot behave rationally

across different presentations of a choice set. It also imposes disproportionate substitution patterns

among market shares rather than recovers them from the data. To help explain our analytical

results, we discuss why the population correlations found in the model do not overcome the problems

associated with IIA, as previous research suggests [e.g. Berry et al., 1995, Nevo, 2001, Train, 2009],

and why the McFadden and Train [2000] theorem has limited implications for empirical analysis.

Part of the misunderstanding about the random coefficients logit can be attributed to the lack of

cross-level inference1 in previous research. To overcome this deficiency, we design several Monte

Carlo experiments to show what the model predicts both about individual and population choice

behavior. In the first two experiments, we explore what the model predicts when it is estimated

on data in which individuals behave rationally, as they are presumed to actually behave. We show

that the random coefficients logit results in biased parameter estimates that lead us to very different

conclusions about individual preferences depending on how alternatives are presented in the choice

set. For example, in one experiment, we infer that an individual would need a 0.26 GHz increase

in processor speed to compensate for a 1 lb increase in weight if the model is estimated on data in
1A researcher conducts cross-level inference by estimating and interpreting quantities at different levels of aggre-

gation. This type of analysis is commonly of interest in the social sciences.
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which choices are displayed one way, whereas the same individual would need 2.36 GHz increase in

processor speed if they are displayed another. This occurs even though the individual has rational

preferences and is observed to make consistent choices across the two presentations.

We show that this finding has implications for policy analysis too, as the bias in parameter estimates

compounds upon itself when evaluating counterfactual scenarios. In one experiment, the market

share predictions for a given alternative in a given choice set range between 17% and 83% depending

on how the alternatives are displayed in the data used for estimation and in the counterfactual

scenario under consideration. This occurs even though the market share observed in the data is

always about 50% regardless of how the alternatives are displayed.

We conclude by showing what the random coefficients logit leads us to believe when it is estimated

on data in which individuals behave with IIA. Paradoxically, we infer that individuals’ preferences

do not change across presentations in this case. This occurs even though their observed choices

suggest that they do.

2 The Similarity Critique

2.1 Individual Substitution Patterns

Consider the example proposed by Steenburgh [2008] to recall the long-standing argument against

models with IIA. An individual faces a choice between two MacBook computers:

Weight Processor Speed

MacBook A 3 lbs 2.0 GHz

MacBook B 6 lbs 3.0 GHz

MacBook A is the lighter alternative, but it runs at a slower speed; MacBook B is faster, but heavier.

Assume the individual chooses MacBook A with probability 3/5. Now suppose a third alternative,

MacBook B′, is added to the choice set. MacBook B′ is identical to MacBook B, with the prime

being used simply for clarity in this example. It weighs 6 lbs and runs at 3.0 GHz.2 Thus, the

individual would be equally likely to choose either MacBook B or MacBook B′ if she were asked
2We will use perfect substitutes throughout the paper because it is clear what the choice probabilities should

exactly be in this case. Nevertheless, the basic arguments do not depend on the alternatives being identical and would
carry over to close substitutes too.
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to choose between just the two of them. What would happen if the individual is presented with a

choice among all three alternatives?

The original argument made by Debreu [1960] follows from rational choice theory, which imposes an

element of consistency on individual preferences and choice behavior. Rationality presumes that an

individual’s preference between any two alternatives does not depend on how they are presented in

the choice set. For this to occur, MacBook A would need to be chosen with probability 3/5, MacBook

B with probability 1/5, and MacBook B′ with probability 1/5 if the perfect substitute is added to the

choice set. This substitution pattern is consistent with rational choice theory because the individual

prefers the light MacBook regardless of whether the choice set is displayed as {A,B} or as {A, B,

B′}.

The objection to models with IIA is that they do not allow rational substitution to occur. By

definition, a model with IIA requires the ratio of any two choice probabilities to remain the same

no matter what other alternatives are included in the choice set. If the individual behaves with IIA,

MacBook A would be chosen with probability 3/7, MacBook B with probability 2/7, and MacBook

B′ with probability 2/7. The probability that a fast MacBook is chosen would rise from 2/5 in the

original set to 4/7 in the set that contains a perfect substitute. This new substitution pattern,

however, is at odds with rational choice theory because the individual’s preference between a light

and a fast MacBook now depends on how the alternatives are displayed. The individual prefers

the light MacBook when presented with the choice set {A, B}, yet prefers the fast MacBook when

presented with the choice set {A, B, B′}. Similar arguments have been made by Savage [Luce and

Suppes, 1965], Tversky [1972], and McFadden [1974], among others.

While it is commonly understood that IIA is an undesirable property and we want to use models that

do not possess it, it seems to be overlooked that simply breaking IIA is not sufficient to ensure that

rational substitution occurs. To clarify this idea, consider the following example. Suppose a third

model implies that MacBook A would be chosen with probability 1/5, MacBook B with probability

2/5, and MacBook B′ with probability 2/5 when MacBook B′ is added to the choice set. This new

model clearly breaks IIA. But again, the individual prefers the light MacBook when presented with

the choice set {A, B}, yet prefers the fast MacBook when presented with the choice set {A, B,

B′}. In fact, this model is even more objectionable than the one with IIA because an even smaller

proportion of the entrant’s choice probability (0% as opposed to 40%) is drawn from the perfect

substitute, and the overall probability that a faster MacBook is chosen rises by an even greater

amount (an increase from 2/5 to 4/5 as opposed to an increase from 2/5 to 4/7) when the perfect
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substitute is added to the set.

In short, the goal in developing choice models should not be just to break IIA. Rather, it should be

to allow rational substitution to occur.

A few additional points are worth noting. First, it is common to discuss the substitution patterns

implied by a model rather than the choice probabilities themselves. This is for convenience, as the

substitution patterns merely represent how the choice probabilities change across the two choice

sets. We will use the following terms to describe the two aforementioned patterns: An individual

exhibits rational substitution if 100% of the entrant’s choice probability is drawn from its perfect

substitute and 0% is drawn from the other alternatives. Although they have not previously been

named, it is well accepted that these ratios represent the desired substitution patterns when a

perfect substitute is added to the choice set. An individual exhibits proportional substitution if the

entrant’s choice probability is drawn from each of the original alternatives in proportion to their

choice probabilities. In the previous example, when the individual behaves with IIA and exhibits

proportional substitution, 60% of the entrant’s choice probability is drawn from MacBook A and

40% is drawn from MacBook B.

Second, although we refer to the desired substitution patterns as rational, there is little disagreement

between rational and behavioral economists on this point. For example, in the behavioral economics

literature, Tversky [1972] paraphrases the Beethoven / Debussy example proposed in Debreu [1960]

to motivate the elimination-by-aspects choice model. Likewise, in the microeconomics literature, the

rational substitution patterns are often described as being either more intuitive or more realistic.

2.2 Population Substitution Patterns

2.2.1 Rational Substitution

Prior research suggests that the random coefficients logit is a highly flexible model that overcomes

the problems of the logit because it allows for differences in tastes across individuals [e.g. Berry

et al., 1995, Nevo, 2001, Train, 2009]. It has been suggested that the random coefficients logit allows

more realistic substitution patterns to be found among market shares, and some prior research even

conjectures that the random coefficients logit can recover any substitution pattern that exists in the

data [e.g. Train, 1999, Nevo, 2001, Train, 2009]. Although the random coefficients logit implies that

individuals behave with IIA, perhaps this is not a concern so long as the researcher’s interest centers

around only the population’s choice behavior.
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We show that the random coefficients logit model is less flexible than previous research suggests.

First, it implies that overall demand for an alternative must rise if a perfect substitute for it is

added to the choice set. Demand rises for every individual in the population, and therefore it must

rise for the population as a whole. This means that a population of decision makers cannot exhibit

the desired, rational choice behavior even if tastes do vary across individuals. Second, the random

coefficients logit implies that disproportionately greater substitution must occur regardless of how

individuals truly behave in the data. This means that the random coefficients logit is not recovering

more realistic substitution patterns from the observed data; quite to the contrary, it is imposing

them.

The following example helps illustrate this point. Suppose there are two types of individuals in

the population, Salespeople and Scientists, and the proportion of individuals of each type is 1/2.

Both Salespeople and Scientists prefer MacBooks that weigh less and that run faster. Nevertheless,

Salespeople value lighter weights more than Scientists do, and Scientists value faster processor speeds

more than Salespeople do. Suppose that when presented with a choice between MacBooks A and

B, a Salesperson chooses MacBook A with probability 2/3 whereas a Scientist chooses MacBook A

with probability 1/3.

The market share of each MacBook is a property of the population. It can be thought of as

the probability that an individual chosen at random from the population chooses a given Mac-

Book. Thus, the market share of MacBook A is Pr {A} = Pr {A|Saleperson}Pr {Saleperson} +

Pr {A|Scientist}Pr {Scientist}. Taken together, these assumptions imply the following choice prob-

abilities:

Salespeople Scientists Population

MacBook A 2/3 1/3 1/2

MacBook B 1/3 2/3 1/2

Again suppose a third alternative identical to MacBook B, weighing 6.0 lbs and running at 3.0 GHz,

is added to the choice set. If the individuals were to exhibit rational substitution, the following

choice probabilities and market shares would occur:

Salespeople Scientists Population

MacBook A 2/3 1/3 1/2

MacBook B 1/6 1/3 1/4

MacBook B′ 1/6 1/3 1/4
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Yet, if both Salespeople and Scientists were to behave with IIA, the following would occur:

Salespeople Scientists Population

MacBook A 1/2 1/5 14/40

MacBook B 1/4 2/5 13/40

MacBook B′ 1/4 2/5 13/40

Strictly speaking, it should be clear that the market shares do not possess IIA. If they did, the

new market shares would be exactly 1/3 for MacBook A, 1/3 for MacBook B, and 1/3 for MacBook

B′. Nevertheless, it should also be clear that allowing for differences in tastes does not resolve

the problems created by individuals behaving with IIA. The population does not behave rationally

because the market share of the faster MacBook increases from from 1/2 in the original set to 13/20

(or 65%) in the set with a perfect substitute. Expressed in terms of substitution patterns, only 54%

of the demand for the entrant is drawn from its perfect substitute, whereas we would expect 100%

to be drawn.

The following theorem asserts that this is true in general:

Theorem 1. If individuals behave with IIA, overall demand for an alternative must increase if a

perfect substitute for it is added to the choice set. This occurs for every individual in the population,

and therefore occurs for the population as a whole, regardless of whether individuals’ tastes are

different.

Proof. It suffices to consider a choice between two alternatives. Suppose individual n chooses one

alternative with probability Pn and a composite of other alternatives with probability (1− Pn).

Make no assumptions about the individuals’ tastes, so the Pn can vary across individuals.

Suppose a perfect substitute for the first alternative is added to the choice set. Since individuals

behave with IIA, the new choice probabilities satisfy knPn + knPn + kn (1− Pn) = 1, where kn is a

constant that rescales the original choice probabilities. This implies kn = 1/(1+Pn).

An individual is more likely to pick the alternative with a perfect substitute in the expanded choice

set if 2knPn > Pn. This occurs if Pn < 1, which is obviously true.

Since every individual is more likely to choose the alternative with a perfect substitute, the market

share of that alternative must increase too. 1
N

∑
∀n

2knPn > 1
N

∑
∀n
Pn
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At first blush, this theorem seems to be at odds with Theorem 1 of McFadden and Train [2000,

p. 451], which shows that a mixed logit can approximate any random utility model to any desired

degree of accuracy. As will be shown in section 3, however, the theorem in McFadden and Train has

more limited implications than previous research suggests.

2.2.2 Disproportionately Greater Substitution

Even though the population does not exhibit rational substitution in the example, it is interesting

to note that a disproportionately greater percentage of the entrant’s market share is drawn from its

pre-existing substitute. We may wonder whether this is always the case with the random coefficients

logit. If so, observing this pattern in empirical analysis is not evidence of the random coefficients

logit’s ability to recover more realistic substitution patterns that exist in the data. The following

theorem asserts that this is true in general:

Theorem 2. Consider a population of decision makers who behave with IIA and whose tastes vary

across individuals. An new alternative must draw a greater proportion of its market share from its

perfect substitute, even though each individual in the population exhibits proportional substitution.

Proof. It suffices to consider a choice between two alternatives. Suppose individual n chooses one

alternative with probability Pn and a composite of the other alternatives with probability (1−Pn).

Make no assumptions about the individuals’ tastes, so the Pn can vary across individuals.

Suppose a perfect substitute for the first alternative is added to the choice set. Since individuals

behave with IIA, the choice probability of the first alternative changes by Pn− knPn = (1− kn)Pn,

where kn = 1/ (1 + Pn) as before. (IIA implies that each individual exhibits proportional substitu-

tion, so for each individual the proportion of the entrant’s choice probability that is drawn from its

perfect substitute is (1− kn)Pn/knPn = Pn.)

The market share of the first good in the original choice set is S = 1
N

∑
∀n
Pn, the change in its

market share between choice sets is ∆ = 1
N

∑
∀n

(1− kn)Pn, and the market share of each perfect

substitute in the expanded choice set is S′ = 1
N

∑
∀n
knPn. We want to show that the market share

of the entrant is disproportionately drawn from its perfect substitute: ∆/S′ > S, which occurs if∑
∀n

(knPn)Pn >
(∑
∀n
knPn

)(
1
N

∑
∀n
Pn

)
.

If we order the individuals such that P1 ≥ P2 ≥ . . . ≥ Pn, then k1P1 ≥ k2P2 ≥ . . . ≥ knPn. Thus,

Chebyshev’s sum inequality implies that
∑
∀n

(knPn)Pn ≥
(∑
∀n
knPn

)(
1
N

∑
∀n
Pn

)
.
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If the population has heterogeneous tastes, such that P1 > Pn, then
∑
∀n

(knPn)Pn >
(∑
∀n
knPn

)(
1
N

∑
∀n
Pn

)
,

which completes the proof.

Notice too, however, that if the population has homogeneous tastes, such that P1 = P2 = . . . =

Pn = P as the logit model suggests, then
∑
∀n

(knPn)Pn =
(∑
∀n
knPn

)(
1
N

∑
∀n
Pn

)
, which implies that

the population exhibits proportional substitution because 1
N

∑
∀n
Pn = P .

The proof can be understood intuitively as follows: knPn is the probability that individual n chooses

the entrant, and Pn is the proportion of this probability drawn from the perfect substitute. Thus,

the individuals who are most likely to choose the entrant are also the individuals who draw the

greatest proportion of demand from the perfect substitute. Chebyshev’s sum inequality states that

the demand drawn from the perfect substitute under this arrangement,
∑
∀n

(knPn)Pn, is at least as

great as the demand that would have been drawn from the perfect substitute if every individual in

the population were to substitute away by the average amount,
(∑
∀n
knPn

)(
1
N

∑
∀n
Pn

)
.

Returning to the example, suppose the population consisted of one hundred Salespeople and one

hundred Scientists. The demand for MacBook B′ would be (100 · 1/4) + (100 · 2/5) = 65 units in the

expanded choice set. Of this demand, (100 · 1/4) (1/3) + (100 · 2/5) (2/3) = 35 units would be drawn

from MacBook B. This is greater than what would have occurred if the demand for MacBook B′

had been drawn in proportion to the original market shares, which would have been 65 (1/2) = 32.5

units. This occurs because Scientists are more likely to choose the entrant than Salespeople (40

units vs 25 units) and a greater proportion of the Scientists’ demand is drawn from the pre-existing

perfect substitute (2/3 vs 1/3). But obviously, not all of the demand for MacBook B′ has been drawn

from MacBook B; only 35/65 ≈ 54% it has been.

From one perspective, Theorem 2 seems to suggest that the random coefficients logit represents a

step in the right direction. We may object to the fact that each individual exhibits proportional

substitution, but the population as a whole is guaranteed to substitute among the alternatives in a

way that is more in line with our expectations about how it should behave. Perhaps the model is

adequate if interest centers around only the population’s choice behavior. We will take up this issue

through Monte Carlo simulations in section 4.

Nevertheless, as will be discussed further in the next section, Theorem 2 is a bit unsettling in its

resemblance to the ecological fallacy, which describes situations in which the behavior of an individual

and the behavior of a population do not correspond [Robinson, 1950]. The theorem implies that

the substitution behavior of each individual must differ from that of the population. Furthermore,

9



prior research suggests that the flexibility of the random coefficients logit model allows it to capture

more realistic substitution patterns that occur in the data. As it turns out, the opposite is true.

The random coefficients logit imposes disproportionately greater substitution on the population

regardless of the observed choice behavior. These patterns are a mathematical consequence of the

model.

3 The Random Coefficient Logit

In this section, we derive the standard random coefficients logit model, draw a parallel with the

earlier work of Robinson [1950] to discuss the relationship between the population correlations and

the individual choice behavior, and discuss the implications of the McFadden and Train [2000]

theorem. The broader purpose is to help explain why prior work has come to different conclusions

about the substitution patterns of the random coefficients logit.

3.1 The Model

The random coefficients logit generalizes the homogeneous logit by allowing tastes to vary across

individuals. The term “random” coefficients is misleading in the sense that it does not imply that an

individual’s tastes randomly fluctuate across occasions. Nor does it imply anything about parameter

uncertainty.3 Rather, the term simply implies that tastes are modeled as varying across individuals

in the population.

The first step in building a random coefficients logit is to define the relationship between an in-

dividual’s observed choices and his or her preferences. An individual’s preferences are represented

with an additively separable utility function that is decomposed into two components. The utility

of individual n on occasion t from alternative j is specified as

untj = xtjβn + εntj

εntj ∼ EV (I) for n = 1, . . . , N ; t = 1, . . . , T ; j = 1, . . . , J
(1)

The first component, xtjβn, is referred to as the observed utility. It is a function of the observed

attributes of each alternative on each occasion, xtj , and the individual’s tastes for those attributes,
3The terms “random coefficients” and “random effects” are inconsistently used in the literature and often lead to

confusion. Gelman and Hill [2007, p. 245] identify five different uses of the terms random and fixed effects and suggest
dropping these terms in favor of modeled vs unmodeled.
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βn. The second component, εntj , is referred to as the unobserved utility. It is a random variable

that accounts for factors other than the observed attributes that affect the individual’s utility.4

Central to the present discussion, since the unobserved utilities are assumed to be independent and

identically distributed across alternatives according to a type-I extreme value distribution, they are

uncorrelated at the individual level of the model.

Cov (εntj , εntk) = 0 ∀j 6= k (2)

The link between the individual’s utility and observed choice behavior is established by assuming that

the individual chooses the alternative that provides the greatest utility. The decision rule governing

his or her behavior is to choose alternative j on a given occasion if and only if untj > untk ∀k 6= j.

Conditional on the observed attributes and the individual’s tastes, the probability that individual n

chooses alternative j on occasion t is

p (yntj = 1 | xt, βn) = Pr {εntk − εntj < xtjβn − xtkβn ∀k 6= j | xt, βn}

=
exp (xtjβn)∑
∀k

exp (xtkβn)
(3)

where yntj is an indicator variable that takes the value 1 if the alternative is chosen and the value

zero otherwise. These are the well-known logit choice probabilities, which imply that each individual

behaves with IIA.

Putting these terms together, we can construct the multinomial logit probability mass function

p (ynt | xt, βn) =

 exp (xt1βn)∑
∀k

exp (xtkβn)

ynt1

∗ · · · ∗

 exp (xtJβn)∑
∀k

exp (xtkβn)

yntJ

where ynt is a vector whose elements are yntj . This is the basic building block of all subsequent

models, so to simplify notation from this point forward we will write

ynt ∼MNL (xtβn) for n = 1, . . . N ; t = 1, . . . T (4)

when the observed choices are generated according to this distribution.
4Implicit in this specification, the unobserved utilities are assumed to be independent of the observed attributes,

εntj⊥xtk ∀j, k.
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The next step is to model how tastes vary across individuals in the population. In the case of a ran-

dom coefficient logit, the tastes are commonly assumed to follow a multivariate normal distribution

and the model is specified as

ynt ∼MNL (xtβn) for n = 1, . . . N ; t = 1, . . . T

βn ∼MVN (θ,Σ) for n = 1, . . . N
(5)

The same model can be written in mixed-effects form by expressing the individuals’ tastes in terms

of differences from the mean tastes in the population. Defining δn ≡ βn − θ, the model becomes

ynt ∼MNL (xt (θ + δn)) for n = 1, . . . N ; t = 1, . . . T

δn ∼MVN (0,Σ) for n = 1, . . . N
(6)

The mixed-effects form is popular in the social sciences and can be useful for analysis [Gelman and

Hill, 2007, pp. 264-265], but it should be clear that equations (5) and (6) are equivalent expressions.

In contrast to the random coefficients logit, the homogeneous logit assumes that the tastes of every

individual in the population are the same. The homogeneous logit requires a single level and is

written as

ynt ∼MNL (xtβ) for n = 1, . . . N ; t = 1, . . . T (7)

It is analogous to classical regression model in the sense that the observed choices can be pooled

across individuals when estimating tastes.

3.2 Population (Ecological) Correlations and Individual Choice Behavior

Prior research [e.g. Berry et al., 1995, Nevo, 2001, Train, 2009] suggests that the problem with the

homogeneous logit is that the random component of utility, which includes just ε, is both additively

separable from the observed utility and is independent and identically distributed. It argues that

the lack of correlation gives rise to the IIA property and its restrictive substitution patterns, whereas

the random coefficients logit overcomes this issue because it possesses a random component of utility

that is no longer independent of the observed product attributes and can change depending on the

similarity of the alternatives in the choice set. The purpose of this section is to make clear that

these population correlations do not imply that the problems with IIA have been solved.
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Train [2009, p. 139] shows that population (ecological) correlations exist in the random coefficients

logit as follows. Beginning with the mixed effects specification in equation (6), a composite compo-

nent of random utility is formed by defining ηntj ≡ xtjδn + εntj . This quantity treats the variation

in tastes across individuals as being random in addition to the unobserved utility. Correlations

between different alternatives exist in the composite random utility, as the covariance between ηntj

and ηntk is

σ·tjk = Cov (ηntj , ηntk)

= x
′

tjΣxtk ∀j 6= k (8)

σ·tjk is a function of Σ because it is determined by integrating over the distribution of tastes in

the population, and therefore it is a property of the population as opposed to a property of an

individual. Correlations between different alternatives exist even if Σ is a diagonal matrix, which it

is often assumed to be.

Although correlations now exist at the population level of the model, this does not mean that these

are the right correlations. The ecological fallacy should make us cautious about assuming that

these correlations correct any problems at the individual-level. Robinson [1950], the study that

made this fallacy well known, shows that individual- and population-level correlations can bear

little resemblance to one another. An analogous relationship exists here, as the random utilities are

correlated at the population-level of the model (equation 8), yet are uncorrelated by assumption

at the individual-level (equation 2).5 So why should we believe that the presence of population

correlations solves the problems with IIA, an individual-level property of the model?

One reason is that some prior research wrongly determines the individual choice probabilities. For

example, Train [2009, Ch. 6] asserts that the individual choice probabilities in a random coefficient

logit would be

Pntj =
ˆ  exp (xtjβ)∑

∀k
exp (xtkβ)

MVN (β | θ,Σ) dβ (9)

5In contrast to these assumptions, a recent working paper by Dotson et al. [2009] allows the random component
of utility to depend on the observed attributes at the individual-level of the model. This may be a useful direction
for future research.

13



for the model in equation (5). It makes the argument (pp. 137-139) that the individual choice

probabilities in equation (3) are conditional on βn, which is unobserved by the researcher. If the

researcher observed βn, then the choice probabilities of the random coefficients logit would be same

as those of the homogeneous logit, since the εntj are iid extreme value. But the researcher does not

know βn, and thus must integrate over all possible values that it may take.

This argument, however, is incorrect because it confuses the concept of parameter uncertainty with

the concept of taste variation. The quantity in equation (9) is not the probability that individual

n chooses alternative j on occasion t. While it is true that the researcher does not observe any

individual decision maker’s tastes (βn) in the random coefficients logit, it is also true that the

researcher does not observe any individual’s tastes in the homogeneous logit. If this argument

were true, the homogeneous logit would not possess IIA either. In fact, not all of the parameter

uncertainty has been accounted in equation (9) because the probability is still conditional on the

population level parameters θ and Σ. As it turns out, the individual choice probability is correctly

stated in equation (3), whereas the quantity in equation (9) is akin to a market share.

Another reason for this belief is that many studies never quantify the individual choice probabilities

because they either cannot or do not conduct cross-level inference. For example, Berry et al. [1995]

and Nevo [2001] proceed by estimating the random coefficients logit on market share data, which

makes it impossible to draw individual-level inference. But even when individual-level data are used

to estimate the model, the individual-level parameters are often treated as nuisance variables and

disregarded. For example, Revelt and Train [1998] and Brownstone and Train [1999] proceed by

evaluating the likelihood function

L (θ,Σ) =
ˆ [ N∏

n=1

T∏
t=1

MNL (xntβn)

]
N∏
n=1

MVN (βn | θ,Σ) dβn (10)

This approach to estimation makes it impossible to make statements about the individual choice

probabilities because the individual decision maker’s tastes (βn) are integrated out of the likelihood.

The substantive focus of previous research partially explains the lack of cross-level inference. The

quantity of interest in these and many other studies is the market share, a population-level quantity.

Nevertheless, as we will show through Monte Carlo experiments, assumptions about individual choice

behavior can matter in inference even if the ultimate objective is to learn about population-level

quantities. We make this clear by taking a fully Bayesian approach to estimation. For example, to

estimate the model in equation (5), we simulate from the joint posterior density
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p (β, θ,Σ | y) ∝

[
N∏
n=1

T∏
t=1

MNL (xntβn)

][
N∏
n=1

MVN (βn | θ,Σ)

]
p (θ,Σ) (11)

and draw inference about both the individual-level parameters (β) and population-level parameters

(θ and Σ). This enables us to draw conclusions about the individual choice probabilities as well as

the population market shares.

3.3 Implications of the McFadden-Train Theorem

The McFadden and Train [2000] theorem is often used to justify the specification of a random

coefficient logit [Train, 1998, Revelt and Train, 1998, Nevo, 2000, 2001, Chintagunta et al., 2003,

Erdem et al., 2008]. Although it is commonly agreed that the theorem proves that a random

coefficients logit is an extremely flexible model, some disagreement does seem to exist about what

the theorem specifically shows. Sometimes it is argued that the theorem shows that a random

coefficients logit can approximate any random utility model to any desired degree of accuracy [e.g.

Train, 1998]. Other times it is argued that the theorem shows that the model allows for a flexible

pattern of substitution at the aggregate level, but it imposes IIA at the individual level [e.g. Erdem

et al., 2008]. Train [1999, 2009] provide an intuitive explanation of the proof.

The purpose of this section is to clarify what McFadden and Train [2000] theorem means and to

show that its implications are more limited for empirical analysis than previous research suggests.

We begin by noting that although no distinction seems to be made between a mixed and a random

coefficients logit in the literature, the theorem encompasses a broader class of models than just the

random coefficients logit. Specifically, the theorem defines any model that can be written in the

form

p (ynj = 1 | x, θ) =
ˆ  exp (xjβ)∑

∀k
exp (xkβ)

 f (β | θ) dβ (12)

as a mixed logit. The theorem formally considers only a single choice occasion, so we will drop the

t subscript.

Following the discussion in Train [1999, p. 128], we will begin by assuming that all individuals

have the same tastes. While this may seem to be a strange starting point, the theorem is meant

to encompass models of this form too. Not only does this assumption explicitly make the point
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that finding the right mixing distribution requires more than finding the right distribution of tastes

across individuals, but it also avoids any confusion that might arise about the difference between

individual choice probabilities and population market shares, as discussed in the previous section.

Consider the following example. Suppose the true random utility model is

unj = xjα+ ηnj

ηnj ∼ unif (−φ, φ) for n = 1, . . . , N ; j = 1, . . . , J (13)

where xj represents the observed attributes of alternative j, α is a constant representing an individ-

ual’s tastes, and ηnj is the unobserved utility.

Conditional on α and ηnj , the individual’s choices would be deterministic.

p (ynj = 1 | α, ηn) = I (xjα+ ηnj > xkα+ ηnk ∀k 6= j)

where I (·) is the indicator function.

The true choice probability is found by integrating over all possible values that η may take, such

that

Qnj ≡ p (ynj = 1 | α, φ)

=
ˆ
p (ynj = 1 | α, η) p (η | φ) dη (14)

=
ˆ
I (xjα+ ηnj > xkα+ ηnk ∀k 6= j)

J∏
k=1

unif (ηk | φ) dηk

The goal of the proof is to find a mixed logit that is able to approximate this choice probability

arbitrarily closely. Consider the following transformation. Rescale the original utility function by

1/λ and then add an iid extreme value term, such that
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ũnj =
1
λ

(xjα+ ηnj) + εnj

ηnj ∼ unif (−φ, φ)

εnj ∼ EV (I)

The re-scaling of utility does not change the model, but the addition of the extreme value term

does. The extreme value term, however, is added to the model because doing so produces choice

probabilities of the form

Pnj =
ˆ  exp

(
xjα+ηj

λ

)
∑
∀k

exp
(
xkα+ηk

λ

)
 J∏
k=1

unif (ηk | φ) dηk (15)

which satisfy the McFadden and Train [2000] definition of a mixed logit. The theorem then shows

that as λ→ 0, then Pj approximates Qj arbitrarily closely. It is in this sense that a mixed logit can

approximate any random utility model to any desired degree of accuracy.

Although the suggested transformation does allow the choice probabilities of the true model to

be expressed in the form of a mixed logit, it is less clear that this is a useful transformation for

empirical analysis. The theorem makes no distinction between the randomness of the coefficients

and randomness of the errors, as the mixing distribution includes both terms. Thus, not only does

the researcher need to choose the right distribution for the random coefficients α (which we did in

this example by implicitly assuming that all individuals have the same tastes), but the researcher

also has to choose the right distribution for random errors η too. But if the researcher knew that

all individuals had the same tastes and that the errors were distributed according to a uniform

distribution, there would be no need to approximate the true random utility model with a mixed

logit. The true random utility model could simply be written down. The transformation required

in the proof puts the choice probabilities in the right form, but it does not make the problem any

easier to solve.

In other words, the flexibility implied by the theorem is simply that any random utility model can be

expressed in the form of a mixed logit. It does not show that the random coefficients logit specified

in equation (5) can approximate any substitution pattern, which seems to be the rationale given in

prior research.
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Summarizing our analytical results, we have shown that the random coefficients logit is much less

flexible than previous research suggests. Not only does it impose IIA at the individual level of

the model, but it also imposes specific substitution patterns at the population level, as shown by

Theorems 1 and 2. Part of the confusion surrounding this random coefficients logit stems from

the fact many empirical studies have made assumptions about what the model predicts without

quantifying behavior through cross-level inference. We now turn our attention to this problem and

discuss its implications for counterfactual analysis.

4 Monte Carlo Choice Experiments

In this section, we design three Monte Carlo experiments to answer questions about the random

coefficients logit. In the first two experiments, we ask, “what does the random coefficients logit

predict when individuals behave rationally?” In the first experiment, we simplify the problem by

assuming that individuals’ tastes fall into two segments. This makes it easy to quantify what the

model predicts about both individual and population choice behavior. In the second, we generalize

the problem by assuming that tastes are normally distributed across individuals. We show that the

model predicts the same types of substitution patterns in this case, and we discuss the implication

of our findings for policy analysis, which is of particular interest because the random coefficients

logit is often used in structural models of demand. In the third experiment, we ask, “what does the

random coefficients logit predict when individuals behave with IIA?”

We take a Monte Carlo approach to the problem for a few reasons. First, it allows us to know how

individuals actually behave when making choices as opposed to having to assume it, as we would in

a study of real subjects. Also, we can simulate as many choices for each individual in the population

as desired, which means we can come to very accurate estimates of individual tastes.

We design the experiments by elaborating on the example discussed in section 2. A population of

decision makers is asked to make a series of choices among different configurations of MacBooks, but

these choices are presented under three different conditions. In condition A, individuals are asked

to choose between two MacBooks. In condition B, a perfect substitute for the lightweight MacBook

is added to the choice set, whereas in condition C, a perfect substitute for the high-speed MacBook

is added. We observe individuals making very different choices and find that the model leads us to

very different conclusions depending on whether individuals behave rationally or with IIA.
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4.1 Experiment I: Two Segments of Tastes and Rational Choice Behavior

4.1.1 Data Generation

We need to make two basic assumptions in order to generate data in each Monte Carlo experiment.

First, we have to decide how preferences for weight and speed vary across individuals in the popu-

lation. Second, we have to decide whether individuals behave rationally when making decisions or

whether they behave with IIA. In this experiment, we assume that the individuals’ tastes fall into

two segments. This makes it easy to compare what the observed choices suggest about individual

preferences with what the model predicts about them. We also assume that individuals behave

rationally when making decisions.

Specifically, we begin by assuming that each individual’s preferences can be represented by a linear

utility function. The Salespeople’s tastes for weight and speed are assumed to be {-0.4618, 0.6927}

and the Scientist’s are {-0.2322, 1.3932}.6 These tastes imply that Salespeople value lighter weights

more than Scientists do. A Salesperson would need a 0.67 GHz increase (0.4618/0.6927) in processor

speed to compensate for a 1 lb increase in weight, whereas a Scientists would need only a 0.17 GHz

increase (0.2322/1.3932) in processor speed.

Next, we determine the individual choice probabilities. In condition A, the same choice probabilities

would arise no matter whether an individual behaves rationally or with IIA because the data contain

only two alternatives. Thus, we determine the choice probabilities by assuming that individuals make

decisions according to a multinomial logit process. For example, if a Salesperson faces a decision

between the following set of MacBooks {(3 lbs, 2 GHz), (6 lbs, 3.0 GHz)}, we determine the choice

probabilities to be {2/3, 1/3}.

In conditions B and C, we need to make an additional behavioral assumption in order to determine

the choice probabilities. In this experiment, we assume that individuals behave rationally, so that

their choices would reveal a consistent set of preferences across the three conditions. Thus, in

condition B, when the Salesperson faces a choice among {(3 lbs, 2 GHz), (3 lbs, 2 GHz), (6 lbs,

3.0 GHz)}, we determine the choice probabilities to be {1/3, 1/3, 1/3}. Although a second lighter

MacBook is presented in the choice set, the chance that a Salesperson chooses a lighter alternative

remains 2/3. Table 1 contains a summary of the choice probabilities used to generate data.

Finally, we generate choices. We suppose that the population consists of 100 Salespeople and 100
6We assume values with four-digits of precision for the individuals’ tastes because they result in very simple choice

probabilities.
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Scientists, and we design the experiment such that each individual faces ten repetitions of nine

unique choice sets in each condition. This results in 200 individuals making 90 choices in each of

three conditions. This design generates enough data to alleviate concerns about sample size when

estimating the individual taste parameters, yet enables us to conveniently summarize the observed

choices. Table 2 contains a summary of the observed choices.

Central to this experiment, individuals are assumed to behave rationally, so the observed choices

should reveal a consistent set of preferences across the three conditions. For example, choice set

(viii) presents a decision between a 3 lbs, 2.0 GHz MacBook and a 4.5 lbs, 3.0 GHz MacBook. The

Salespeople’s choices should reveal their indifference between these alternatives. This is observed in

the data, as Salespeople choose the lighter MacBook 49.8% of the time (498 times in 1,000 occasions)

under condition A, 53.8% under B, and 50.3% under C. On the other hand, the Scientists’ choices

should reveal a preference for the faster MacBook in this choice set, and they choose a faster

alternative 74.9%, 74.6% and 74.0% of the time across the three conditions.

Since the individuals in this experiment make consistent choices across the conditions, the popula-

tion as a whole makes consistent choices too. For example, the population’s choices should reveal a

preference for the faster MacBook in choice set (viii), and its observed market share is 62.6% (1,251

times in 2,000 occasions), 60.4% and 61.9% across the three conditions. Furthermore, the popula-

tion’s choices should reveal indifference between a lighter and faster MacBook in choice set (iv), and

the market share of the lighter MacBook is 49.9%, 50.7% and 50.5% across the three conditions.

These are ideal data sets on which to test the random coefficients logit. Both the individuals’ and

the population’s choices reveal a consistent set of preferences regardless of how the alternatives are

displayed, so it seems reasonable to expect that random coefficients logit model would lead us to the

same inference about the individuals’ preferences regardless of the data set on which it is estimated.

4.1.2 Model and Results

To infer the individuals’ tastes from their observed choices, we estimate the following random coef-

ficients logit model:

ynt ∼MNL (xtβn) for n = 1, . . . N ; t = 1, . . . , T

βn ∼MVN (znΘ,Σ) for n = 1, . . . N

where zn represents the vector of observed demographic characteristics of individual n. This vector
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is specified with two elements, an intercept common to all individuals and a job type specific to

each individual. We standardize job-type such that it takes the value -0.9975 if the individual is a

Salesperson and the value 0.9975 if the individual is a Scientist.7 This and all subsequent models

are estimated using bayesm, an open-source software package in the R programming language [Rossi

et al., 2005].

The population-level regression results are reported in Table 3. The random coefficients logit is able

to recover every individual’s tastes when estimated on Data Set A. This is not surprising in that no

difference exists between rational and IIA choice behavior when only two alternatives are displayed

in the choice set. Nevertheless, the random coefficients logit leads us astray when estimated on the

other data sets. In Data Set B, which includes a perfect substitute for the lightweight alternative,

the random coefficients logit underestimates every individual’s taste for weight (average taste of

-0.198 in B vs. a true value of -0.347) and overestimates their taste for speed (average taste of 1.54

in B vs. a true value of 1.04). In Data Set C, which includes a perfect substitute for the high-speed

alternative, the opposite occurs, as the random coefficients logit underestimates every individual’s

taste for speed and overestimates their taste for weight.

We show this bias graphically in Figure 1, which includes four panels. The first panel depicts the true

distribution of tastes found in the population. The Salespeople’s tastes are represented with the solid

red circle and the Scientists’ with the solid red triangle. The remaining three panels superimpose

the estimated tastes of each individual (as summarized by the posterior mean of the individual βns)

on the true distribution. We represent estimates of individual Salespeople’s tastes with open blue

circles and Scientists’ tastes with open blue triangles.

As can be seen in the panel denoted Data Set A, the random coefficients logit is able to recover the

tastes of both individual Salespeople and Scientists when estimated on data that display only two

alternatives. The figure shows that the population consists of two segments. For both Salespeople

and Scientists, the clouds of estimated tastes surround their true values. The same does not occur

for the other models. In the panel labeled Data Set B, the clouds of estimated tastes shift to the

upper right-hand corner of the panel. They no longer surround the true values because the random

coefficients logit underestimates the value that both Salespeople and Scientists place on weight

relative to processor speed. The opposite occurs in the panel labeled Data Set C. The clouds shift

to the lower left-hand corner of the panel because the random coefficients logit underestimates the

value that both Salespeople and Scientists place on processor speed relative to weight.
7The bayesm software requires the hierarchical variables to be standardized.
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We quantify the magnitude of the trade-off that each type of individual would be willing to make

between weight and speed in Table 4. Recall that a Salesperson would need a 0.67 GHz increase in

processor speed to compensate for a 1 lb. increase in weight, whereas a Scientist would only need

a 0.17 GHz increase. In Data Set A, the random coefficients logit is able to recover these values,

as it estimates that a Salesperson with average tastes would need a 0.66 GHz increase in processor

speed, and a Scientist with average tastes would need a 0.15 GHz increase.

The random coefficients logit leads us to the wrong conclusions about the individuals’ preferences

when estimated on the other data sets. In Data Set B, the random coefficients logit implies that a

Salesperson with average tastes would need a 0.26 GHz increase in processor speed to compensate

for a 1 lb increase in weight and that a Scientist would need a 0.05 GHz increase. By comparison,

in Data Set C, the random coefficients logit estimates that a Salesperson with average tastes would

need a 2.36 GHz increase in processor speed to compensate for a 1 lb increase in weight and that a

Scientist would need a 0.45 GHz increase.

The troubling aspect of this experiment is that the observed choices imply that the individuals’

preferences do not change across the three experiments. So why should we infer through the random

coefficients logit that they do?

4.2 Experiment II: Normally Distributed Tastes and Rational Choice Be-

havior

4.2.1 Data Generation

In our second experiment, we relax the initial assumptions by supposing that tastes are normally

distributed across individuals in the population. Although this assumption makes it more difficult to

summarize the choice behavior of different individuals, it is done to address concerns that might arise

about the simplicity of a two-segment model or about the assumption of a continuous distribution

of tastes when the true distribution is discrete.

Specifically, we begin by drawing the tastes of 200 individuals from a multivariate normal distribution

with mean θ and covariance Σ, where

θ =

 −0.347

1.04

 and Σ =

 (0.1)2 0

0 (0.3)2

 (16)
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The true tastes of individuals in this population are depicted in the upper left-hand panel of Figure

2. The individual who values lighter MacBooks most would need a 2.09 GHz increase in processor

speed to compensate for a 1 lb increase in weight, whereas the individual who values faster MacBooks

most would need only a 0.08 GHz increase in processor speed.

Next, we determine the individual choice probabilities. In condition A, we do so by assuming that

individuals make choices according to a multinomial logit model. In conditions B and C, we assume

the probability that an individual chooses a lighter or a faster MacBook does not depend on how

the alternatives are presented in the choice set, just as we did in experiment I. Finally, we simulate

choices based on the individual choice probabilities.

Table 5 contains a summary of the observed choices. Since individuals are assumed to behave

rationally in this experiment, we would expect the population’s choices to reveal a consistent set of

preferences across the three conditions. This is observed in the data. For example, the population’s

choices should reveal a preference for the faster MacBook in choice set (viii), and its observed market

share is 62.2%, 62.5% and 62.2% across the three choice sets.

4.2.2 Model and Results

To infer the individuals’ tastes from their observed choices, we estimate the following random coef-

ficients logit model:

ynt ∼MNL (xtβn) for n = 1, . . . N ; t = 1, . . . , T

βn ∼MVN (θ,Σ) for n = 1, . . . N
(17)

We report the population-level regression results in Table 6. Even though we observe individuals

behaving rationally across the three choice sets, we infer through the random coefficients logit that

their tastes have changed. In Data Set A, the random coefficients logit is able to recover the

population’s tastes for weight and speed. By assumption, an individual with average tastes would

need a 0.33 GHz increase in processor speed to compensate for a 1 lb increase in weight. The random

coefficients logit implies that an individual with average tastes would need a 0.33 GHz increase.

When the random coefficients logit is estimated on the other data sets, it implies that the individuals’

preferences have changed. In Data Set B, the random coefficients logit underestimates the individual

tastes for lighter weights. It implies that an individual with average tastes would need only a 0.13

GHz increase in processor speed to compensate for a 1 lb increase in weight. By comparison, in

23



Data Set C the random coefficients logit underestimates tastes for faster speeds. It implies that an

individual with average tastes would need a 0.91 GHz increase in processor speed to compensate for

a 1 lb increase in weight.

We show the individual-level parameter estimate graphically in Figure 2. The first panel depicts the

true distribution of tastes found in the population, with each individual’s tastes being represented

with an open red circle. The remaining panels superimpose the estimated tastes of each individual on

the true distribution, with the estimates being represented with an open blue circle. As can be seen

the panel labeled Data Set A, the random coefficients logit is able to recover the the population’s

tastes when it is estimated on the data in which only two alternatives are displayed, as the two

clouds overlap.

As happened in the previous experiment, the same does not occur when the random coefficients

logit is estimated on the other data sets. In the panel labeled Data Set B, the estimated cloud

of tastes shifts to the upper right-hand corner of the graph because the random coefficients logit

underestimates the value that individuals place on weight relative to processor speed. The opposite

occurs in the panel labeled Data Set C. The estimated cloud shifts to the lower left-hand corner of

the graph because the random coefficients logit underestimates the value that individuals place on

processor speed relative to weight.

Even though we allow for a continuous distribution of tastes, the same troubling problem occurs in

this experiment as did in the last. We observe individuals making a consistent set of choices across

the three data sets, so it would seem logical to infer that their preferences have not changed. Yet

the random coefficients logit leads us to the opposite conclusion.

4.2.3 Implications for Policy Analysis

Prior research [e.g. Brownstone and Train, 1999, pp. 126-127] has qualitatively discussed the sub-

stitution patterns implied by the random coefficients logit when similar alternatives are added to

the choice set, but a complete quantitative analysis has yet to be completed. In this section, we

remedy this issue by simulating the market shares predicted by the random coefficients logit in this

choice experiment. It could be the case the the random coefficients logit leads us to reasonable

market share predictions even though the taste estimates are biased, but we show that this does not

happen. In fact, the problems caused by the biased parameter estimates compound upon themselves

in counterfactual analysis.

24



Consider a situation in which Apple is deciding whether to change the way it displays the MacBook

in its retail stores. For the sake of discussion, suppose that Apple currently displays a 3 lb, 2.0

GHz MacBook and a 6 lb, 3.0 GHz MacBook on its shelf, and it is wondering what would happen

to the market shares if a perfect substitute for either product were added to the display. Given

the observed choice behavior (choice set iv in Table 5), a good model would imply that the overall

market shares remain 50%-50% no matter how the alternatives are displayed.

Table 7 summarizes the predicted market shares for the three potential displays. Each model does

reasonably well in predicting the market shares for choice sets that are observed in the data. Looking

down the diagonal of the the table, the random coefficients logit estimated on Data Set A predicts

the market share of the lighter alternative to be 49.6% if the choice set {(3 lbs, 2.0 GHz), (6 lbs, 3.0

GHz)} is displayed. Likewise, the model estimated on Data Set B predicts the market share of the

lighter alternative to be 43.3% if {(3 lbs, 2.0 GHz), (3 lbs, 2.0 GHz), (6 lbs, 3.0 GHz)} is displayed,

and the model estimated on Data Set C predicts it to be 57.1% if {(3 lbs, 2.0 GHz), (6 lbs, 3.0 GHz),

(6 lbs, 3.0 GHz)} is displayed.

Nevertheless, each model produces very skewed predictions when applied to choice sets that are not

observed in the data. For example, when estimated on Data Set A, the random coefficients logit

predicts the market share of the lighter alternative to be 65.2% if {(3 lbs, 2.0 GHz), (3 lbs, 2.0 GHz),

(6 lbs, 3.0 GHz)} is displayed and 34.1% if {(3 lbs, 2.0 GHz), (6 lbs, 3.0 GHz), (6 lbs, 3.0 GHz)} is

displayed.

The random coefficients logit skews the market share prediction even further when estimated on

the other data sets. For example, when estimated on Data Set B, the random coefficients logit

predicts the market share of the lighter alternative to be 17.2% if the choice set {(3 lbs, 2.0 GHz),

(6 lbs, 3.0 GHz), (6 lbs, 3.0 GHz)} is displayed. This occurs because the choice set considered in

the counterfactual situation is even more different than the one observed in the data. A similar

statement can be made about the model estimated on Data Set C. It predicts the market share

of the lighter alternative to be 83.2% if {(3 lbs, 2.0 GHz), (3 lbs, 2.0 GHz), (6 lbs, 3.0 GHz)} is

displayed.

4.2.4 Substitution Patterns

We may wonder why these implications have not been noticed before. One reason is that substantive

interest often centers around population-level results, and the random coefficients logit does produce
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population-level results that more closely match our intuition than the homogeneous logit does. As

Theorem 2 asserts, the random coefficients logit must result in disproportionate substitution among

market shares. Nevertheless, this does not imply that the population-level results are correct.

To quantify this idea, we compare the substitution patterns predicted by the random coefficients

logit against two standards: the rational substitution patterns that were assumed to create the data

and the proportional substitution patterns that would be predicted by a logit model. The statistic

that we use to quantify the difference between these patterns is the following substitution ratio:

Ψ =
Sexisting|{original} − Sexisting|{expanded}

Sincoming|{expanded}

where Sexisting|{original} is the market share of the pre-existing substitute in the original choice

set, Sexisting|{expanded} is the share of the pre-existing substitute in the expanded choice set, and

Sincoming|{expanded} is the share of the incoming alternative in the expanded choice set. This statistic

is analogous to the substitution ratio proposed in Steenburgh [2008]. It answers the question, “what

proportion of the demand for the incoming alternative has been drawn from its pre-existing perfect

substitute?”

Table 8 summarizes the substitution ratios. The left-hand side of the table considers what happens

when a lightweight substitute is added to the two alternative choice set (Choice Set 1 becomes

Choice Set 2 in Table 7.) The right-hand side considers what happens when a high-speed substitute

is added (Choice Set 1 becomes Choice Set 3).

We calculate the value of the three ratios as follows: If the population behaves rationally, all of

the demand for the incoming MacBook would be drawn from its pre-existing substitute. Thus,

rational substitution would imply a ratio of 100%. This is what the model should predict given how

individuals actually behave in the observed data.

If the population were to exhibit proportional substitution, the substitution ratio would simply be

the market share of the perfect substitute in the two-alternative choice set. For example, working

with the market shares in Table 7, if the random coefficients logit is estimated on Data Set A, the

market share of the lighter MacBook is predicted to be 49.6% in Choice Set 1. Thus, proportional

substitution would imply that 49.6% of the incoming MacBook’s market share is drawn from its

pre-existing substitute. This is the standard typically used to compare results.

Finally, we calculate the substitution ratio implied by the random coefficients logit. Continuing with

Data Set A, the random coefficients logit predicts that the market share of the lightweight MacBook
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is 49.6% in Choice Set 1. The combined market share of the lightweight MacBooks in the expanded

choice set is 65.2%, so the market share of each alternative is 32.6%. Thus, the random coefficients

logit implies that (49.6−32.6)/32.6 = 52.1% of the incoming MacBook’s market share is drawn from its

pre-existing substitute.

Table 8 helps explain why the random coefficients logit is thought to be good model. A researcher

working with observational data would compare the prediction of the random coefficients logit against

the proportional substitution standard. For example, if the random coefficients logit were estimated

on Data Set A, it would predict that the incoming lightweight MacBook draws 52.1% of its market

share from its perfect substitute instead of only 49.6%. The same would occur for the high-speed

MacBook, as the random coefficients logit would predict 52.9% instead of only 50.4%. This would

bolster the researcher’s confidence in the model because it confirms the prior belief about what

should be happening in the data, at least if the researcher chose to look at close instead of perfect

substitutes. As a consequence of Theorem 2, we know that the researcher would always reach this

conclusion.

Nevertheless, Table 8 also shows that the random coefficients logit is not a completely flexible

model. The model never predicts the actual substitution patterns that exist in the data, as it never

results in a substitution ratio of 100%. Furthermore, the predicted substitution patterns, like the

predicted market shares, depend on how the alternatives are displayed in the data. When estimated

on Data Set B, the random coefficients logit predicts that only 32.0% of the incoming lightweight

MacBook’s market share would be drawn from its pre-existing substitute. When estimated on Data

Set C, it predicts that 72.8% would be drawn. When the predicted market shares are lower, the

substitution ratio is lower too because the random coefficients logit implies that each individual

exhibits proportional substitution even if the population as a whole does not.

4.3 Experiment III: Normally Distributed Tastes and IIA Choice Behav-

ior

If the random coefficients logit cannot recover rational substitution patterns, we may wonder what

it is able to recover. In this section, we discuss what happens when the random coefficients logit is

estimated on data in which individuals behave with IIA.
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4.3.1 Data Generation

In the final experiment, we keep the assumption that tastes are normally distributed across individ-

uals, but we modify the procedure by assuming that individuals behave with IIA instead of behaving

rationally. Specifically, we begin by assuming that individuals have the same tastes as they do in

the previous experiment.

Then, we determine the choice probabilities by assuming that each individual makes decisions ac-

cording to a multinomial logit under every condition. For example, suppose an individual has tastes

for weight and speed of {-1/3, 1} and faces the alternatives in choice set (iv). In condition A, when

the individual faces a choice between {(3 lbs, 2 GHz), (6 lbs, 3.0 GHz)}, we would determine the

choice probabilities to be {1/2, 1/2}. In condition B, when the individual faces a decision among {(3

lbs, 2 GHz), (3 lbs, 2 GHz), (6 lbs, 3.0 GHz)}, we would determine the choice probabilities to be

{1/3, 1/3, 1/3}. In condition C, when the individual faces a decision among {(3 lbs, 2 GHz), (6 lbs, 3.0

GHz), (6 lbs, 3.0 GHz)}, we would determine the choice probabilities to be {1/3, 1/3, 1/3}. In contrast

to the previous experiments, the probability of choosing either a lighter or a faster MacBook now

depends on how the alternatives are presented in the choice set. The individual would choose a

lighter MacBook with probabilities 1/2, 2/3, and 1/3 across the three experiments.

Finally, we simulate choices based on the individual choice probabilities. These choices are sum-

marized in Table 9. The population’s choices suggest that individuals’ have context-dependent

preferences. This is not surprising given that individuals are assumed to behave with IIA. Consider

choice set (iv). In condition A, the market share of the lighter alternative is 49.9%, so the observed

choices suggest the population is indifferent between a lighter and a faster MacBook. In condition B,

its market share is 65.9%, so the observed choices suggest the population prefers a lighter MacBook.

In condition C, its market share is 33.5%, so the observed choices suggest the population prefers a

faster MacBook.

4.3.2 Model and Results

To infer the individuals’ tastes from their observed choices, we estimate the random coefficients logit

specified in equation (17). We report the population-level regression results in Table 10. In contrast

to the previous two experiments, the random coefficients logit model is able to recover the assumed

parameters under every condition. From this we would infer that the individuals’ preferences are

the same across the three conditions. The model implies that an individual with average tastes
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would need a 0.33 GHz increase in processor speed to compensate for a 1 lb increase in weight under

condition A, a 0.34 GHz increase under B, and a 0.33 GHz increase under C. This is in stark contrast

to the preferences found in experiment II.

We show the individual-level parameter estimate graphically in Figure 3. The first panel depicts the

true distribution of tastes found in the population, with each individuals’ tastes being represented

with an open red circle. The remaining panels superimpose the estimated tastes of each individual

on the true distribution, with the estimates being represented with an open blue circle. Across all

three conditions, the clouds of estimated tastes no longer shift across the conditions, but rather the

surround the cloud of true tastes as they should. Taken at face value these results seem reassuring,

as the random coefficients logit is able to recover the correct parameter estimates if individuals do

behave with IIA.

On the other hand, our experimental results lead to the following paradox: If individuals actually

do behave rationally, the data will suggest that their preferences remain constant across the three

conditions. Yet, when we estimate the random coefficients logit on these data, we will infer that

their tastes have changed. In experiment II, the population chooses a lightweight MacBook 9,080,

9,044 and 9,053 times out of 18,000 occasions across the three conditions, yet the model implies that

an individual with average tastes would need a 0.33, 0.13 and 0.91 GHz increase in processor speed

to compensate for a 1 lb increase in weight.

Conversely, if individuals actually do behave with IIA, the data will suggest that their preferences

are context-dependent. Yet, when we estimate the random coefficients logit on these data, we will

infer that their tastes remain the same. In experiment III, the population chooses a lightweight

MacBook 8,896, 11,853 and 6,120 times out of 18,000 occasions across the three conditions, yet the

model implies that an individual with average tastes would need a 0.33, 0.34 and 0.33 GHz increase

in processor speed to compensate for a 1 lb increase in weight.

5 Conclusion

We show that the random coefficients logit imposes restrictions on individual and population choice

behavior. These restrictions do not merely limit the range of substitution patterns that can be

recovered in empirical analysis. Rather, they raise basic questions about what it means when we

say that the random coefficients logit can recover an individual’s preferences from their observed
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choices. Why would we infer that individuals’ preferences depend on the presentation of the choice

set unless we observe their choices to be changing across presentations?

Why are these fundamental properties not obvious? One reason is that substantive interest often

centers around population-level results, and the random coefficients logit produces population-level

results that are more in line with our prior expectations than the homogeneous logit does. Ecological

correlations are found in the composite random utilities and disproportional substitution must occur

among market shares. Nevertheless, as we show through cross-level inference, this does not mean

that the results are correct and that the model can be used to conduct policy experiments.

Another reason is that the nature of the problem has been misunderstood. Many choice models

have been proposed with the goal of breaking IIA. But why? Simply breaking IIA, either at the

individual or at the population level, does not imply either that the similarity critique [Debreu, 1960]

has been addressed or that the model is a good model. The real goal should be to build models that

help us understand what observed choices reveal about individual preferences. If we presume that

individuals could behave rationally, then the model should at least allow it as a possibility.

A final reason is that the problem is difficult. King [1997] made a significant contribution to the

related problem of ecological inference more than seventy-five years after Ogburn and Goltra [1919]

identified it and forty-five years after Robinson [1950] made it well known. In the interim, many

scholars wrote fruitfully on the topic, while others suggested either that the problem did not exist

or that it was folly to try and solve it [King, 1997, p. 6]. Perhaps we should expect there is more to

learn.

The heart of the matter is that IIA is an assumption about how an individual substitutes among

alternatives. Concerns about it cannot be addressed by allowing for differences in tastes across

individuals.
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Table 3: Population-level Estimates for Experiment I

Regression Coefficients (∆)

Truth Data Set A Data Set B Data Set C

Weight Intercept -0.347 -0.357 -0.198 -0.543
(0.019) (0.019) (0.019)

Job Type 0.115 0.144 0.090 0.136
(0.017) (0.017) (0.018)

Speed Intercept 1.04 1.09 1.54 0.599
(0.06) (0.06) (0.053)

Job Type 0.351 0.33 0.45 0.312
(0.05) (0.05) (0.052)

Table 4: Estimated Trade-offs in Speed for a 1 lb. Weight Decrease

Truth Data Set A Data Set B Data Set C

Salespeople 0.67 GHz 0.66 GHz 0.26 GHz 2.36 GHz
Scientists 0.17 0.15 0.05 0.45

Table 5: Observed Choices for Experiment II

Choice Set Alternatives Data Set A Data Set B Data Set C
i 4.5 lbs, 2.0 GHz 1010 516, 496 981

6.0 lbs, 2.5 GHz 990 988 494, 525
ii 3.0 lbs, 2.0 GHz 1277 607, 632 1252

6.0 lbs, 2.5 GHz 723 761 363, 385
iii 4.5 lbs, 2.0 GHz 757 352, 370 799

6.0 lbs, 3.0 GHz 1243 1278 627, 574
iv 3.0 lbs, 2.0 GHz 1019 502, 501 1015

6.0 lbs, 3.0 GHz 981 997 494, 491
v 4.5 lbs, 2.5 GHz 1002 520, 507 1027

6.0 lbs, 3.0 GHz 998 973 462, 511
vi 3.0 lbs, 2.5 GHz 1205 618, 635 1207

6.0 lbs, 3.0 GHz 795 747 376, 417
vii 3.0 lbs, 2.0 GHz 1027 537, 477 989

4.5 lbs, 2.5 GHz 973 986 484, 527
viii 3.0 lbs, 2.0 GHz 756 372, 379 757

4.5 lbs, 3.0 GHz 1244 1249 632, 611
ix 3.0 lbs, 2.5 GHz 1027 525, 498 1026

4.5 lbs, 3.0 GHz 973 977 456, 518
Totals Lighter Weight 9080 4549, 4495 9053

Faster Speed 8920 8956 4388, 4559
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Table 6: Population-level Parameter Estimates for Experiment II

Regression Coefficients (∆)

Truth Data Set A Data Set B Data Set C

Weight -0.347 -0.352 -0.206 -0.528
(0.025) (0.024) (0.024)

Speed 1.04 1.07 1.60 0.580
(0.06) (0.06) (0.060)

Table 7: Predicted Market Shares

Data Set A Data Set B Data Set C
Choice Set 1 3 lbs, 2.0 GHz 49.6% 28.6% 71.9%

6 lbs, 3.0 GHz 50.4 71.4 28.1
Choice Set 2 {3 lbs, 2.0 GHz; 3 lbs, 2.0 GHz} 65.2 43.3 83.2

6 lbs, 3.0 GHz 34.8 56.7 16.8
Choice Set 3 3 lbs, 2.0 GHz 34.1 17.2 57.1

{6 lbs, 3.0 GHz; 6 lbs, 3.0 GHz) 65.9 82.8 42.9

Table 8: Substitution Ratios

Lightweight Substitutes High-Speed Substitutes
Data A Data B Data C Data A Data B Data C

Rational Substitution 100% 100% 100% 100% 100% 100%
Proportional Substitution 49.6 28.6 71.9 50.4 71.4 28.1
Predicted by Mixed Logit 52.1 32.0 72.8 52.9 72.5 31.1
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Table 9: Observed Choices for Experiment III

Choice Set Alternatives Data Set A Data Set B Data Set C
i 4.5 lbs, 2.0 GHz 986 678, 655 685

6.0 lbs, 2.5 GHz 1014 667 665, 650
ii 3.0 lbs, 2.0 GHz 1255 751, 793 938

6.0 lbs., 2.5 GHz 745 456 535, 527
iii 4.5 lbs, 2.0 GHz 750 558, 536 488

6.0 lbs, 3.0 GHz 1250 906 748, 764
iv 3.0 lbs, 2.0 GHz 978 651, 666 669

6.0 lbs, 3.0 GHz 1022 683 687, 644
v 4.5 lbs, 2.5 GHz 966 644, 668 649

6.0 lbs, 3.0 GHz 1034 688 676, 675
vi 3.0 lbs, 2.5 GHz 1262 769, 783 883

6.0 lbs, 3.0 GHz 738 448 566, 551
vii 3.0 lbs, 2.0 GHz 944 636, 670 691

4.5 lbs, 2.5 GHz 1056 694 648, 661
viii 3.0 lbs, 2.0 GHz 752 566, 508 458

4.5 lbs, 3.0 GHz 1248 926 750, 792
ix 3.0 lbs, 2.5 GHz 1003 630, 691 659

4.5 lbs, 3.0 GHz 997 679 680, 661
Totals Lighter Weight 8896 5883, 5970 6120

Faster Speed 9104 6147 5955, 5925

Table 10: Population-level Estimates (∆) for Experiment III

Regression Coefficients (∆)

Truth Data Set A Data Set B Data Set C

Weight -0.347 -0.361 -0.376 -0.338
(0.025) (0.026) (0.025)

Speed 1.04 1.11 1.11 1.03
(0.06) (0.06) (0.06)
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Figure 1: Distributions of Tastes in Experiment I
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Figure 2: Distributions of Tastes in Experiment II
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Figure 3: Distributions of Tastes in Experiment III
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Data Set B: Lightweight Substitutes
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Data Set C: High−Speed Substitutes
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