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When Open Architecture Beats Closed:  
The Entrepreneurial Use of Architectural Knowledge 

 

Abstract 

This paper describes how entrepreneurial firms can use superior architectural knowledge to open 

up a technical system to gain strategic advantage. The strategy involves, first, identifying “bottlenecks” in 

the existing system, and then creating a new open architecture that isolates the bottlenecks in modules and 

allows others to connect to the system at key interfaces. An entrepreneurial firm with limited financial 

resources can then focus on supplying superior bottleneck modules, and while outsourcing and allowing 

complementors to supply non-bottleneck components. I show that a firm pursuing this strategy will have 

a higher return on invested capital (ROIC) than competitors with a less modular, closed architecture. Over 

time, the more open firm can drive the ROIC of competitors below their cost of capital, causing them to 

shrink and possibly exit the market. The strategy was used by Sun Microsystems in the 1980s and Dell 

Computer in the 1990s. 
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When Open Architecture Beats Closed:  
The Entrepreneurial Use of Architectural Knowledge 

 
Introduction 

Entrepreneurial firms are often rich in knowledge but poor in other resources. Such firms must 

use their superior knowledge to compete against larger and  better endowed rivals. The question is, how? 

This paper describes how entrepreneurial firms can use superior architectural knowledge to open up a 

technical system and thereby gain strategic advantage. 

The concept of an “architecture” for man-made systems dates back to Herbert Simon’s (1962), 

classic paper  “The Architecture of Complexity.” The term entered the management literature when 

Henderson and Clark (1990) introduced the concept of “architectural innovation,” defined as follows: 

[Architectural] innovations … change the way in which the components of a product are linked 
together, while leaving the core design concepts (and thus the basic knowledge underlying the 
components) untouched. (p. 10)  

 
Notably, at the time of their writing, there was no universal concept of architecture that could be applied 

to all technical systems. Several engineering disciplines used the concept of architecture (e.g., computer 

architecture), but definitions of the term were domain-specific. 

Building on the work of Nam Suh (1990), Ulrich (1995, p. 419) offered the first general 

definition of product architecture, calling it “the scheme by which the function of a product is allocated to 

physical components” including “the specification of interfaces between interacting components.” 

Subsequently, in the engineering systems literature, Whitney et. al. (2004) defined architecture broadly to 

include (1) a list of functions; (2) the components needed to perform the functions; (3) the detailed 

arrangement and interfaces between the components; and (4) a description of how the system will operate 

through time and under different conditions. All complex man-made systems, including all products and 

processes, have architectures.  

Architectures can be the focus of study and a means of improving the performance of a technical 

system. In this context, architectural knowledge may be defined as knowledge about the components of a 

complex system and how they are related. It includes knowledge  about (1) how the system performs its 
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functions (the function-to-component mapping); (2) how the components are linked together (the 

interfaces); and (3) the behavior of the system, both planned and unplanned, in different environments 

(the dimensions of performance). In their case study of the photolithographic industry, Henderson and 

Clark (1990) showed that incumbent firms may lack architectural knowledge, hence may fail when faced 

with architectural innovations by challengers. This paper builds on that insight: it derives a strategy based 

on superior architectural knowledge that can be used by entrepreneurial firms seeking to displace 

incumbent rivals.1  

The rest of the paper is organized as follows: I first position this work within the literatures of 

strategy and innovation. I then describe specific types of architectural knowledge and identify those most 

useful to entrepreneurial firms. In the core of the paper, I describe a particular strategy that uses superior 

architectural knowledge to create an open architecture. I construct a stylized model to show how the 

strategy allows a small challenger to displace a larger incumbent with a closed architecture. I show how 

the strategy was used by Sun Microsystems and Dell Computer to unseat larger incumbent rivals and 

discuss the origins of their superior architectural knowledge. I end by discussing implications of the 

theory, limitations of the strategy, and opportunities for further work. 

 

Literature Review 

This paper is related to three distinct strands in the literatures on strategy and innovation. First 

and most directly, it applies modularity theory to a problem of strategy.  Second, it builds on recent work 

in strategy that seeks to apply resource-based  and dynamic capabilities theories of the firm to 

entrepreneurial ventures and to predict which ventures will succeed. Third, it extends theories in the 

strategy literature that match different organizational forms with different types of innovations or 

problem-solving strategies.  

                                                        

1 The main challengers in Henderson and Clark’s study were Japanese firms. However, the time period of their study (1962-
1986) largely pre-dated the rise of venture-capital-backed entrepreneurial firms in the US (Gompers and Lerner, 1999). 
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This paper has direct roots in modularity theory (Simon, 1962; Henderson and Clark, 1990; von 

Hippel, 1990; Langlois and Robertson, 1992; Garud and Kumaraswamy, 1995; Ulrich, 1995; Sanchez and 

Mahoney, 1996; Baldwin and Clark, 1997, 2000; Schilling, 2000; Sako, 2003). From this literature comes 

the basic idea that product and process architectures are targets of design, hence potentially a source of 

competitive advantage for firms. Baldwin and Clark (2000) explain in detail how the architecture of a 

technical system can be changed by applying modular operators such as splitting and substitution. This 

paper describes a strategy that relies on modularization of a technical system plus selective openness with 

respect to suppliers and complementors (Adner and Kapoor, 2010). As shown below, both the 

modularization and sourcing decisions must be guided by architectural knowledge. The net result is to 

give the entrepreneurial firm a “smaller footprint” in the technical system than its rivals, leading to a 

higher return on invested capital (ROIC).  

The resource-based view (RBV) of competitive advantage argues that firms derive sustainable 

competitive advantage through having control of resources that are valuable, rare, inimitable and non-

substitutable (Wernerfelt, 1984; Barney, 1991). However simply having resources is not enough: a firm 

must not only generate rents, but also appropriate them. Hence resources must be protected by “isolating 

mechanisms,” which prevent ex post re-equilibration of the rent stream (Rumelt, 1987).  

The RBV has recently been extended to entrepreneurial firms by Alvarez and Busenitz (2001) 

and Alvarez and Barney (2004). These papers argue that the entrepreneurial firm’s most critical resource 

is knowledge, including knowledge about how to assemble other resources to pursue an opportunity. 

They also suggest that the boundaries of an entrepreneurial firm can serve as isolating mechanisms to 

prevent the diffusion of valuable knowledge to potential competitors (Alvarez and Barney, 2004). In this 

paper, I translate the entrepreneurial firm’s dual problem of generating and appropriating rents into a 

problem of architectural design. I specify the properties of an open technical architecture that permit a 

small entrepreneurial firm to compete with larger, entrenched rivals. Then, building on the idea that the 

boundaries of the firm serve as isolating mechanisms, I locate these boundaries at key points in the open 
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architecture. 

A related body of literature views firms as bundles of path-dependent capabilities separated by 

transactions (Coase, 1937; Penrose, 1959; Nelson and Winter, 1982; Barney, 1984; Teece, Pisano and 

Shuen, 1997). On this view, the boundaries of a firm are shaped by the interaction of a firm’s specific 

competencies and its transactional opportunities. Firm and industry boundaries will shift in response to 

firms’ perceptions of gains from trade or gains from coordination (Jacobides, 2005; Jacobides and Winter, 

2005; Cacciatori and Jacobides, 2005).  

Reasoning from this perspective, Jacobides and Winter (2007) recently analyzed the optimal 

choice of vertical scope for an entrepreneurial firm operating under transaction costs and capacity and 

financing constraints. They showed, among other results, that financially constrained firms will optimally 

choose a narrower initial scope than those not facing such constraints. The model developed below also 

shows that financially constrained firms will choose narrower scope (a smaller footprint), but differs from 

Jacobides and Winter in that it explicitly considers dynamic competition between an entrepreneurial 

challenger and incumbent rival(s). Somewhat counterintuitively, the model shows that constraints on 

external funding may be advantageous for entrepreneurial firms.  

In addition to the literature on firm boundaries, there is a growing literature in strategy on firm 

origins as determinants of success. Across a range of industries, this work attempts to determine whether 

origin or other forms of pre-entry experience are predictive of success (Klepper and Simons, 2000; 

Klepper, 2002; Helfat and Lieberman, 2002; Agarwal, Echambadi, Franco and Sarkar, 2004; Klepper and 

Sleeper, 2005; Bayus and Agarwal, 2006). A basic argument in this literature is that firms “inherit” 

knowledge from parent companies or their founders’ previous employers. These different knowledge 

endowments lead the firms to pursue different strategies, which then have systematically different effects 

on long-term survival (Klepper and Sleeper, 2005; Agarwal, Audretsch and Sarkar, 2007). 

This paper focuses on knowledge content rather than origin. Following Henderson and Clark 

(1990), I argue that a particular type of knowledge—architectural knowledge—exists and that some 
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persons and firms may have more of it than others. I then ask, can a firm that is disadvantaged in terms of 

financial and organizational resources use superior architectural knowledge to succeed against a larger 

rival? And if so, by what strategy can this be accomplished? The standard I set for success of the strategy 

is high: the incumbent and entrant compete head-to-head and the entrant succeeds by driving the 

incumbent out. I am thus investigating a particularly pure form of creative destruction (Schumpeter, 

1934), rather than strategies involving product differentiation, complementarity or other forms of mutual 

accommodation (Agarwal et. al. 2007). 

The reasons to look at this extreme form of competition are twofold. In the first place, knowledge 

can be built by examining outlying as well as average forms of behavior. Understanding the disruptive 

potential of architectures is useful when evaluating investments in architectural knowledge. Secondly,  

when a small entrant (David) confronts a larger incumbent (Goliath), both would like to know whether 

David’s slingshot can deliver a killing blow. Below I establish criteria that determine whether a 

particulary open architecture has “killer potential.” Both offensive and defensive strategies can be 

predicated on this assessment.  

Finally, two lines of prior literature propose a correspondence or matching between different 

organizational forms and types of innovation or problem-solving strategies. In the first, Teece (1996, 

2000) and Chesbrough and Teece (1996) distinguish between autonomous innovations, which can be 

incorporated into an existing technical system without significant changes, and systemic innovations, 

which require many adaptations in many different parts of the existing system. Building on transaction 

cost economics, they argue that smaller firms, e.g. entrepreneurial firms, are well-suited to carry out 

autonomous innovations, whereas systemic innovations require the resources and capabilities of a large, 

vertically integrated enterprise. The second line originates in the knowledge-based theory of the firm 

(Kogut and Zander, 1992, 1996; Conner and Prahalad, 1996; Grant, 1996). Building on this work, 

Nickerson and Zenger (2004) argue that there is a critical match between forms of governance and 

problem-solving strategies. They characterize problem solving as a search in a high-dimensional  space or 
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landscape (Kaufmann, 1993; Levinthal, 1997; Rivkin and Siggelkow, 2003, 2007; Ethiraj and Levinthal, 

2004; Ethiraj, Levinthal and Roy, 2008) and then compare three modes of governance in terms of 

knowledge transfers and hazards. They argue that while markets can provide good solutions to highly 

decomposable problems, hierarchies (i.e., firms) are needed to solve less decomposable problems. 

Without contradicting these arguments, this paper shows that architectural knowledge may be 

used to change the scope of an innovation and the dimensions of a firm’s problem search space. 

Specifically, an entrepreneurial firm can use architectural knowledge to open up an architecture and in 

this fashion convert systemic innovationa  to autonomous innovations. When it redraws its boundaries 

and opens up its architecture, the entrepreneurial firm is in effect repartitioning the problem search space 

to its advantage. The next section describes how architectural knowledge can be used to identify these 

advantageous divisions.  

 

Types of Architectural Knowledge 

In this section I describe two specific forms of architectural knowledge needed by an 

entrepreneurial firm seeking to confront a larger and wealthier incumbent: knowledge of (1) bottlenecks 

in the technical system; and (2) potential remodularizations. 

To gain architectural knowledge, system designers typically experiment with different ways of 

putting the system together; study the system in different environments; and meter its internal states to see 

what levels of activity or stress arise at different junctures (Bell and Newell, 1971; Hennessy and 

Patterson, 1990; Patterson and Hennessy, 1994; Baldwin and Clark, 2000; Colwell, 2005). From these 

investigations, the architects will find bottlenecks in the system, that is, places where performance is 

constrained by one or more components (Ethiraj, 2007). They will also learn how to separate some 

components from the rest of the system and encapsulate them as modules of the system (Parnas, 1972; 

Parnas et.al., 1985; Baldwin and Clark, 2000). Finally the architects may discover that arranging some or 

all of the components in a new way will deliver new functionalities or higher levels of performance.  
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The first two types of knowledge—knowledge of bottlenecks and new potential 

modularizations—are critical to the entrepreneurial strategy I describe below. In the next two subsections, 

I explain in greater detail what such knowledge entails. (The third type of knowledge—new ways of 

linking components—can also be used strategically, but it generally gives advantage to vertically 

integrated incumbents. I will return to this point at the end of the paper.) 

Knowledge of Bottlenecks  

The performance of a complex system on some dimension is often constrained by one or more of 

its components (Ethiraj, 2007). Such locations in the system are called bottlenecks. Knowledge of 

bottlenecks is generally domain-specific: knowing how to find bottlenecks in a production line does not 

help to find them in a power grid or a computer chip. Across all domains, however, there are two generic 

types of bottleneck: absolute and fractional. 

An absolute bottleneck arises when the performance of the system equals that of its least-good 

component. Let   

� 

X denote the performance the system and     

� 

x1 , ..., xn  denote the performances of each of   

� 

n  

separate components. An absolute bottleneck exists if: 

X = min(x1, ..., xn )      .        (1)  

For example, an assembly line is only as fast as its slowest station; the security of a system is only as 

good as its most vulnerable portal; a chain is only as strong as its weakest link.  

On dimensions with an absolute bottleneck, there is no point in seeking to improve any part of the 

system that does not involve the bottleneck (Ethiraj, 2007). Addressing the bottleneck, however, may 

require redesigning components outside the bottleneck itself. For example, architects may be able to shift 

some of the activities in the bottleneck to other parts of the system. (In manufacturing, this is known as 

“line-balancing;” in power grid engineering, “load-balancing.”) Or they can directly add capacity at the 

bottleneck itself, for example, by putting two components where there was one.  

Fractional bottlenecks arise when system performance is additive, i.e., equals the sum of the 

performance of individual components: 



OPEN ARCHITECTURE VS. CLOSED 
   
 
 

10 

    

� 

X = x1 + ... + xn         (2) 

For example, the time needed to run a software program is the sum of the times needed to complete its 

instructions.2 And the cost of manufacturing a product equals the sum of the costs of each input. 

On dimensions with additive performance, although all components contribute to the whole, 

components with high x’s are more significant than those with low x’s. A given percentage improvement 

has a greater impact on total system performance if the component has a high x vs. a low x. High x 

components are thus targets of architectural improvement. In computer architecture, a maxim known as 

Amdahl’s Law recommends to “make the common case fast” (Hennessy and Patterson, 1990; Patterson 

and Hennessy, 1994). In quality control, Juran’s famous “80-20” rule states that 80% of the problems 

come from 20% of the products (or customers) (Juran, 1960, 1992). These principles, taken from very 

different domains, draw attention to the fractional bottlenecks in particular technical systems. 

Knowledge about Potential Modularizations 

Architectural knowledge also allows designers to change the modular structure of the system. A 

complex product or process can be envisioned as a set of components connected by dependencies or links, 

which can be physical, energetic, or informational. (Eppinger, 1991; Baldwin and Clark, 2000; Baldwin, 

2008.) In general, dependencies among components can be managed in one of two ways. On the one 

hand, designers can communicate in real time and work out by mutual adjustment how to handle the 

dependencies. Alternatively, architects can specify the allowed dependencies a priori, by establishing a set 

of interfaces, bounds, and tolerances. The a priori specification replaces real-time co-ordination with a 

rule—a design rule—that is binding on all parties (Mead and Conway, 1980; Baldwin and Clark, 2000).  

Design rules place more restrictions on the system than real-time communication and mutual 

adjustment, hence can detract from system performance. However, architectural knowledge can be used 

to determine which design rules offer little or no harm. In particular, knowledge of bottlenecks helps with 

                                                        

2 In general, architectures based on parallel processing are subject to absolute bottlenecks, while those based on sequential 
processing are subject to fractional bottlenecks. 
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the placement of design rules. For example, in a system of 10 components, architectural knowledge might 

reveal that Component 1 is a bottleneck. The architects can then create design rules that segregate 

Component 1 from the rest of the system (Parnas, 1972). The designers can then focus on improving 

Component 1 through multiple rounds of trial-and-error learning while keeping the rest of the system the 

same. 

Complex Architectures 

The science of representing complex architectures in a general and formal way is still in its 

infancy (Fixson, 2005, MacCormack, Rusnak and Baldwin, 2006, Rosenkopf and Schilling, 2007). 

Nonetheless, a strategically useful description of a technical system’s architecture must have three parts: 

(1) a list of architectural components; (2) a description of the interdependencies between the components; 

and (3) the (expected) performance of the system on dimensions that are critical to its success.  

The components of an architecture are design decisions made early on that will guide the later 

development and building of the system. For firms, architectural components of the technical system 

generally include the physical parts of its product (the so-called bill of materials), software programs 

governing the product’s behavior, and the processes needed to design, produce and deliver the product.3 

These parts, programs and processes may be insourced or outsourced. Sourcing decisions determine the 

boundaries of the firm, and thus are critical architectural decisions. 

Interdependencies between architectural components (equivalently the system’s modular 

structure) can be represented using Design Structure Matrix or DSM (Eppinger, 1991; Baldwin and Clark, 

2000; MacCormack, Rusnak and Baldwin, 2006). Also known as an influence matrix (Ethiraj and 

Levinthal, 2004; Rivkin and Siggelkow, 2007), a DSM is an n × n  matrix in which the architectural 

components are arrayed along rows and columns and dependencies recorded in the cells. If element ai 

depends on element aj (in the sense that a change in j may require a change in i), then a mark is placed in 

                                                        

3 The product itself may be a physical good, an intangible good, or a service. 
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the row of i and the column of j.  

Finally, the performance of the architecture (along a particular dimension, X) is a mapping from 

the architectural components and the DSM to the real line: X ≡ f :{a1,...,an;DSM}→ R . In any strategic 

evaluation of architecture, managers must be concerned with at least three types of performance: unit cost 

(c); invested capital (κ ); and quality (which may have several dimensions). Cost, capital and quality are 

different dimensions of performance, hence each has a bottleneck: an element that if changed would 

improve performance on that dimension to the maximal degree. If there are no dependencies between 

components (the DSM has only zeros in its off-diagonal cells), then the firm is free to address each 

bottleneck independently. However, in most cases, interdependencies will constrain the firm’s sphere of 

action. For example, if all elements are co-specialized (the DSM is fully filled in), then changing one 

architectural component, e.g., outsourcing a part, will affect all other components in unpredictable, 

potentially disastrous ways. 

Thus to address bottlenecks on one dimension, e.g., cost, the bottleneck components must be 

isolated from the rest of the system. Ideally, architects will set up a modular structure (a modular DSM) 

such that each bottleneck component is in a separate module. Each bottleneck can then be addressed 

without affecting the rest of the system. In reality, however, the components might not sort themselves 

out so nicely: for example a component which can be purchased cheaply on the market and thus is a 

candidate for outsourcing, might turn out to be a quality bottleneck, which should be redesigned and 

produced inhouse. In such cases (which are common), architects will make tradeoffs by adjusting both the 

architectural components and the dependency graph (the DSM). Conceptually, the space of all possible 

architectures —all possible combinations of components and dependencies —is vast, thus in practice, 

architects find acceptable solutions using heuristic search methods and the criterion of satisficing (Simon, 

1981). 

In the next section, I define a three-pronged test that can be used to compare a challenger’s 

proposed architecture to an incumbent’s existing architecture. This test can be viewed as a stopping rule 
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for what would otherwise be an unbounded and possibly non-convergent search process. If the proposed 

architecture satisfies the three criteria, and the incumbent’s architecture is not modular with respect to the 

bottlenecks being addressed, then the challenger will have a sustained competitive advantage vis à vis the 

incumbent (Barney, 1991). Armed with its superior architecture, a small, financially constrained firm can 

use the stategy described below to compete with a larger, wealthier incumbent and have a reasonable 

chance of success. David can win against Goliath if the architectural slingshot passes this test. 

 

The Strategic Use of Architectural Knowledge 

In this, the main section of the paper, I explain how an entrepreneurial firm can use architectural 

knowledge to create an open architecture in order to unseat a larger incumbent. In brief, the 

entrepreneurial firm first uses its knowledge to (re)modularize the system and isolate the bottleneck(s). It 

then creates an open technical architecture in which the focal firm supplies bottleneck components, while 

allowing suppliers and complementors to provide non-bottleneck components. This architectural strategy 

results in a higher return-per-unit-of-invested-capital (ROIC) for the entrepreneurial firm. I use a stylized 

model to show how in multiple rounds of competition, a firm with an ROIC advantage can surpass the 

incumbent and force it to shrink.  

Applying Architectural Knowledge 

To begin, consider Firm C  (Challenger), which has architectural knowledge about a particular 

product and related production processes. Firm C’s designers know about the  system’s bottlenecks, and 

have ideas about how to remedy them. They also know how to remodularize the system to separate 

bottleneck from non-bottleneck components.  

The industry Firm C seeks to enter has one or more incumbents. For simplicity, I will speak as if 

there is only one incumbent (Firm I), but there may in fact be several following similar strategies. Firm I, 

by definition, does not have as much architectural knowledge as Firm C, but it is established and 

profitable. (Henderson and Clark (1990) showed that incumbents often do lack architectural knowledge. 
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The case studies discussed below shed light on the origins of such knowledge asymmetries.) 

As discussed above, with its superior architectural knowledge, Firm C can create an open system 

with equivalent performance and cost by (1) isolating the bottlenecks in separate modules; (2) creating 

superior designs for the bottleneck components; and (3) delegating the provision of non-bottleneck 

components to suppliers and complementors. A system with more modules by definition has more “thin 

crossing points,” that is, places in the product design or production process where the dependencies 

between components are few and simple. Thin crossing points have low transaction costs (Langlois, 

2006; Baldwin, 2008). Thus Firm C can place transactions at key points within its architecture. It can 

outsource components that can be purchased cheaply on the market and/or allow consumers to purchase 

complementary components directly. Because the outsourced and complementary components are not in a 

bottleneck, they can be technologically inferior to the incumbent’s components, but have little or no 

negative impact on overall system performance.  

Given a technical system with n components, each of which can be supplied by the focal firm or 

an outsider, there are (at least) 2n candidate architectures that Firm C might consider. The incumbent, 

having less architectural knowledge, originally selected its architecture from a subset of these 

possibilities. As indicated, each architecture determines the performance of the corresponding technical 

system along three dimensions: unit cost, invested capital, and quality. I assume that the performance 

characteristics of the incumbent’s architecture are known to the challenger.4 Formally, let: 

� 

κC ,κ I ≡     The capital utilized per unit of production by the challenger and incumbent 
respectively. 

 

� 

cC , c I ≡     The per-unit variable cost of the system for the challenger and incumbent respectively.  
For the challenger, this cost includes the price of all out-sourced components.5 

 
                                                        

4 Performance on quality dimensions can be obtained from customer reviews and by directly studying the incumbent’s products. 
If the incumbent is a publicly traded firm, performance on cost and capital dimensions can be gleaned from published financial 
statements. 
5 It does not matter whether the challenger purchases the outsourced components and assembles the whole system or customers 
purchase the components and assemble the system themselves. Either way the challenger must consider the whole system’s 
variable cost. 
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� 

pC (pI ) ≡    Given a price pI of the incumbent’s system, pC(pI) is the price of the challenger’s 
system that makes purchasers indifferent between the two. 

 
(The function pC (pI )  collapses multiple dimensions of quality into a single willingness-to-pay function. 

Note that this is the price consumers pay for a whole system. Payments to complementors are subtracted 

from this price when determining the price charged by the focal firm.) 

I now define three conditions that a candidate architecture must meet for the challenger to 

succeed in dynamic competition against the incumbent. Using its superior knowledge, the challenger must 

create  a new architecture such that: 

� 

κC <κ I           (3a) 

cC ≤ cI           (3b) 

� 

pC (pI ) = pI  .        (3c) 

That is, the challenger’s architecture must have the same quality as the incumbent’s (3c), the same or 

lower variable cost (3b) and require less capital per unit of production (3a). Less capital per unit of 

production in general means that the challenger delegate to suppliers and complementors more of the 

activities that go into desiging and producing the system as a whole. By concentrating on bottlenecks, the 

challenger can reduce its span of activities with no penalty in terms of system unit cost or quality. 

Perforce it will have created an open architecture which relies on external agents—other firms and user 

communities—to supply key modules of the system. 

Conditions 3a-c taken together ensure that the challenger’s return on invested capital (ROIC), 

defined below, will be higher than the incumbent’s for all prices the incumbent might charge. The 

challenger with an open architecture satifying these conditions thus has an “ROIC advantage.”  

A Model of Industry Dynamics 

This subsection sets up a formal model of dynamic competition between the challenger and 

incumbent.  

Starting Conditions. The incumbent and the challenger sell similar products. At the start of the 
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competition (t=0), the incumbent has the capacity to sell NI(0) units of the good. Its “invested capital,” 

II(0), is defined as its capacity times the capital needed per unit of production: 

 

� 

I I (0) ≡ κ I ⋅N I (0)    .       

The challenger has NC(0) units of capacity with corresponding invested capital of: 

� 

IC (0) ≡ κ C ⋅NC (0)  . (In 

principle, κI and κC might be functions of N. Such an assumption complicates the analysis without 

changing the basic results.) 

Like Jacobides and Winter (2007), I assume the challenger is financially constrained. Thus at the 

start of the competition, the challenger is both poorer and smaller than the incumbent: 

� 

IC (0) << I I (0)   and    

� 

NC (0) << N I (0)   . 

Timing. Time is marked out in discrete intervals, (t, t+1). At the start of each interval, each firm 

has capacity, N(t) with corresponding invested capital, 

� 

I (t) ≡ κ ⋅N (t) . (Unsubscripted relationships apply 

to both firms.) The firms set prices at the start of each interval, and sell products during the interval. A 

firm cannot sell more units than it has the capacity to produce. 

Suppliers and Complementors. I rely on Adner and Kapoor’s (2010) decomposition of an 

ecosystem into end-users, complementors and suppliers of the focal firm. Suppliers’ components are 

purchased by the focal firm and incorporated into its products. Complementor’s components are 

purchased by the end-user and combined with the focal firm’s product to make a functioning whole 

system. End-user demand is determined by the system price (see below). 

For simplicity, I assume that complementors and suppliers (of the challenger and incumbent) 

charge fixed prices. This can come about one of in three ways: (1) suppliers and complementors 

participate in competitive markets where prices are driven down to marginal cost; (2) suppliers and 

complementors are voluntary associations of users that supply goods (e.g., software) at marginal cost; or 

(3) system demand is small relative to each supplier’s and complementor’s total demand, hence does not 

materially affect their prices.  

Mechanically, in what follows, complementor’s prices are added to each firm’s own price to 
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determine its total system price to consumers. Supplier’s and complementor’s prices are also added to 

each firm’s cost. As a result, prices and unit costs are measured at the system level and are comparable for 

the challenger and incumbent. (Even though the challenger does less inhouse, end users must pay for 

every component in the system.) 

Demand. Demand for the system is characterized by a downward-sloping demand function, 

Q(p) where ′Q (p) < 0 . The demand function is invariant through time and has a well-defined inverse: 

� 

p(⋅) ≡ Q−1Q(p) . The firms (and complementors) do not price-discriminate thus all customers buying 

systems from one or the other firm in a given time interval pay the same price.  

By condition (3c), if the challenger sets its system price (its own price plus price of complements) 

equal to the incumbent’s: pC =pI , customers will be indifferent between systems made by either firm. I 

assume that if pC < pI, customers will buy from the challenger first, and the incumbent will sell products 

only after the challenger’s capacity is exhausted. Symmetrically, if pC > pI customers will buy from the 

incumbent first, and the challenger will sell products only after the incumbent runs out of capacity. 

Capacity Dynamics. The firms’ capacity depreciates at a fixed rate, δ (the same for both). 

Depreciation reflects the wearing out and technical obsolescence of physical capital and the spoilage and 

technical obsolescence of working capital. Technically this assumption ensures that capacity once created 

does not endure forever, but must be replaced with new investments over time.6  

Each firm can use the cash collected during the interval, (t, t+1), to replace depreciated capacity 

and add new capacity at the end of the interval. Thus at the beginning of the next interval, t+1, each 

firm’s capacity will equal its initial capacity, N(t), less depreciated capacity, δN(t), plus replaced capacity, 

R(t); plus new capacity purchased with its incremental investment, ΔΙ(t)/κ: 

� 

N (t + 1) ≡ N (t) −δ ⋅N (t) + [R(t) + ΔI (t) /κ ] 

This is simply an accounting identity. The term in brackets refers to capital expenditures that are at the 

                                                        

6 Consistent with standard accounting practice, in the model depreciation is recognized as a non-cash expense and deducted from 
revenue in the calculation of profit. The non-cash aspect of depreciation is accounted for in the model. 
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discretion of each firm. (Note that ΔI(t) denotes a dollar amount of new capital; dividing by κ converts 

this dollar expenditure into equivalent units of new capacity.) 

As long as a firm elects to grow, its replacement capital will equal depreciated capital and thus: 

 

� 

N (t + 1) = N (t) + ΔI (t) /κ    . 

But if the firm chooses not to invest in the business, its capacity will shrink at the rate of depreciation: 

 

� 

N (t + 1) = N (t) ⋅ (1−δ )    . 

Non-invested earnings and depreciation cash flow are assumed to accumulate in a cash account, which 

earns a market rate of return. 

Profit and ROIC. For simplicity, I assume the firms pay no income taxes. (Taxes complicate 

notation without changing the basic results.) A firm’s profit,  Π(t), during the interval (t, t+1) is given by: 

� 

Π(t) = [ p(t) − c] ⋅q(t) −δ ⋅κ ⋅N (t)    ; 

where:  

• 

� 

p(t)  is the price charged by the firm in the interval (t, t+1); 
• c is the firm’s variable cost per unit;  
• q(t) is units sold by the firm during the interval; and 
• δ κ N(t) is the depreciation of the firm’s capital base. 
 

(The prices set and quantities sold by each firm are determined through their competitive interaction as 

discussed below.) 

The return on invested capital (ROIC) of either firm is defined as its profit during the period 

divided by its invested capital at the start of the period: 

� 

ROIC (t) ≡
Π(t)
I (t)

=
[ p(t) − c] ⋅q(t) −δ ⋅κ ⋅N (t)

I (t)
   .    (4) 

A firm’s ROIC can be compared to the cost of capital for assets of comparable risk. If the ROIC is 

greater than or equal to the cost of capital, then adding to the firm’s capacity is an attractive investment. 

Otherwise investors are better off purchasing assets of equivalent risk in the capital markets.  

Decision Rules. To complete the specification of the model, I must define the decision rules the 

two firms apply in setting prices and investing in new capacity. To clarify fundamental patterns, I begin 
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with a set of simplistic decision rules, and then systematically explore the impact of changing them. 

First, with respect to pricing, I assume that the firms set prices to utilize all their capacity. This 

means the firms do not engage in strategic pricing games. Strategic pricing games for this type of 

competition have been analyzed by Kreps and Scheinkman (1983), but the Nash equilibrium strategies 

they derive require an unrealistic degree of common knowledge. In contrast, “set prices to utilize all 

capacity” is a simple decision rule that each firm can implement unilaterally. The Kreps-Scheinkman 

results are discussed in greater detail below. 

Second, with respect to investment, I assume the firms’ managers are myopic value maximizers. 

The fact that managers are myopic means that they cannot forecast future prices or profits, although they 

do know the current price, their firm’s ROIC, and the cost of capital. As value maximizers, the managers 

will invest in new capacity if and only if their firm’s current ROIC is above the cost of capital.  

Third, with respect to financing, I assume that, after their initial founding, the firms do not have 

access to an external capital market. Thus each firm can grow only by reinvesting its own earnings. 

These are simple decision rules, which do not require complex strategic thinking on the part of 

the managers of the two firms. The results of the model will change if the managers can behave 

strategically, can collude, or have access to external sources of finance. Below I will consider the impact 

of each of these changes on industry dynamics, but first, I will show how competition unfolds under these 

simple rules.  

Equilibrium Prices and Growth Rates for the Challenger and the Incumbent.  

The model relies on three propositions. The first determines equilibrium industry prices; the 

second determines each firm’s maximum growth rate; the third shows that the challenger’s ROIC will be 

higher than the incumbent’s in every period, and it will grow faster. (Proofs are in the Appendix.) 

Proposition 1 (Pricing). In each time interval, the challenger and the incumbent will charge the 

same price, p*(t), which clears the market. 

 
Discussion. For Proposition 1 to hold, customers with the highest willingness to pay must buy 
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from the cheapest firm; and both firms must behave non-strategically, that is, without predicting the other 

firm’s response. If customers with the highest willingness to pay buy from the more expensive firm, then 

it is possible for both firms to sell out their capacity while one of them charges a price above the market 

clearing price, p*(t). If the firms behave strategically, then, for low levels of capacity,  there is a Nash 

equilibrium in which both firms charge p*(t). For higher levels of capacity, however, there is no Nash 

equilibrium in pure strategies. Kreps and Scheinkman (1983) show that there is a mixed-strategy 

equilibrium in which both firms name prices above p*(t) with positive probability, and the larger firm’s 

prices stochastically dominate the smaller firm’s. (That is, the larger firm charges higher prices on 

average, hence has more excess capacity on average than the smaller firm.)  

However, the Kreps-Sheinkman mixed-strategy equilibrium imposes high common knowledge 

requirements on the two firms (Samuelson, 2004). They must first know (and know that the other knows, 

etc.) that they are playing the game. They must then jointly determine the distribution functions of their 

respective equilibrium strategies, each as a function of the other. The probability that two firms engaged 

in a finite number of rounds of competition would be able to converge on this equilibrium is remote, and 

thus the Nash equilibrium is not a realistic characterization of firm behavior. In contrast, the rule “raise 

prices if you are short of capacity and lower them if you have excess capacity,” can be applied by each 

firm unilaterally. 

 A different model of strategic behavior is for the two firms to collude in setting prices. They 

could agree to set a monopoly price and restrict capacity to a level that supported that price. However, this 

cartel-type arrangement is potentially unstable (as well as illegal in many countries). The smaller firm (C) 

would always have incentives to reduce its price, hoping that the larger firm (I) would refrain from doing 

so. (This is indeed what happens in the Kreps-Scheinkman equilibrium.) The smaller firm also has 

incentives to reinvest its profits to increase its own capacity, something not envisioned in the Kreps-

Scheinkman model.  
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Proposition 2 states that without access to an external capital market, a firm’s maximum growth 

rate equals its return on invested capital. This is a well known tenet of corporate finance, sometimes 

known as the “sustainable” or “balanced” growth formula (Donaldson, 1984). 

Proposition 2 (Max Growth = ROIC). Let g(t) denote the maximum growth rate of a firm’s 

capacity in the interval (t, t+1) and assume that a firm pays no dividends and receives no capital infusions 

in the form of debt or equity. Then: 

 

� 

g(t) = ROIC (t) . 

Discussion. Under the assumptions, the firm will apply its entire net income to adding new 

capacity. The capacity added relative to the value of capacity already installed equals the firm’s ROIC. 

 

Proposition 3 combines the first two propositions to show that the challenger will be able to grow 

faster than the incumbent for any level of capacity. 

Proposition 3 (Relative ROIC and Growth Rates for Incumbent and Challenger) .  If prices 

are set as in Proposition 1, then under conditions 3a-c, the challenger’s ROIC and maximum growth rate 

are higher than the incumbent’s for any level of capacity: 

� 

ROICC > ROICI  and gC (t) > g I (t)     for all

� 

NC (t), N I (t)    . 

Discussion. Under conditions 3a-c, if both firms charge the same price, the challenger’s ROIC is 

strictly greater than the incumbent’s. Hence by Proposition 2, the challenger’s maximum growth rate is 

higher than the incumbent’s for any level of capacity. 

Results of the Model: Epochs of Competition 

In this subsection, Propositions 1 – 3 are used to characterize the industry’s dynamics over four 

“epochs” of competitive interaction. Consistent with the notion that Firm C is a small challenger facing a 

larger, established incumbent, I assume that, at t=0, the incumbent is earning more than its cost of capital, 

and the challenger is very small relative to the incumbent: ROICI (0) > ρ  and 

� 

NC (0) << N I (0) .  

First Epoch of Competition. During the first epoch of competition, both firms will grow, but the 
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challenger will grow faster than the incumbent and thus the challenger’s market share will increase. Prices 

and thus ROICs and growth rates will decline over time. This pattern will continue until the incumbent’s 

ROIC drops below its cost of capital. At this point, the industry enters the second epoch of competition. 

Second Epoch. Given the decision rules, when the incumbent’s ROIC drops below the cost of 

capital, it will stop growing and not replace depreciated capacity: 

NI (t +1) = NI (t) ⋅[1− δ ]     .  

Meanwhile the challenger will continue to grow at its ROIC: 

� 

NC (t + 1) = NC (t) ⋅[1+ ROICC (t)]  

During this transitional epoch, aggregate capacity will shrink if the challenger’s new capacity is 

less than the incumbent’s depreciated capacity. If this happens, the market clearing price during the next 

interval will go up. Indeed it may go up enough to make the incumbent’s ROIC higher than its cost of 

capital, in which case, the incumbent will begin investing again.  

But the challenger’s capacity will continue to increase, until at some point its new capacity is 

greater than the incumbent’s depreciated capacity. Then and thereafter, the incumbent will only shrink. 

This marks the beginning of the third epoch of competition.  

Third Epoch. During this period, the challenger will grow at its ROIC and the incumbent will 

shrink. At some point the incumbent will account for such a small share of capacity that the challenger 

can ignore it in setting the price. This marks the beginning of the fourth and last epoch, when the 

challenger faces no effective competition. 

Fourth Epoch. With no competition, the challenger is free to behave as a monopolist. It can then 

set price in one of two ways: First, if there are no other potential entrants, then the challenger can set its 

price to maximize monopoly profits. However, if there are potential entrants, then the market is 

contestable (Baumol, 1982; Baumol et.al. 1983), and the challenger must set its price at a level that deters 

entry. If the threat of entry comes from firms like the incumbent, this means setting the price below the 

point where the incumbent’s ROIC equals the cost of capital. 
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A Numerical Simulation 

Table 1 presents the results of a numerical simulation of twenty rounds of competition between 

an incumbent and a challenger. For purposes of the simulation, I assumed a demand function 

characterized by constant elasticity of substitution: 

� 

p = a ⋅q−b , with a = 2000 and b = .2. Invested capital 

per unit of production (κ) was set at $1000 for the incumbent and $500 for the challenger, thus the 

challenger was twice as efficient as the incumbent. The starting levels of capacity were 1000 units for the 

incumbent and 10 units for the challenger. Variable costs per unit were $10 for each firm; the depreciation 

rate was 20%; and the cost of capital 20%. The rows of the table show results for successive rounds of 

competitition. The columns show: (1) the capacity of each firm;  (2) the market clearing price; (3) ROICs 

and growth rates of the two firms; (4) the industry growth rate; and (5) profits minus the rental cost of 

capital for each firm. Horizontal lines mark off the four epochs of competition.  

Table 1 
Simulated Results for 20 Rounds of Competition 
 

 Capacity  ROIC Growth Rate 
Profits less Cost of 

Capital 
Time Incumbent Challenger Price Incumbent Challenger Incumbent Challenger Industry Incumbent Challenger 

0 1,000.0 10.0 501.4 29.1% 78.3% 29.1% 78.3% 29.6% 91379 2914 
1 1,291.4 17.8 476.0 26.6% 73.2% 26.6% 73.2% 27.2% 85261 4743 
2 1,634.9 30.9 453.6 24.4% 68.7% 24.4% 68.7% 25.2% 71338 7523 
3 2,033.2 52.1 433.7 22.4% 64.7% 22.4% 64.7% 23.4% 48199 11655 
4 2,488.1 85.8 415.8 20.6% 61.2% 20.6% 61.2% 21.9% 14495 17666 
5 3,000.2 138.3 399.7 19.0% 57.9% -20.0% 57.9% -16.6% -31038 26234 
6 2,400.2 218.5 414.4 20.4% 60.9% 20.4% 60.9% 23.8% 10551 44653 
7 2,890.7 351.5 397.1 18.7% 57.4% -20.0% 57.4% -11.6% -37390 65746 
8 2,312.6 553.2 407.0 19.7% 59.4% -20.0% 59.4% -4.7% -6969 108982 
9 1,850.1 881.9 410.9 20.1% 60.2% 20.1% 60.2% 33.0% 1665 177165 

10 2,221.8 1,412.6 388.1 17.8% 55.6% -20.0% 55.6% 9.4% -48652 251579 
11 1,777.4 2,198.2 381.2 17.1% 54.2% -20.0% 54.2% 21.0% -51195 376329 
12 1,421.9 3,390.5 366.9 15.7% 51.4% -20.0% 51.4% 30.3% -61274 532000 
13 1,137.5 5,132.6 348.0 13.8% 47.6% -20.0% 47.6% 35.3% -70532 708283 
14 910.0 7,575.7 327.6 11.8% 43.5% -20.0% 43.5% 36.7% -75022 890608 
15 728.0 10,872.1 307.7 9.8% 39.5% -20.0% 39.5% 35.8% -74472 1062281 
16 582.4 15,171.1 289.4 7.9% 35.9% -20.0% 35.9% 33.8% -70218 1205150 
17 465.9 20,615.6 273.1 6.3% 32.6% -20.0% 32.6% 31.4% -63808 1299909 
18 372.7 27,338.5 258.5 4.9% 29.7% -20.0% 29.7% 29.0% -56463 1326539 
19 298.2 35,459.3 245.7 3.6% 27.1% -20.0% 27.1% 26.7% -49002 1264922 
20 238.6 45,081.0 234.3 2.4% 24.9% -20.0% 24.9% 24.6% -41915 1095482 

 

As predicted by the model, in Epoch 1 (periods 0 – 4), both firms grow profitably, but the 

challenger grows faster than the incumbent. In period 5, the incumbent’s ROIC drops below the cost of 

capital, and Epoch 2 begins. Consistent with the value-maximizing decision rule, the incumbent does not 

replace or add new capital, thus its capacity shrinks by 20% (the rate of depreciation). The challenger 
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does invest, but is still relatively small, thus industry capacity shrinks by 16.6%. As a result, prices 

increase in period 6; the incumbent’s ROIC bounces back above the cost of capital; and at the end of 

period 6, it invests in new capacity. But in period 7, the incumbent’s ROIC again drops below its cost of 

capital: it shrinks in periods 7 and 8, then grows again in period 9. 

Throughout Epoch 2 (periods 5 – 9), the challenger grows profitably, but remains small relative 

to the incumbent. However, in period 10, the challenger’s increase in capacity exceeds the incumbent’s 

decrease. This marks the beginning of Epoch 3. During this epoch (periods 10 – 18), the challenger 

consistently adds capacity while the incumbent shrinks at a rate determined by how fast its capacity wears 

out. 

Period 18 marks the end of Epoch 3 and the transition to Epoch 4. Up to this point in time, the 

challenger’s profits (less the rental cost of capital) have increased in every period. However, as the last 

column of the table shows, if the challenger continues to add new capacity after period 18, its profitability 

will fall. The extra units sold will not make up for the corresponding drop in price. From this point on, the 

challenger is better off if it replaces depreciated capital but does not grow. 

By period 18, the incumbent has shrunk dramatically and accounts for only around 1% of total 

industry capacity. Its ROIC is well below the cost of capital, thus even if the challenger does stop 

growing, the incumbent will not begin to invest, but will continue to shrink. 

The dynamics of competition between the incumbent and challenger are affected by the specific 

parameters of the simulation. In other cases (not shown), the industry can make a direct transition from 

Epoch 1 to Epoch 3: this occurs, for example, if the depreciation rate, the cost of capital, or the elasticity 

of demand are low. Alternatively, if the capital efficiency parameter, κ, of the two firms is very close, and 

the challenger starts out relatively small, Epoch 2 with its cycles of industry expansion and shrinkage, 

may go on for a long time. In Epoch 4, the challenger may also find that the price that maximizes its own 

profitability (the monopoly price) gives the incumbent incentives to invest. The two firms can then either 

reach an accommodation, i.e, collude, or the challenger may accept a permanent reduction in profitability 
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to be sure that the incumbent (or a similar firm) does not enter under its price umbrella.  

Investor Returns  

How will the investors in the incumbent and the challenger firms fare over the four epochs of 

competition? Obviously, the challenger’s investors will earn more per dollar invested in every period. 

However, as long as the incumbent’s managers behave as value maximizers, its investors may do quite 

well. Their initial investment will earn more than the cost of capital for some amount of time—the period 

before the challenger enters plus the time it takes the two firms to move down the demand curve. And 

when its ROIC falls below its cost of capital, the incumbent will begin to return cash to the investors. 

There will be some amount of time in which the invested capital remaining in the business is not earning 

its cost of capital, but the excess returns of Epoch 1 can outweigh the inadequate returns in Epochs 2 and 

3. Furthermore, if the incumbent sees that it is over-matched, it may exit voluntarily, bringing the period 

of inadequate returns to an early close. 

Investors suffer if either firm has access to external sources of finance. A firm with access to 

external capital can exceed the “sustainable” growth rate determined by its ROIC. However, by 

Proposition 1, faster industry growth simply accelerates the decline in prices and ROICs, destroying value 

for both firms. Thus, somewhat counterintuitively, the model shows that constraints on external financing 

may be advantageous for entrepreneurial firms. Under the assumptions of the model, investors in an 

entrepreneurial firm (e.g., venture capitalists) are better off if the firm does not access external capital 

markets, but uses only its own internally generated funds to grow. Too-rapid destruction of the existing 

order undercuts the goal of capturing value for investors. 

 

Empirical Evidence 

In this section, I offer evidence that entrepreneurial firms have employed strategies based on open 

architectures with some success. The model showed that the same basic strategy gives rise to to 

heterogeneous outcomes, hence industry dynamics will play out in different ways in different settings, 
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depending on initial conditions and the firms’ access to external finance. For this reason, it would be 

difficult, if not impossible, to detect this strategy in large data sets. Nevertheless, it is possible to show 

that the strategy has been used in specific cases.  

My empirical evidence is based on two case studies. In each case, a smaller challenger took on 

and defeated a larger incumbent. For each one, I will: 

• pinpoint the superior architectural knowledge and remodularization adopted by the 
challenger; 

• show that the challenger was able to outsource activities that were insourced by the 
incumbent; 

• verify that the challenger had a higher ROIC than the incumbent during the competition; and 
• show that the challenger grew faster than the incumbent and drove the incumbent’s ROIC 

below the cost of capital. 
 

Sun Microsystems vs. Apollo Computer7 

Apollo Computer, founded in 1980, was the first company to enter the engineering workstation 

market. (An engineering workstation is a desktop computer capable of supporting engineering analysis.) 

By 1984 Apollo had 60% of the market and was growing at 50% per year.  It was then challenged by Sun 

Microsystems. 

New Architectural Knowledge and Remodularization of the Technical System. Apollo 

designed its workstations as an interconnected bundle consisting of hardware, a proprietary operating 

system, and a network management system. Each of these components was specifically tailored to work 

with the other two. In addition, Apollo built a manufacturing facility to make its workstations in high 

volumes. The factory was the fourth component in a highly interdependent, closed technical system. 

However, in the early 1980s, computer scientists John Hennessy of Stanford and David Patterson 

of Berkeley began to look at computer architecture in a new way. They advocated quantitative methods 

aimed at identifying fractional bottlenecks (Hennessy and Patterson, 1990; Patterson and Hennessy, 

1994). Such bottlenecks, they argued, should be the focus of architectural design effort. Components 

                                                        

7 This case study is based on the following sources: Freeze and Clark (1986); Hall and Barry (1990); Soll and Baldwin (1990); 
Salus (1994); Zachary (1994), Gilder (1995); Garud and Kumaraswamy (1995); and Baldwin and Clark (1997a).   
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outside the bottlenecks were less important, hence could be sourced cheaply without compromising 

overall system performance.  

Sun Microsystem’s designers, several of whom studied under Hennessy or Patterson, used their 

architectural knowledge of bottlenecks to get high performance out of machines made mostly from 

purchased off-the-shelf components. For example, in the Sun 2 product line, Sun’s architects identified 

memory access as a bottleneck. As a remedy, they developed two special hardware components that made 

memory access speedier.8 Virtually all other hardware components were purchased from external 

suppliers (Baldwin and Clark, 1997a).  

In further contrast to Apollo, Sun did not create a proprietary operating system or networking 

technology for its workstations. It used the Unix operating system, which could be licensed at low cost 

from AT&T and adopted Ethernet, a non-proprietary standard, as the basis of its networking architecture. 

Finally Sun used architectural knowledge to reduce bottlenecks in manufacturing. It developed a “single 

board design”  for the Sun 2, in contrast to Apollo’s design which used three or four boards.  Having only 

one board simplified the flow of production, reduced work-in-process inventory, and made testing 

systems faster and easier.  

Sun’s open technical architecture reduced its span of inhouse activities, which in turn reduced 

capital employed per unit of production. Buying off-the-shelf hardware components and utilizing a low-

cost operating system like Unix and open standards like Ethernet kept the cost per machine low. Because 

it addressed bottlenecks effectively in both its product design and production processes, Sun was able to 

build machines that performed as well or better than Apollo’s, cost the same amount to build, provided 

users with more design flexibility, and required less capital from Sun. 

Competitive Dynamics. Sun used architectural knowledge about bottlenecks and modularization, 

in conjunction with outsourcing, to satisfy conditions 3a-c above. As predicted by the model, the resulting 

                                                        

8 The components were a "no wait state" memory management unit (MMU) that eliminated many situations where the CPU had 
to wait to access memory and a high speed 32-bit internal memory bus, which connected the internal memory chips (1-4 MB of 
DRAM) and the video controller chips to the CPU. 
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ROIC advantage allowed Sun to grow faster and to drive Apollo’s ROIC below the cost of capital. Table 

2 presents data on Apollo’s and Sun’s financial performance over sixteen quarters of competition 

beginning in the second quarter of 1985 and ending in the first quarter of 1989.9  The table is set up to 

parallel Table 1. Quarterly sales figures serve as a proxy for unobservable production capacity; invested-

capital-to-sales is the proxy for capital utilized per unit of production (κ).10 The table shows that Sun was 

indeed substantially more efficient than Apollo in terms of invested capital per dollar of sales (.31 vs. .57 

on average). As a result, its ROIC was higher in every one of the sixteen quarters, averaging 20% vs. 

Apollo’s 2%. In fact, Apollo’s ROIC was below the Treasury bill rate in most quarters, evidence that it 

was not able to earn its cost of capital.  

Table 2 
Competitive Dynamics of Sun (Challenger) and Apollo (Incumbent) 
Sixteen Quarters: Q2 1985 – Q1 1989 
 

    Invested-Capital-to-      
 Quarterly Sales Sales (Annualized) ROIC (Annualized) Growth Rate in Sales (Annualized) 

Time Incumbent Challenger Industry Incumbent Challenger Incumbent Challenger Incumbent Challenger Industry 
1985 Q2 87,548 37,322 124,870 0.49 0.21 17% 27% na na na 
        Q3 55,232 33,690 88,922 0.83 0.31 -40% 10% -148% -39% -115% 
        Q4 70,675 42,173 112,848 0.70 0.32 1% 12% 112% 101% 108% 
1986 Q1 82,021 57,578 139,599 0.67 0.30 1% 20% 64% 146% 95% 
        Q2 88,382 76,663 165,045 0.65 0.27 2% 29% 31% 133% 73% 
        Q3 100,408 91,572 191,980 0.61 0.32 4% 23% 54% 78% 65% 
        Q4 120,874 115,275 236,149 0.53 0.31 8% 24% 82% 104% 92% 
1987 Q1 123,420 141,705 265,125 0.56 0.30 9% 24% 8% 92% 49% 
        Q2 132,214 185,902 318,116 0.53 0.25 11% 23% 29% 125% 80% 
        Q3 135,041 191,709 326,750 0.54 0.32 -4% 21% 9% 12% 11% 
        Q4 162,985 235,090 398,075 0.46 0.31 14% 19% 83% 91% 87% 
1988 Q1 168,933 259,685 428,618 0.47 0.34 13% 16% 15% 42% 31% 
        Q2 143,453 365,130 508,583 0.56 0.28 -10% 25% -60% 162% 75% 
        Q3 157,095 388,469 545,564 0.55 0.33 -4% 16% 38% 26% 29% 
        Q4 184,055 448,281 632,336 0.48 0.34 4% 19% 69% 62% 64% 
1989 Q1 204,715 497,420 702,135 0.43 0.39 6% 16% 45% 44% 44% 
           
Average   0.57 0.31 2% 20% 29% 78% 52% 

 

Interestingly, both firms grew faster than their ROIC’s during this period. They did so by 

accessing external capital markets (counter to the assumption of Proposition 2). Sun was particularly 

aggressive in this respect: in the period shown, it issued equity four times and increased debt as well. 

                                                        

9 This was the period ranging from one year before Sun’s initial public offering to the time Apollo was purchased by Hewlett 
Packard. 
10 If prices are falling (as they were), the invested-capital-to-sales ratio will overstate capital utilized per unit of production, but 
the bias will apply to both firms equally. 
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Contempory reports indicate that Sun’s top managers, especially its CEO, McNealy, believed the “prize” 

of market dominance justified moving down the demand curve very rapidly (Hall and Barry, 1990).  

By the end of 1988, Apollo was running out of cash and facing potential bankruptcy. It was 

acquired by Hewlett-Packard (HP) in April 1989. Over the next several years, HP abandoned all of 

Apollo’s product lines. Sun, the challenger with the small footprint architecture and the ROIC advantage, 

survived. (It was  acquired by Oracle Corporation in 2010.) 

Dell Computer vs. Compaq11 

The second case features Compaq as the incumbent and Dell as the challenger. In the mid-1990s, 

Compaq was the leading manufacturer of IBM compatible personal computers (PCs). In 1993 it reported 

sales of $7 billion and net income $462 million. At this time, Dell was a second-tier manufacturer of PCs 

with sales of $2.8 billion and a loss of $36 million.12  

New Architectural Knowledge and Remodularization of the Technical System. Unlike Sun, 

whose superior architectural knowledge derived from advances in computer science, Dell developed its 

architectural knowledge in response to a series of financial crises. In 1992, Dell experienced a very high 

growth rate (126%), which depleted its cash reserves. In 1993, it reduced its inventory (freeing up cash), 

but reported a loss on inventory writedowns. In 1994, Dell experienced another cash crunch because of 

quality problems in two of its product lines. However, beginning in 1993, Dell began focusing on 

developing information systems and creating incentives to reduce invested capital and increase ROIC in 

all parts of the business.  

As with Sun, Dell’s strategy was based on a remodularized product and production flow and the 

judicious use of outsourcing and open standards. Designated core activities—order-taking, assembly, and 

shipment—were brought inhouse and redesigned to take place quickly and efficiently (Fine, 1998; 

                                                        

11 This case study is based on the following sources: Baldwin and Feinberg (1999); Park and Burrows (2001); Shook (2001); 
Breen (2004); Holzner (2005); and Vance (2006a,b). 
12 Dell’s fiscal year ends in the last week of January, while Compaq’s ends on December 31. Thus Compaq’s calendar year 1993 
has eleven months in common with Dell’s fiscal year 1994. I have relabeled Dell’s fiscal years to make appropriate comparisons. 
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Holzner, 2005). To achieve this high level of performance, Dell designed new manufacturing cells, 

located its factories close to its major markets, and employed just-in-time inventory management 

techniques. By concentrating on these bottleneck activities, Dell made the flow of products through its 

factories faster without compromising cost or quality.  

Outside of its core set of activities, Dell used components based on open standards to encourage 

competition among its suppliers and complementors. It did not extend credit to dealers (as Compaq did), 

or to individual customers, yet, based on the size of its orders, it demanded generous credit from its own 

suppliers. The result for Dell was a negative cash cycle: more often than not Dell received cash from 

product sales before it had to pay for the components or labor in the products. A negative cash cycle 

reduces a firm’s invested capital and perforce increases its ROIC. Indeed, invested capital can become 

negative, in which case the ROIC increases “beyond infinity.”  

Competitive Dynamics. Table 3 presents data on Compaq’s and Dell’s financial performance 

over nine years of competition beginning in 1993 and ending in 2001.13  During this time, Dell’s invested 

capital averaged 2% of sales vs. 22% for Compaq. Notably in three of the nine years, Dell’s invested 

capital was negative: the money it received early from customers paid for all of its capital investment with 

some left over. After the first crisis year (1993), Dell’s ROIC was also substantially above Compaq’s. 

Compaq’s ROIC improved greatly from 1993 to 1997, but Dell’s was always higher. As predicted by the 

model, Dell also grew faster in every year. 

Table 3 
Competitive Dynamics of Dell (Challenger) and Compaq (Incumbent) 
Nine Years: 1993 – 2001 
 

    Invested-Capital-to-      
 Annual Sales Sales ROIC Growth Rate in Sales 

Time Incumbent Challenger Industry Incumbent Challenger Incumbent Challenger Incumbent Challenger Industry 
1993 7,191 2,873 10,064 0.31 0.02 21% -73% na na na 
1994 10,866 3,475 14,341 0.34 0.02 24% 254% 51% 21% 42% 
1995 14,755 5,296 20,051 0.30 0.12 18% 44% 36% 52% 40% 
1996 18,109 7,759 25,868 0.15 -0.03 49% nm 23% 47% 29% 
1997 24,584 12,327 36,911 0.11 -0.04 70% nm 36% 59% 43% 
1998 31,169 18,243 49,412 0.23 -0.02 -39% nm 27% 48% 34% 
1999 38,525 25,265 63,790 0.20 0.07 8% 92% 24% 38% 29% 
2000 42,383 31,888 74,271 0.16 0.03 8% 212% 10% 26% 16% 

                                                        

13 This was the period ranging the year of Dell’s first financial crisis to the time when Compaq was acquired by Hewlett Packard. 
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2001 33,554 31,168 64,722 0.19 0.03 -12% 128% -21% -2% -13% 
           
Average   0.22 0.02 16% 109% 23% 36% 28% 

 

Beginning in 1998, Dell reached a size where it began to put pressure on Compaq’s margins, 

driving the latter’s ROIC below the cost of capital. Then in 2001, when faced with a downturn in demand, 

Dell started a price war. Compaq could not match Dell’s prices, thus its sales dropped dramatically (21%) 

and its profits and ROIC both turned negative. In September of that year, Compaq and HP agreed to 

merge. By all accounts, the contribution of Compaq to HP’s performance was disappointing, and 

contributed to the removal of HP’s CEO, Carly Fiorina, in 2005. 

 The Origins of Asymmetry between Challenger and Incumbent 

The histories of Sun and Dell show that challengers can enter and succeed against larger 

incumbents using an open technical architecture based on modularity, open standards and outsourcing. In 

this respect, the cases offer “existence proofs” for the theory and model presented above. The cases also 

provide a window into the underlying causes of asymmetries. Specifically, they shed light on two 

questions: (1) How does a challenger obtain superior architectural knowledge? And (2) what prevents an 

incumbent from imitating the challenger’s strategy once it has been revealed?  

Sun’s superior architectural knowledge arose from its founders’ access to leading-edge scientific 

research at universities: in this respect, the case is consistent with the knowledge spillover theory of 

Agarwal et. al. (2007). In the mid-1980s, Professors John Hennessy and David Patterson worked out the 

logic of fractional bottlenecks in computer architecture. Andreas Bechtolscheim (a Sun founder) designed 

the first Sun workstation while he was a graduate student in John Hennessy’s lab at Stanford. Bill Joy 

(another founder) worked on hardware-software interfaces under David Patterson at Berkeley. When 

Bechtolscheim and Joy were graduate students (the mid-1980s), Hennessy and Patterson’s quantitative 

approach was not widely known and was highly controversial among academic computer scientists. 

Apollo’s Boston-based managers may not have been aware of this work, did not have the means to 

resolve the academic controversies. They certainly did not have had access to early experimental results 



OPEN ARCHITECTURE VS. CLOSED 
   
 
 

32 

(which ultimately settled the controversies in favor of Hennessy and Patterson’s approach).  

In contrast, Dell’s superior architectural knowledge arose, not from knowledge spillovers, but in 

response to several brushes with bankruptcy. As described above, Dell’s first cash crunch arose when 

business was booming: its second came about because of quality problems arising from lack of control of 

internal operations. Both crises resulted in inventory writedowns. The period 1993-94 was a time of 

shakeout for PC manufacturers: many of Dell’s and Compaq’s competitors did not survive. However, 

Dell had a positional advantage over many its peers: from its founding, it sold PCs directly to consumers 

rather than through dealers or its own retail stores. As a result, Dell’s need to finance accounts receivable 

was always low. Back-to-back cash crunches and inventory write-downs then caused its managers to 

make inventory reduction their highest priority and to make ROIC the main measure of performance and 

basis for incentive compensation. (The CFO at the time, Thomas Meredith, reportedly put “ROIC” on his 

license plate (Holzner, p. 132).) 

Thus on the evidence of these two cases, it appears that superior architectural knowledge can 

arise from many sources. It may grow out of early access to scientific research (Sun) or from trial-and-

error learning in day-to-day operations (Dell). It may be built into the company’s initial business plan 

(Sun) or learned in response to a crisis (Dell). In each case, however, managers played a crucial role in 

converting superior architectural knowledge into strategically effective actions. They brought the strategy 

into focus at two levels: first, by establishing a corporate-wide goal (with commensurate incentives) to 

increase ROIC, and, second, by translating this goal into operational sub-goals, such as buying off-the-

shelf components (Sun), integrating assembly (Dell), reducing inventory (both) and using open standards 

(both). 

When Sun and Dell emerged as competitors with superior ROICs, why did Apollo and Compaq 

not change their own architectures to imitate the challengers? Here the two cases tell a consistent story. At 

an earlier point in their history, both incumbents invested in highly interdependent architectures with co-

specialized components. Because of this underlying interdependence, they could not adapt their 
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architectures in response to the challenge. As described above, Apollo created an interdependent technical 

system comprising hardware, network protocols, a proprietary operating system, and a manufacturing 

plant. No part of this system could be changed without redesigning the whole. (For example, when Apollo 

attempted to use the Unix operating system to run its machines, their performance suffered.)  

For its part, Compaq always sold its products through dealers. In early days, its carefully 

cultivated dealer network was a source of competitive advantage. Then, in the mid-1990s, it invested in a 

global production system with high-volume, low-unit-cost factories located offshore. However, Compaq’s 

dealers needed trade credit and its far-flung production system could not function without a certain 

amount of inventory. Thus even though Compaq’s managers understood the merits of a high ROIC, and 

made it a focus of management effort and compensation from 1995 onward, they could not drive their 

invested-capital-to-sales ratio as low as Dell’s. And, as was the case for Apollo, Compaq’s managers 

could not change any part of their architecture without redesigning the whole. Recognizing their strategic 

dilemma, they attempted to move into other markets, by acquiring Tandem Computer in 1997 and Digital 

Equipment Corporation in 1998. In the end, however, they could not shift the firm’s revenue base quickly 

enough, and thus were not able to escape an eventual confrontation and price war with Dell. 

 

Conclusion 

This paper describes an open architecture can be employed by entrepreneurial firms with superior 

architectural knowledge to compete against larger, established rivals. An entrepreneurial firm may use 

architectural knowledge about bottlenecks and potential new modularizations to create an open technical 

architecture, which isolates the “bottleneck” components. The firm then insources bottleneck components 

and outsources or allows complementors to supply non-bottleneck components. Employing this strategy, 

the entrepreneurial firm will have a smaller span of internal activities with no loss of quality or increase in 

the cost per unit produced. Its lesser scope in turn yields an ROIC advantage: at any system price, the 

entrepreneurial firm will have a higher return on invested capital than its rival(s). Over time the 
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challenger can grow faster and drive its competitors’ ROICs below the cost of capital. I have explained 

how architectural knowledge makes this strategy feasible and modeled its impact on dynamic competition 

through successive stages of industry evolution.  I then offered evidence that the strategy was used by Sun 

Microsystems in the 1980s and Dell Computer in the 1990s. In this concluding section, I discuss how this 

paper fits into the broader strategy literature, the limitations of the strategy, and opportunities for future 

work. 

Modularity theory is a growing body of scholarship that addresses how dependencies within a 

technical system can be changed and manipulated. Scholars working in this tradition view the architecture 

of a technical system as malleable, albeit at a cost. Seen from this vantage point, architecture becomes a 

potential source of competitive advantage, hence a topic of interest in the field of strategy. The question 

is, what technical architectures are advantageous for which types of firms? 

Strategy scholars have already begun to address this question. Scholars in the resource-based 

tradition have theorized that firm boundaries serve as isolating mechanisms for critical resources (Barney, 

1991; Alvarez and Barney, 2004). Scholars in the knowledge-based tradition argue that knowledge flows 

differently within a firm vs. between firms (Kogut and Zander, 1992, 1996; Conner and Prahalad, 1996; 

Grant, 1996). At the same time, scholars in the dynamic capabilities tradition see firms as shifting bundles 

of routines and competencies arising from the interplay of transactions and production costs, both of 

which are influenced by technology and investments in new knowledge (Teece, Pisano and Shuen, 1997; 

Jacobides and Winter, 2005). To these traditions, modularity theory adds the insight that transaction costs 

and knowledge flows, hence firm boundaries, are influenced by patterns of technical dependency, which 

in turn are determined by the technical system’s architecture. The technical architecture itself is a target of 

design, and thus a firm with superior architectural knowledge can open up its architecture, and thereby 

relocate transactions and boundaries to its own advantage.  

Other strategy scholars have proposed that there is a match between certain modes of governance 

(markets and hierarchies) and different types of innovation or problem-solving ability. Specifically, Teece 
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(1996, 2000) and others have argued that systemic innovations must be introduced by large, established 

firms with a broad range of capabilities and/or complementary assets. Nickerson and Zenger (2004) 

theorize that non-decomposable problems are best solved by hierarchies that span the dimensions of the 

search space. Implicitly, more complex problems (in the sense of having more dependencies) must be 

solved by larger firms. Modularity theory adds a new dimension to these arguments, stating that the 

nature of an innovation and the very structure of the problem space are determined by an underlying 

technical architecture, which again, is a target of design. Thus a firm with architectural knowledge can 

make an innovation more autonomous or systemic and decompose its problem search spaces in new ways. 

In this paper, I have presented a model and supplied examples showing that architectural 

knowledge can be applied strategically to change a firm’s boundaries, to make innovations more or less 

autonomous, and to change the nature of problems it must solve. If this argument is accepted, even 

provisionally, then a question immediately follows: what types of architectural knowledge are useful for 

which firms? This paper has taken the perspective of a small entrepreneurial firm with limited resources 

facing larger rivals. For such firms, the most valuable architectural knowledge pertains to bottlenecks and 

modularizations. Such knowledge can form the basis of an open technical architecture that delivers an 

ROIC advantage. 

An open technical architecture has important long-run limitations and hazards, however. The 

model developed in this paper is a model of dynamic competition, but the dynamics involve only one 

generation of technological innovation. Over multiple generations, the location of bottlenecks will shift as 

new technical possibilities and user demands emerge (Ethiraj, 2007). The original challenger, now an 

incumbent, must stay abreast of the shifting bottlenecks, and adapt its architecture accordingly. Thus 

while an open architecture can be a means of entry, the advantage it confers will be transient. To succeed 

over time, firms competing in a design space of shifting architectures must actively invest in architectural 

knowledge, identify emerging bottlenecks, and have the ability to consistently invent new ways around 

them. Such firms perforce must “know more than they do” (Brusoni, Prencipe, Pavitt, 2001). 
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There also other types of architectural knowledge that can be employed strategically. Consider 

the case of Shimano, which in 1980 was an established firm in the bicycle drive train industry (Fixson and 

Park, 2008). Relative to its competitors, Shimano had a large span of activity although it was not 

vertically integrated. In 1980, it made all six components of the drive train system, although each of its 

components could be combined in a modular fashion with those made by other manufacturers. Shimano 

then used superior architectural knowledge to create a non-modular technical system with higher 

performance. It linked its components more tightly and specifically, in a way that achieved a new 

dimension of quality (gear shifting while gripping the handlebar). In the five years following the 

introduction of its new system, Shimano greatly expanded its market share at the expense of its more 

focused rivals. In Shimano’s new system, there was simply no place to attach non-Shimano components. 

Its former complementors were forced to exit the industry. Basically, Shimano invested in a different type 

of architectural knowledge from Sun or Dell. It did not look for bottlenecks and opportunities to further 

open the system, but for ways of co-specializing parts in order to close the system. 

Shimano’s experience shows definitively what should be no surprise: that openness is not a 

strategy for all firms or all seasons. A contingent theory connecting architecture with firm strategy under 

varying external conditions is needed to span the cases of Shimano, Sun and Dell. Specifically, what are 

the indicators that a technical system is susceptible to being modularized around bottlenecks? Such 

systems are targets of opportunity for entrepreneurial firms. Conversely what are the indicators that a 

technical system is ripe for integration? Such systems provide firms with greater scope with the 

opportunity to initiate an industry consolidation and drive out more focused suppliers and complementors. 

Answers to these questions are critically important to managers (of both entrepreneurial and established 

firms) for they offer guidance on where to place bets and where to look for threats.  The questions also 

offer a promising avenue for future research in strategy and entrepreneurship. 
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Appendix —Proofs of the Propositions 
 

Proposition 1 (Pricing). Under the assumptions given in the text, in the time interval (t, t+1), the 

challenger and the incumbent will charge the same price, which clears the market. 

Proof. Formally, the proposition can be written as: 

� 

pC * (t) = pI * (t) = p* (t) ≡ Q−1[NC (t) + N I (t)]    ; 

where p*(t) denotes the market clearing price in the interval (t, t+1); 

� 

NC (t) + N I (t)  equals the sum of Firm 

C and Firm I’s capacity at the start of the interval, and     

� 

Q−1  denotes the inverse function of 

    

� 

Q : Q−1Q(p) = p .  

Total units sold,   

� 

Q  during the interval, cannot be higher than 

� 

NC (t) + N I (t)  because the firms 

cannot make and sell products beyond their capacity. Thus a firm charging a price below p*(t) can 

increase profits without reducing its own unit sales, by raising its price to p*(t). 

If both firms set their prices above     

� 

p * (t) , then one or both will have excess capacity. Under the 

decision rule, a firm with excess capacity will drop its price until all its capacity is utilized. At that point, 

the other firm will have excess capacity and will drop its price. The price declines will continue until 

� 

pC (t) = pI (t) = p* (t) .  QED 

 
Proposition 2 (Max Growth = ROIC). Assume that a firm pays no dividends and receives no 

capital infusions in the form of debt or equity. Then: 

 

� 

g(t) = ROIC (t) . 

Proof. If the firm pays no dividends, then all of its profit is available for investment in the 

business. If it obtains no external capital infusions in the form of new debt or equity, then this is all the 

money available for investment: 

 

� 

max ΔI (t) = Π(t) = [ p(t) − c] ⋅ q(t) −δ ⋅κ ⋅N (t)   . 

Dividing through by I(t) obtains: 
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� 

max
ΔI (t)
I (t)

=
Π(t)
I (t)

≡ ROIC (t)    

(by equation 4). But 

� 

I (t) ≡ κ ⋅N (t) , thus by substitution:  

� 

g(t) ≡ max
ΔN (t)
N (t)

= ROIC (t)    . 

QED.  

 

Proposition 3 (Relative Growth Rates for Incumbent and Challenger) . If prices are set as in 

Proposition 1, the challenger’s maximum growth rate is higher than the incumbent’s, for any level of 

capacity: 

� 

gC (t) > g I (t)     for 

� 

∀ NC (t), N I (t)   . 

Proof. By Proposition 2 for each firm: 

� 

g(t) = ROIC (t) ≡
[ p(t) − c] ⋅q(t) −δ ⋅κ ⋅N (t)

I (t)
   . 

By Proposition 1, for each firm,

� 

q(t) = N (t)  and p(t) = p * (t) . Finally,

� 

I (t) ≡ κ ⋅N (t)  for each. Substituting 

specific values for each firm and cancelling terms, we have, for all p*(t) ≥ cI: 

� 

gC (t) = ROICC (t) =
[ p* (t) − cC −δ ⋅κ C ]

κ C

>
[ p * (t) − c I −δ ⋅κ I ]

κ I

= ROICI (t) = g I (t)    . 

The central inequality follows from the fact that 

� 

κC <κ I and

� 

cC ≤ c I  (conditions 3a and 3b above). Under 

these conditions, within the prescribed range of prices, the challenger’s numerator is strictly greater and 

its denominator strictly less than the incumbent’s. QED. 
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