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Abstract

We present a two-stage model of competing ad auctions. Search engines attract

users via Cournot-style competition. Meanwhile, each advertiser must pay a partici-

pation cost to use each ad platform, and advertiser entry strategies are derived using

symmetric Bayes-Nash equilibrium that lead to the VCG outcome of the ad auctions.

Consistent with our model of participation costs, we find empirical evidence that multi-

homing advertisers are larger than single-homing advertisers. We then link our model

to search engine market conditions: We derive comparative statics on consumer choice

parameters, presenting relationships between market share, quality, and user welfare.

We also analyze the prospect of joining auctions to mitigate participation costs, and

we characterize when such joins do and do not increase welfare.

1 Introduction

Online ad auctions sell advertising placements on search engines and elsewhere—providing

key funding for a variety of online resources. Advertisers sign up with one or more ad

platforms, specify their advertising preferences (including conditions in which they want

their ads to be shown, and how much they are willing to pay), and receive clicks from

interested users.

Benjamin Edelman serves and Hoan Soo Lee previously served as consultant and research intern to

Microsoft and Microsoft Research, respectively. But they write on their own behalf, not at Microsoft’s

request or for Microsoft’s benefit.
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In this paper, we explore competition among ad platforms that offer search engine ad-

vertising services. Our motivations are several. For one, we seek to understand why some

advertisers choose to use only certain ad platforms but not others. After all, if an ad network

cannot attract a broad selection of advertisers, it will be unable to present ads related to

users’ requests, and it will also garner substantially lower revenue. Second, we want to ex-

plore competition across auction platforms. Auction competition is a relatively unexplored

topic in the literature. The primary difficulty in considering auction competition is that

classic competition models (e.g. Bertrand and Cournot) view competition through the set-

ting of market price, either directly or via production quantities. But ad auctions set prices

through a different mechanism, strategic interaction among advertisers. Meanwhile, an ad

platform can influence outcomes through, e.g., setting reserve prices.

Competition in online ad auctions also differs from models of auction competition ex-

amined in the literature. Pai (2009) explores optimal mechanisms for a seller employing

a second-price auction with a reserve price in a general context. In contrast, we focus on

applications to online ad platforms. This restriction puts useful structure on competition: in

order to attract users, an ad platform seeks to reduce cost of search to users. But reducing

the cost of search decreases the number of clicks users perform, thereby reducing payments

from advertisers. Separately, Ellison et al. (2004) consider competition among auctions oc-

curing at the level of strategic entry by auctioneers in two segmented markets with differing

buyer-to-seller ratios. There, an auctioneer chooses between entering in a market saturated

with buyers by expecting to compete with many sellers (competition effect) and selling to

great magnitudes (scale effect). Applying this framework to online ad auctions implies that

search engines compete by specializing on exclusive sets of keywords with correspondingly

segmented buyers. However, the leading ad platforms do not limit keywords or even focus

on distinctive keywords. Rather, leading ad platforms sell clicks from web searchers search-

ing for all manner of subjects, and ad platforms sell to a common pool of advertisers and

would-be advertisers.

We model competing ad auctions in two stages. In the first stage, advertisers choose to

enter one or more ad auctions after considering each search engine’s user base (capacity)

and click-through rates (technology) in light of an exogenous cost of joining each ad auction.

Using the symmetric Bayes-Nash equilibrium, we derive advertisers’ entry strategies that

lead to the VCG outcome of the ad auctions. In the second stage, participating advertisers

submit bids in the ad auction(s) they chose to enter, and ad platforms strategically compete
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on capacity while setting a level of search technology to maximize revenue. This follows a

model of Cournot-style competition among ad platforms.

Closest to our paper is Liu and Chiu (2010) which studies competition across ad auctions

with auction capacities endogenized by consumer choice. However, they abstract away from

the mechanisms that allocate and price advertising positions. In contrast, our approach is

grounded in the unusual mechanisms used in selling online advertising.

We proceed in five parts. In Section 2, we develop model fundamentals and notation.

In Section 3, we model ad auctions with participation costs—offering an initial explanation

of why not all advertisers use all ad platforms, and testing that explanation with available

data. In Section 4, we analyze competing ad auctions in light of user preferences over search

engines. In Section 5 we develop a concept of “joining” two ad auctions, and we identify

conditions where joins increase or reduce advertiser welfare. In Section 6, we consider policy

implications and conclude.

2 Ad auctions - GSP and VCG

In an ad auction, there are advertisers N = {1, . . . , N} and K slots for sale. Each advertiser

can receive at most one slot. The positions are sold for a single period of time. Each slot k

has an expected click-through rate αk > 0. The auction has a known capacity C > 0. Thus,

if an advertiser wins slot k, the advertiser will receive Cαk clicks in expectation. We assume

that α1 ≥ α2 ≥ · · · ≥ αK . Define αk = 0 for every k > K.

The value per click for advertiser j is vj ∈ [0, 1]. Advertisers are risk neutral, and the

payoff to advertiser j for winning slot k is Cαkvj minus its payments to the ad platform. We

also assume that for each advertiser j, vj is drawn from a commonly known distribution F

and the value of each advertiser is private information.

Each advertiser j is required to submit a bid bj. We denote by b(j) the jth highest bid.

Similarly we denote by g(j) the identity of the jth highest advertiser. In case of ties, the

order among those advertisers is determined randomly.

We consider payments and outcomes under two distinct auction mechanisms. Modern ad

platforms generally use the Generalized Second Price (GSP) structure, wherein an advertiser

g(j) receiving position k pays a total of Cαjb(j+1). In the Vickrey-Clarke-Groves (VCG) ad

auction, each advertiser pays its impact on all others’ social welfare, assuming bids equal

values. Hence, under VCG, advertiser g(j) receiving position k pays a total of pV CG,k =
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αkC
∑min(k+1,n)

j=min(K+1,n)(αj−1−αj)b(j). Both GSP and VCG ad auctions allocate the first position

to the highest-bidding advertiser, the second position to the second-highest bidder, and so

forth.

3 Ad Auctions with Participation Costs

Consider a GSP ad auction, and suppose there is a cost Z > 0 for each advertiser to partic-

ipate in the auction. Z can be interpreted as an advertiser’s transaction cost in submitting

its campaign into the ad platform. Elements of Z include creating an account, setting ad-

vertising parameters, monitoring effectiveness, adjusting bids, and paying bills. Z is not

transferred to the auctioneer. Therefore, a high participation cost, relative to a platform’s

capacity, causes an advertiser to forego use of that platform, even if the advertiser would

otherwise find it profitable to use that platform. For example, if the following inequality

holds
Z

C
> α1v, (1)

then an advertiser with value v will never enter the auction since the advertiser would realize

negative utility even if it managed to receive the first slot with zero payment.

3.1 Participation costs in the single-auction case

In this section we show that there exists a unique threshold function that determines whether

an advertiser will participate in a given ad auction. In particular, consider the following

two-stage game: In the first stage, each advertiser decides whether to participate in the

auction, as a function of the advertiser’s value v. In the second stage, all advertisers that

decide to participate in the auction submit a bid. The advertisers who enter are engaged

in an incomplete information GSP auction and we assume that the equilibrium outcome is

efficient.1 As we discuss at the end of this section, analogous results hold under complete

information.

A strategy for an advertiser j is a function s : [0, 1] → {0, 1} where sj(vj) = 1 means

that advertiser j with value vj enters the auction, and sj(vj) = 0 means j does not enter.

1In Ashlagi et al. (2011) the authors do not model participating costs, but rather let advertisers choose

a single ad auction to participate in.
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We employ symmetric Bayes-Nash equilibrium as our benchmark equilibrium concept when

further analyzing advertisers’ strategies.

Denote by U(v, n) the expected utility (before considering entry cost Z) of an advertiser

with valuation v, who decides to participate in the auction given that exactly n other adver-

tisers also participate. For simplicity, we assume that if an advertiser’s expected utility is

0 (net of entry cost), the advertiser prefers to enter the auction. Thus if all advertisers use

the strategy s∗, then an advertiser with valuation v will choose to enter the auction if and

only if

En[U(v, n)|s∗] ≥ Z. (2)

We impose a technical condition (3) in order to assure that the resulting allocation is

efficient. We follow Gomes and Sweeney (2012) which provide a necessary and sufficient

condition for the existence of a symmetric efficient Bayes-Nash equilibrium in the GSP

auction. (See their Proposition 1.) Formally, they show that if equation (3) has a solution

and if β(v) is an increasing function, then β is a symmetric Bayes-Nash equilibrium. They

further show that this condition is necessary. Their condition is as follows:

β(v) = v −
n∑
k=2

γk(v)

∫ v

0

(v − β(x))F n−k−1(x)f(x)dx, (3)

where

γk(v) =

(
k−1
n−1

)
(k − 1)(1− F (v))k−2αk∑n

t=1

(
t−1
n−2

)
(1− F (v))t−1F n−t−1(v)αt

.

In essence, Gomes and Sweeney (2012) argue that as long as the click-through rates are not

too close to each other, an efficient equilibrium exists. For simplicity we assume from this

point that (3) has an increasing solution, i.e. that the auction has an efficient equilibrium.

Theorem 1. Suppose U(1, N) > Z. Then there exists a unique strategy s∗ which forms

a symmetric Bayes-Nash equilibrium in the two-stage game. In particular there exists a

threshold v∗ > 0 such that for any v ≥ v∗, advertiser j enters, and the advertiser does not

enter otherwise. That is,

s∗j(v) = 1 ⇐⇒ v ≥ v∗. (4)

To prove Theorem 1, the following lemma will be useful. The lemma provides two

monotonicity properties: the expected utility for an advertiser who enters the auction is

non-increasing in the number of participants, and is increasing in the advertiser’s value.
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Lemma 2. For any n < N , and any v:

1. U(v, n) > U(v, n+ 1).

2. ∂U(v, n)/∂v > 0.

Proof. Let Q(v, n) and P (v, n) denote the expected number of clicks and expected payment

for an advertiser with value v that decides to enter auction l given that there are n−1 other

advertisers in the auction. Thus the expected utility of such an advertiser is

U(v, n) = vQ(v, n)− P (v, n). (5)

Note that by efficiency

Q(v, n) = C
∑

1≤k≤n

(
n− 1

k

)
αkF̃ (v)n−k[1− F̃ (v)]k−1. (6)

where F̃ (v) is the probability that a bidder that entered the auction has a valuation lower

than v.2

Let Xn be a random variable distributed over {α1, ..., αN} such that P (Xn = αk) =(
n−1
k

)
pn−k(1 − p)k−1 where p = F̃ (v), and let Yn ∼ Bin(n − 1, p), i.e. P (Yn = k) =(

n−1
k

)
pn−k(1− p)k−1. Note that P (Xn = αk) = P (Yn = k). For every m > 1, define

µ(m,n) = (αm − αm−1)P (Yn ≥ m− 1),

and let µ(1, n) = α1P (Yn ≥ 0). Observe that Ql(v, n) = CE[Xn] = C
∑

m≥1 µ(m,n) and

that µ(1, n) = α1. By our assumption on click-through rates, αk+1 − αk ≤ 0. Moreover,

P (Yn ≥ k) is decreasing in n because more trials with the same probability of success will

lead to more successes. Therefore, for all m > 1, every µ(m,n) is non-increasing in n,

implying that Q(v, n) > Q(v, n+ 1). Finally, by Myerson (1981),

U(v, n) =

∫ v

0

Q(x, n)dx, (7)

implying that U(v, n) > U(v, n+ 1).

The second part follows because the derivative of U(v, n) with respect to v is equal to

Q(v, n) by (7) and because ∂Q(v, n)/∂v > 0.

2We make no assumption on the entry strategy profile, except requiring that it induce a measurable

distribution F̃ .
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Proof of Theorem 1:

Fix the entry strategies of all other advertisers except j. By Lemma 2, j is better off

entering given some fixed value v∗, as long as vj ≥ v∗. Thus, every symmetric Bayes-Nash

equilibrium is characterized by a threshold value: there exists a v∗ ∈ [0, 1] such that every

advertiser will enter the auction if and only if its value is at least v∗.

Fix a symmetric strategy profile that is characterized by a threshold s∗. To show existence

of the threshold value, define

G(v) = En[U(v, n)|s∗]− Z.

By Lemma 2, G(v) is continuous and strictly increasing in v and by assumption. Fur-

thermore, Gl(0) = −En[P (0, n)|s∗] − Z < 0, and by assumption Gl(1) = En[U(1, n)|s∗] >
U(1, N) > Z > 0. Therefore there exist v∗ such that G(v∗) = Z. Since Gl(v) is strictly

increasing in v, v∗ is unique. �

The preceding proof indicates that the cut-off value v∗ is a function of the platform’s

primitives, Z,C, α1, α2, . . . , αk which uniquely define the auction. Comparative statics follow

directly:

∂v∗

∂C
< 0 (8)

∂v∗

∂Z
> 0 (9)

∂v∗

∂αk
< 0 ∀k. (10)

Remark 1. While Theorem 1 analyzes the incomplete information setting, similar results

follow under complete information. In the complete information case, an advertiser knows the

number of entrants and their respective valuations, removing the need to take an expectation

in (2). Since an efficient equilibrium always exists in the complete information setting (see

Edelman et al. (2007) and Varian (2007)), the same analysis flows through directly.

Remark 2. Similar results also follow if bidders face differing participating costs. The lower

a bidder’s participation cost, the lower that bidder’s threshold to participate in the auction.

3.2 Multi-homing and advertiser size

Consider now a set of L > 0 GSP auctions, indexed by l = 1, . . . , L. Auctions may differ in

both click-through rates and capacity, and we index these parameters by l. For simplicity, let
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participation cost Z > 0 remain fixed, although our results can easily be extended to consider

varying participation costs. An advertiser pays Z once for each auction the advertiser joins,

and that payment lets the advertiser participate in any number of keyword markets at the

corresponding ad platform.

Observe that the symmetric equilibria in each auction form a symmetric equilibrium in

the extended game in which each advertiser chooses which auction(s) to enter. Furthermore,

the argument in the previous section implies the uniqueness of this equilibrium. In particular,

advertisers’ entry decisions are independent.

Corollary 3. Let V = {v∗1, . . . , v∗L} be the cut-off values corresponding to the unique sym-

metric Bayes-Nash equilibria as in Theorem 1 and let Bl be advertisers entering auction l

in this equilibrium. For each v∗l , v
∗
l′ ∈ V ∗, if v∗l ≥ v∗l′ then Bl ⊆ Bl′.

Proof. Pick any v∗l and v∗l′ in V ∗ such that v∗l ≥ v∗l′ . Then any advertiser with value vj ≥ v∗l

will enter auction l, hence j ∈ Bl. Moreover, by assumption, vj ≥ v∗l′ hence j ∈ Bl′ .

Corollary 3 provides that in each auction, the bidders with valuation above some thresh-

old (dependent on auction parameters) will join the auction. Furthermore, consider two

auctions, the first having a higher valuation threshold than the second. Then every bidder

who participates in the first auction must participate in the second also. Following Remark

2, a similar result applies when participation costs vary between advertisers.

Corollary 3 indicates that advertisers with higher valuations are more likely to “multi-

home” by joining multiple ad platforms. In practice, each ad platform consists of literally

thousands of distinct keyword markets, whereas our analysis focuses on outcomes in a single

keyword market. Consider advertisers that differ in the number of keywords they seek to bid

on: Large advertisers often bid on thousands of keywords (perhaps Amazon selling thousands

of products, or Expedia offering flights and hotels in thousands of cities), while smaller

advertisers bid on correspondingly fewer keywords. A broad understanding of Corollary 3

offers a testable implication: Large advertisers multi-home thanks to the efficiency of a large

volume of ad purchases in multiple keyword markets ( v
Z

large). In contrast, small advertisers

find their v
Z

too small in light of the lower volume of advertising they wish to buy. Small

advertisers thus can less readily justify signing up with smaller ad platforms.

We test this understanding of Corollary 3 with data from two services that track and

preserve advertising at multiple search engines.3 Based on data from a first data collection

3These monitoring services track search advertising for advertisers’ business purposes—for example, let-
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service, Table 1 compares the size (impression count, normalized with maximum value set to

1,000) of advertisers that use one, two, or all three of the ad platforms we examine. Based on

data from a second service, Table 2 measures the size of multi-homing and non-multihoming

advertisers by other metrics: Proportion of sites achieving an Alexa ranking (data avialable

only for approximately the 25 million most popular sites on the web), average rank (bottom-

coding unranked sites at a rank of 40 million), as well as average “reach” (number of users

visiting the site) and average page views. 4 Figure 1 plots the distribution of reach by

multi-homing and non-multihoming advertisers.

By each metric, these tables are consistent with the broad reading of Corollary 3 and

our model of advertiser participation costs. In particular, the advertisers that purchase

ads from all three platforms are strikingly larger than the advertisers that purchase ads

only from one or two platforms: They buy more ad impressions (Table 1) and are more

likely to be ranked by Alexa, achieve a lower average rank (i.e. greater traffic), larger

reach, and more page-views (Table 2) Meanwhile, the advertisers who choose to use only

Google are the smallest by far—further confirming that small advertisers tend not to multi-

home. Finally, Figure 1 confirms that triply-multihoming advertisers have pointwise larger

reach than double-multihoming advertisers which in turn have pointwise larger reach than

single-homing advertisers. We also verify this relationship through a simple ordered probit

regression. First, we rank combinations of search engines to form a presence rank—reflecting,

for example, that Google is larger than Yahoo and Microsoft together. See Table 3. Then,

we run an ordered probit of each advertiser’s presence rank on its web site rank, reach, and

page-views. See Table 4. The coefficients on reach, rank, and page-views are all positive and

significantly different from zero.

4 Competing Auctions

In this section, we explore the micro-foundation of ad auction competition. Our approach

is grounded in a fundamental tradeoff facing each search engine: On one hand, a search

engine must provide high-quality results to satisfy users’ requirements as quickly as possible.

ting a company see what ads its competitors are buying, and letting a company check for misleading ads

appearing when users search for the company’s name. By agreement with our data sources, we do not report

their names.
4Reach and page-views are reported per thousand users.
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On the other hand, a search engine will reap greater revenues if it designs its listings to

cause users to click more advertisements. Google early recognized this tradeoff: In the

seminal Brin and Page (1998), Google’s co-founders flagged an “inherent” incentive for a

search engine to reduce the quality of its algorithmic results or otherwise encourage users

to click on advertisements. The tradeoff remains timely: For example, when launching its

new “Instant” search service, Google touted a savings of 2 to 5 seconds per search. Such

time-savings could benefit users, but some advertisers found that Instant Search reduced

clicks on their advertisements (Search Engine Pro (2010)). Meanwhile, Edelman (2011)

points out that for some search terms, advertisements can be distracting or affirmatively

harmful—providing a further tradeoff between satisfying users and increasing revenue.

We formalize search engines’ response to the quality/revenue tradeoff via a search cost

parameter, s. A greater search cost implies more advertisement clicks and more revenue to

the search engine. For example, a search engine could show even ads that are borderline

irrelevant or otherwise a mediocre match for user’s request. Conversely, a search engine with

a lower search cost gives users the “right” links more quickly, yielding fewer advertisement

clicks but increasing user satisfaction and attracting, all else equal, more users. For example,

a search engine could leave whitespace rather than showing ads of reduced relevance.

Following the Hotelling (1929) framework of consumers distributed on a unit segment,

we model consumer choice over search engines. Through this model, we endogenize a search

engine’s user base (capacity), and we include a search cost parameter to capture the tradeoff

between increasing consumer welfare versus increasing search engine revenue.

4.1 Consumer choice

Suppose consumers are uniformly distributed on a unit segment. Two search engines, A and

B, occupy opposite locations on the segment. (The result can be extended to three or more

engines.) A consumer who accesses search engine l ∈ {A,B} receives value δl, less the search

engine’s cost of search, sl. To access search engine l, the consumer incurs a cost td, where d

reflects the consumer’s distance from l, and t is a coefficient on distance. Thus, a consumer

chooses engine A if the consumer is located at distance d such that:

δA − sA − td ≥ δB − sB − t(1− d). (11)

Given a uniform distribution of consumers, the fraction of consumers choosing search

engine A is 1
2t

(∆δ − ∆s + t) where ∆δ = δA − δB. Similarly, the fraction of consumers
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choosing search engine B is 1
2t

(∆s − ∆δ + t). As a result, A’s user base (capacity) is

CA = C
2t

(∆δ − ∆s + t) where C is the total number of consumers in the market. Thus,

without loss of generality, search engine A’s user base decreases as search cost increases, but

increases in the value derived from use.

4.2 Ad platform selection of search cost

At the start of the second stage, advertisers have committed to the bidding process, which

fixes the number of entrants, n∗ = |Bl| and the pool of advertisers Bl (with valuations

{v1, ..., vn∗}). Then search engine l revenue is:

Cl(sl)Σ
n∗

j=1Σn∗

k=j(αk,l − αk+1,l)v(k+1)

which is equivalent to:

Cl(sl)Σ
n∗

k=1(αk,l − αk+1,l)kv(k+1).

Since search cost is proportional to the expected number of clicks required to reach

the desired information, any weighted aggregate click-through rate is strictly increasing in

sl:
∂Σk∈Kwkαkl

∂sl
> 0 for any Σwk = 1. Moreover, assume that this function is linear, i.e.

∂2Σk∈Kwkαkl

∂s2l
= 0.

For tractability, suppose the search engine’s technology is exponential, i.e. αk,l = βkl .

Define V =
∑n∗

k=1 kv(k+1) and wk = kv(k+1)/V . Then we can rewrite the revenue as:

Cl(sl)(1− βl)V Σn∗

k=1wkβ
k
l .

By the linearity assumption, we can parameterize the sum as Σn∗

k=1wkβ
k
l = alsl + bl, yielding:

Cl(sl)(1− βl)V (alsl + bl). (12)

This revenue function has a unique internal maximum attained by the following first order

conditions:

sl =
1

2

(
∆δ + t− bl

al
+ sl′

)
(13)

sl′ =
1

2

(
−∆δ + t− bl′

al′
+ sl

)
. (14)
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4.3 Comparative statics

We now consider two special cases: two search engines have pointwise equal technologies

(al = al′ = a, bl = bl′ = b), and one search engine pointwise dominates the other (al = al′ =

a, bl > bl′). Throughout, a and b follow the parameterization from Equation 12.

4.3.1 Pointwise equal technology

Consider a search engine that is identical to its competitor (al = al′ = a, bl = bl′ = b)

except that it enjoys a single advantage: a higher value delivered to consumers during search

(δl > δl′). Such a search engine can leverage that strength by raising search cost while

retaining more users (higher capacity). The following theorem formalizes that advantage:

Theorem 4. In the two-stage game with two auction platforms l and l′ with pointwise

identical technologies, if δl ≥ δl′, then in equilibrium: sl ≥ sl′ , Cl ≥ Cl′ ,Σk∈Kwkαkl ≥
Σk∈Kwkαkl′ , v

∗
l ≤ v∗l′ and Bl ⊇ Bl′.

Proof. The first order conditions (13) and (14) require sl = ∆δ
3

+ t− b
a

and sl′ = −∆δ
3

+ t− b
a
.

The resulting capacities are:

C∗l = C

(
1

2
+

∆δ

6t

)
(15)

C∗l′ = C

(
1

2
− ∆δ

6t

)
(16)

(17)

Thus, user base (capacity), technology and search cost are all monotonic in δ; if δl ≥ δl′

then Cl ≥ Cl′ , Σk∈Kwkαkl ≥ Σk∈Kwkαkl′ and sl ≥ sl′ .

The threshold values and advertiser set relation follow from Corollary 3.

These hypotheses offer an intuitive prognosis for market outcomes: Suppose two search

engines have equal technology, i.e. identical ability to help users find what they want. But

suppose one search engine delivers higher value to consumers during search (perhaps because

it exclusively indexes some desired content or has preferred access to some desired content).

Then that search engine can extract the higher value by raising search cost without losing

users to its competitor.

12



4.3.2 Dominant technology

Consider a search engine l that enjoys technology superior to its competitor l′, such that l

attracts more users (higher capacity) at any level of search cost. That is, al = al′ = a ≥
0, bl > bl′ ≥ 0. Then l and l′ pick search costs s such that

∆s =
2∆δ

3
− 1

3

(
bl
a
− bl′

a

)
. (18)

Suppose users’ value from search on both engines are the same (∆δ = 0). Then ∆s < 0

but ∆C > 0. That is, l sets lower search cost and enjoys greater market share.

Alternatively, suppose a search engine l enjoys superior technology but gives consumers

less value than its competitor l′. (That is, δl < δl′ .) Then l will receive lower market share

(Cl < Cl′) if its technology is not sufficiently greater than l′’s. Formally, ∆C < 0 if and only

if bl′ − a∆δ > bl.

This model offers an intuitive prediction for search cost and ad platform strategy at

competing search engines. Suppose a search engine has exogenously superior technology

which allows the search engine to collect higher per-click payments from advertisers, while

some competitor charges lower fees. Consider the search engines’ choices of search cost,

the effort a user must expend to find the desired information (including clicking additional

ads). A search engine with superior technology (say, Google) will find it optimal to impose

a lower level of search cost because the marginal loss to revenue (from reduced ad clicks) is

sufficiently offset by both an increase in the volume of users and the higher per-click payment

from advertisers. Conversely, a search engine with weaker technology (say, Yahoo) will prefer

to impose higher search cost in order to collect more ad clicks.

5 Joining Auctions

In this section, we establish a concept of “joining” auctions such that their available positions

are pooled, and all advertisers participating in one auction automatically participate in the

other. What happens to advertiser welfare and ad platform revenue if two ad auctions are

joined? These questions take on special relevance in light of the 2009 partnership between

Microsoft and Yahoo, as well as a 2008 proposed partnership between Google and Yahoo

(ultimately aborted after antitrust regulators raised concerns).

We begin with several definitions.
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Definition 5. A set of click-through rates has the property of diminishing differences if

αk − αk+1 ≥ αk+1 − αk+2 for each k ≤ K.

Definition 6. Auction l and auction l′ join to form auction l̃ if auction l̃ has capacity Cl̃

such that

max{Cl, Cl′} ≤ Cl̃ ≤ Cl + Cl′ (19)

and if auction l̃ has click-through rate

αkl̃ = max{αkl, αkl′} (20)

where αkl (αkl′) is the click-through rate of slot k in auction l (l′).

By taking the capacities of each auction as the size of the set of consumers choosing the

engine, inequality (19) bounds Cl̃. Because some consumers use multiple search engines, we

allow for overlap of capacity between two ad platforms—meaning a joined ad platform might

have less capacity than the sum of capacities of its contributors. Furthermore, we assume

that no consumer of either engine is lost upon join.

When auctions join, what click-through rates result? We envision ad platforms choosing

the best components of each contributor, which implies click-through rates given by the

stronger of the joining platforms. Hence the approach in (20).

5.1 Joining auctions to make all advertisers better off

In the following theorem, we provide a condition in which a joined auction offers a sufficient

improvement in capacity and technology to make every advertiser weakly better off ex post.

Theorem 7. Suppose auctions l and l′ join to form auction l̃. Let Cl ≥ Cl′ and αkl′ ≥ αkl

for each k ≤ K. Then every advertiser is weakly better off ex post if:

Cl̃ ≥
Cl′αkl′ + Clαkl

(N − k)αk+1,l′ − (N − k − 1)αkl
∀k ≤ K. (21)

Proof. Suppose auction l and i′ join to form l̃ and, without loss of generality, let n∗l ≥ n∗l′ .

Consider an advertiser who does not receive any position in either auction before the join.

Such an advertiser is ranked in position k > n∗l . Because that advertiser already achieves

utility of 0, the joined auction l̃ cannot make it worse off.

14



Consider an advertiser who receives a position in each of the auctions before the join.

We introduce new notation to characterize ex post utility: denote by ul(v, k) the utility of a

advertiser with value v who wins position k in auction l. Under VCG, we have:

ul(v, k) = Cαklv − C
∑

n∗>j≥k

(αjl − αj+1,l)v(j+1) (22)

where αkl = 0 for k ≥ K.

Prior to the join, an advertiser with valuation v who receives positions in both auctions

must receive position k ≤ n∗l′ in auction l′, yielding utility ul(v, k) + ul′(v, k).

Using assumption (21) we get:

Cl̃αkl̃v − Clαklv − Cl′αkl′v ≥ Cl̃(N − k)(αkl̃ − αk+1,l̃)v ≥

Cl̃
∑

n∗
l̃
>j≥k

(αjl̃ − αj+1,l̃)v(j+1) ≥ Cl̃
∑

n∗
l̃
>j≥k

(αjl̃ − αj+1,l̃)v(j+1) − S, (23)

where S = Cl′
∑

(αjl′ − αj+1,l′)v(j+1) + Cl
∑

(αjl − αj+1,l)v(j+1).

The last inequality (23) implies:

Cl̃αkl̃v − Cl̃
∑

(αjl̃ − αj+1,l̃)v(j+1) ≥

Clαklv − Cl
∑

(αjl − αj+1,l)v(j+1) + Cl′αkl′v − Cl
∑

(αjl′ − αj+1,l′)v(j+1),

which is equivalent to:

ul̃(v, k) ≥ ul(v, k) + ul′(v, k). (24)

Therefore an advertiser receiving a position in both auctions is better off after the join.

Consider an advertiser with valuations v who receives position k in auction l with n∗l ≥
k > n∗l′ . Such an advertiser will have ex post utility of ul(v, k). Since we have already shown

(24), such an advertiser, who wins a single position, is also better off after the join.�

The conditions in Theorem 7 stipulate intuitive requirements for advertisers to gain from

a joined ad auction: the resulting click-through rate and auction capacity must be sufficiently

improved relative to the offerings of the ad auctions when separate. First, the auction with

fewer advertisers must add value to the join through a point-wise larger click-through rate.

Second, there must be minimal overlap between the two auctions, so that Cl̃ is sufficiently

larger than both Cl and Cl′ . It is necessary for Cl̃ to be sufficiently large so that advertisers

in auction l (who already face higher prices due to more advertisers in l) gain sufficiently

from joining the two auctions.
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5.2 Example with exponential click-through rates

Suppose click-through rates αkl = βkl for each k ≤ K where βl < 1. Note that these

exponential click-through rates obey both monotonic ordering of αkl and the diminishing

differences property. Following the framework in Theorem 7, we set βl̃ = βl′ > βl. Condition

(21) then becomes:

Cl̃ ≥
Cl′β

k
l′ + Clβ

k
l

(N − k)βk+1
l′ − (N − k − 1)βkl′

∀k ≤ K.

Simplifying and rearranging:

Cl̃ − Cl′ − Cl
βkl
βkl′
≥ Cl̃(1− βl′)(N − k). (25)

Because βl < βl′ , we know:

Cl̃ − Cl′ − Cl
βl
βl′
≤ Cl̃ − Cl′ − Cl

βkl
βkl′

and

Cl̃(1− βl′)(N − 1) ≥ Cl̃(1− βl′)(N − k).

Thus the generalized restrictions in equation (25) become:

Cl̃ − Cl′ − Cl
βl
βl′
≥ Cl̃(1− βl′)(N − 1) (26)

because this condition implies the required restrictions for each k ≤ K.

By the subadditive property of joined auction l̃ and equation (26):

Cl′ + Cl ≥ Cl̃ ≥ Cl̃(1− βl′)(N − 1) + Cl′ + Cl
βl
βl′

which requires:

Cl′ + Cl ≥ Cl̃(1− βl′)(N − 1) + Cl′ + Cl
βl
βl′
.

Rearranging:
Cl
Cl̃
≥ (N − 1)

1− βl′
1− βl

βl′

(27)

Since Cl ≤ Cl̃ and N ≥ 2 (so that the RHS of (27) is not trivially 0), inequality (27) requires:

1− βl
βl′

> 1− βl′ .

16



Rearranging yields the requirement:

βl′ >
√
βl. (28)

Condition (28) requires that the auction with superior technology have βl′ sufficiently

larger than βl. Furthermore, if N is very large, then βl′ must approach 1 in order to satisfy the

requirement in (27). Note that these are necessary conditions, but not sufficient conditions.

5.3 Joining auctions that make some advertisers worse off

In this section we show that it a joined auction can negatively affect overall advertiser welfare.

Consider the following definition.

Definition 8. Auction l is uniformly stronger than auction l′ if and only if Cl ≥ Cl′, and

αkl ≥ αkl′ for each k. We denote this by Al ≥us Al′.

If one of the auctions is uniformly stronger than the other and if the resulting capacity

remains equal to its original capacity (i.e. the uniformly weaker auction represents a subset

of consumers of the stronger auction), then joining the auctions will make some advertisers

weakly worse off. The following theorem identifies sufficient conditions that make advertisers

worse off:

Theorem 9. Suppose Al ≥us Al′, and auctions l and l′ join in the manner of Definition 6.

If Cl̃ = Cl, then any advertiser that wins in both auctions is worse off.

Proof. The assumption implies that αkl̃ = αkl ≥ αkl′ for each k ≤ K and Cl̃ = Cl. Then

the joined auction will be identical to auction l, and thus ul̃(v, k) = ul(v, k) for any v and k.

Prior to the join, if an advertiser wins position k ≤ n∗l′ (and thus the advertiser receives a

placement in both auctions), then its total pre-merger utility of ul(v, k) + ul′(v, k) is greater

than its post-merger utility ul̃(v, k).

5.4 Joint auctions with endogenous capacity and technology

We now return to the foundations of consumer choice to more closely model the change in

capacities when joining auctions. Suppose there are three auctions l ∈ {A,B,C} positioned

on a unit segment with uniformly distributed consumers. Individually, each auction solves

the following optimization:

max
sl

Cl(ŝ)(1− βl)V (alsl + bl) ∀l (29)
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where ŝ represents a vector of three search costs. Denote the solution triple as (s̃A, s̃B, s̃C).

Without loss of generality, let auctions A and B join. The new platform’s technology

will be the pointwise maximum of A and B, and the new platform will retain the sum of

the prior capacities. Moreover, consider a case in which one auction, A, has a technology

that pointwise dominates that of engine B (aA > aB and bA > bB) and CA < CB. The

optimization program under a joined platform will be:

max
sA,sB

(CA(ŝ) + CB(ŝ)) (1− βA)V (aAsA + bA). (30)

When A and B join, the joined platform replaces the technology of B with A. Then the

marginal benefit of increasing search cost at B is the increase in CA (since A’s technology

replaced B’s technology), while the marginal cost is a reduction in CB. By noting that

C − CC(ŝ) = CA(ŝ) + CB(ŝ) and ∂Cl

∂sl′
> 0 ∀l 6= l′, we can conclude that total capacity

will only decrease in response to increasing sB. Then the solution to the joint maximization

becomes s∗B = 0 ≤ s̃B.

On the other hand, the total cost of increasing sA in a joined platform is exactly the same

as the marginal cost of increasing sA in A alone, while the marginal benefit to technology

remains unchanged. Then the joined platform will set sA such that s∗A = s̃A.

What will be the effect on the resulting individual and aggregate capacity and technology?

In order to predict C’s best response to the join between A and B, we examine the first order

condition of (29) for C:

CC(sc, s−c) = − 1

aC

∂CC
∂sc

(aCsC + bC). (31)

Because consumers’ utilities are linear in the cost of search, the partial derivative on the

RHS is a constant. Point x1 in Figure 2 illustrates the equilibrium market share of C prior

to join. After the join, A and B adjust their search costs from s̃−c to s∗−c, effectively reducing

C’s market share. Thus, C would find it undesirable to retain the former level of s̃C (point

x2), and C best-responds by reducing its search cost to s∗C . At location x3, C’s market share

has decreased while the combined market share of A and B has increased. Therefore

CA(s∗) + CB(s∗) ≥ CA(s̃) + CB(s̃) ≥ max{CA(s̃), CB(s̃)}.

Thus, both A and B enjoy increased capacity. Moreover, A’s superior technology replaces

B’s technology, so more advertisers will enter B. Similarly, by retaining the same level of

technology while increasing capacity, A attracts more advertisers. Because A and B each

attract more advertisers, the expected payment of advertisers on A and B will increase.
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6 Conclusion

Increasing search engine concentration makes it important to understand how advertisement

auctions compete. With multi-homing, an advertiser enters an ad auction if the expected

benefit to entry outweighs the associated cost, independent of outcomes in other auctions.

Hence traditional considerations of competition on reserve price or entry cost do not apply.

We therefore examined the supply side of ad auctions: search engines compete on capacity

(each user picks only one search engine) and compete by setting search cost to balance

advertisement clicks (the amount of inventory available for purchase in an auction) against

user utility.

Using the model’s first stage equilibrium entry strategies, we find empirical evidence for

the result that multi-homing advertisers are associated with greater traffic and larger reach.

In the second stage, comparative statics around consumer choice parameters offer a stylized

view of search engine market conditions: Google has greater market share and (some suggest)

superior technology, while Yahoo retains higher market share than Microsoft despite (some

say) inferior technology.

Our approach informs understanding of the advertiser welfare implications of joining auc-

tion platforms. Joining ad platforms can attract substantial regulatory attention: In Novem-

ber 2008, the Department of Justice planned to file antitrust charges to stop the proposed

Google-Yahoo transaction. Then, in 2009, the Department of Justice approved the proposed

partnership between Microsoft and Yahoo. At first glance it might seem paradoxical for the

Department of Justice to claim that the Google-Yahoo transaction is undesirable, for adver-

tisers and for the economy as a whole, while the Microsoft-Yahoo transaction purportedly

offers net benefits. But our analysis suggests that that conclusion is entirely possible. In

particular, by creating a joined ad platform of larger size than Microsoft or Yahoo alone,

the transaction lets advertisers spread participation costs over a larger purchase—making it

worth the while of small to midsize advertisers to sign up with the joined Microsoft-Yahoo

platform.

Questions of ad platform participation cost remain timely. Advertisers, competing search

engines, and others have long questioned Google policies that raise advertisers’ costs of multi-

homing, most notably through API terms and conditions that complicate advertisers’ efforts

to copy, export, and/or synchronize campaign data from Google onto other ad platforms.

Edelman (2008) Competition regulators recognized and endorsed these concerns— prompting
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Google’s commitments to the FTC and proposed commitments to the European Commission,

promising to cease these practices in the corresponding regions. Our analysis shows why API

restrictions (and other efforts to increase advertisers’ costs of using multiple platforms) can

be so effective in hindering competing platforms’ growth.

We view our contribution as threefold. First, whereas standard models of online advertis-

ing take advertisers’ participation as exogenous, we explicitly model an advertiser’s decision

to use or ignore a given ad platform, and we provide empirical support for our model. Sec-

ond, we offer a model of search cost to demonstrate competition across platforms, and we

provide empirical support for our model. Third, we analyze the prospect of joining auctions

and characterize when such joins do and do not increase welfare.
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Normalized Normalized

Impression Advertiser

Count Count

Google only 17.34 1000.00

Yahoo only 26.01 338.65

Microsoft only 80.92 84.21

Google and Yahoo 663.58 209.26

Google and Microsoft 78.03 24.61

Yahoo and Microsoft * *

Google, Yahoo, and Microsoft 1000.00 65.76

Table 1: Advertiser Size and Multi-homing Status (Source 1)

* - Our data source did not identify any advertisers using Yahoo and Microsoft but not

Google.

Proportion Average Average Average

Ranked Rank Reach Page-Views

Google only 0.696 17,428,974 4.19 0.22

Yahoo only 0.735 14,784,742 5.20 0.40

Microsoft only 0.705 15,838,598 4.40 0.41

Goole and Yahoo 0.862 8,305,741 17.11 1.18

Google and Microsoft 0.888 7,234,154 4.70 0.26

Yahoo and Microsoft 0.871 8,325,335 3.07 0.15

Google, Yahoo, and Microsoft 0.940 3,803,684 62.94 5.64

Table 2: Advertiser Size and Multi-homing Status (Source 2)
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Presence

Rank

Microsoft only 1

Yahoo only 2

Yahoo and Microsoft 3

Google Only 4

Google and Microsoft 5

Google and Yahoo 6

Google, Yahoo, and Microsoft 7

Table 3: Advertiser Presence Rank

Reach Rank Page Views

Presence Rank 0.0832 *** -1.01e-08 *** 0.8360 ***

(0.0208) (4.29e-10) (0.2551)

Pseudo R2 20.64 0.0079 0.0002

Model p-value <0.001 <0.001 0.001

Observations 26286 26286 26286

Table 4: Ordered Probit Regressions of Advertiser Presence Rank on Reach, Rank and Page

Views

∗ − P < 0.10

∗ ∗ −P < 0.05

∗ ∗ ∗ − P < 0.01
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