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Abstract

We examine a dynamic decision-making process involving unrelated issues in which a decision

may be endogenously delayed by the allocation of influence resources. Delay is strategically in-

teresting when decision makers with asymmetric preferences face multiple issues and have limited

resources to influence outcomes. A delayed decision becomes part of the subsequent agenda, thereby

altering resource allocation. The opportunity to delay decisions leads the players to act against

their short-run interests by changing the expected decision delay. We characterize delay equilibria

and explore how delay affects agenda preferences and, when possible, bargaining.

1 Introduction

Delay of decisions is ubiquitous. As a justification for more informed decision making, delay would

be important, yet unremarkable. But the prospect of decision delay in a dynamic, multi-decision

setting, by changing the decision agenda for a subsequent period, also has strategic implications for

the equilibrium allocation of resources applied to influence decisions and, hence, decision outcomes.

In short, through delay a player may gain advantage by changing the incentives under which other

parties to the decisions allocate their influence resources.
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Consider the promotion decisions of committees in organizations such professional partnerships,

academic institutions, and firms. Even apparently independent promotion decisions are linked through

resource constraints (e.g., attention) that limit the amount of influence interested parties exert for or

against multiple candidates. For example, in an academic promotion setting, suppose a candidate in

Field 1 and a candidate in Field 2 are scheduled for a promotion decision in this year and next year,

respectively, and each is supported strongly by their own field faculty (e.g., labor and econometrics

or marketing and finance). This timing would result in a particular allocation of effort regarding the

respective candidates. But if the decisions were to occur in the same year, the allocation could be

quite different as both departments would split their effort between the two candidates, presumably

expending much more effort on their own candidate. Hence, if the Field 2 faculty believes that under

the current staggered timing the Field 1 faculty would exert effort to oppose the Field 2 candidate,

that faculty has an incentive to push for a delay of the Field 1 candidate’s decision. Delay could save

a promotion.

Delay can result from a variety of factors. Familiar examples include a purposeful choice to

postpone a decision, absence of a follow-through needed to implement a decision,1 or because resolution

of a decision requires action by an outside player (e.g., a decision to make a bid for an acquisition is

resolved if the bid is accepted, but may not be if rejected). The possibility of delay raises the prospect

that it can be strategically exploited. In the multiple decision context which this paper addresses, the

allocation of attention or influence resources across those decisions constitutes a core factor influencing

outcomes. To be sure, another key factor frequently involves information asymmetries regarding, for

example, player preferences or capabilities which, in turn, raises issues of disclosure and signaling. Our

model abstracts away from informational concerns and focuses on the importance of delay for resource

1 In corporate settings, a failed proposal that can be reintroduced is an example of a decision that lacks commitment.

For example, rejected proposals of subordinates are sometimes quietly maintained in hope that changed circumstances

will allow the proposal to be revisited. Burgelman (1991) [7], for example, argues that the RISC processor project at

Intel was kept alive despite the company’s explicit strategy of not pursuing such a processor. Our model can also be used

to explore the dynamics of whether a proposal is placed on the agenda in the first place. Proposals that do not make

it on the agenda have not been officially killed and can therefore be interpreted as “delayed.” In the political system,

rejection of legislation may be viewed as a decision that lacks commitment as such bills are frequently reintroduced in

subsequent legislative sessions. Similarly, passed bills are also open to reshaping or even repeal (“Nothing ever gets

settled in this town” George Shultz, former U.S. Secretary of State, quoted in R. W. Apple, “A Lesson from Shultz,”

NY Times, December 9, 1986).

2



allocation under complete information. Why is delay strategically valuable and who will initiate it?

Does conflict lead to more delay and how does the order of issues considered affect delay, efficiency

and outcomes?

Our model’s structure isolates the effect of delay while allowing for endogenous interaction. We

abstract from the specifics of various decision structures and build a spartan strategic ark involving

two players, two decisions, and two periods. Each player allocates a stock of non-storable influence

resources (e.g., attention) over the available decisions and seeks to maximize their two-period payoff.

In the first period, resource allocations affect the likelihood that a proposal is adopted. Opposing

(reinforcing) use of resources increase (decrease) the probability of delay. Absent adoption, the

proposal is deferred to the second period when it is considered with an unrelated proposal. In the

second period, players allocate resources and all proposals on the table are resolved permanently.

Actions that alter the agenda through delay are strategically valuable because they shape the

actions of the other decision makers. The endogenous possibility of delay leads the agents to allocate

their resources differently than they would in a single-period setting. Two main tactics emerge:

pinning and focusing.

In equilibria characterized by pinning, one player expends first-period resources against static self-

interest to decrease the probability that the first-period decision is resolved (and hence decrease the

probability that the decision will leave the agenda). The pinning player pursues this strategy when

the second-period issue involves conflict and the first-period issue as compared to the second-period

issue is relatively less important to the pinning player. Pinning increases the probability that the

rival’s resources will continue to be allocated to the first issue, leaving less resources for the rival to

contest the pinning player on the second issue.

If delaying on the first issue is sometimes valuable, then resolving that issue should be valuable in

other circumstances. Suppose, for example, the players’ interests align on the second issue. Then

it may be optimal for a player to decrease the likelihood of delay to free the other player’s resources

for (supportive) use on the second issue. We refer to this dual of pinning as focusing. The focusing

incentive can be sufficiently strong that a player will support the other player’s efforts to secure the

initial proposal’s acceptance, even though that player prefers the proposal’s rejection. In effect, the

focusing player sacrifices one decision outcome to focus the other player’s attention and resources

on the other decision. Focusing has the desirable feature of avoiding waste associated with the

offsetting use of resources and provides a time-consistent explanation for logrolling which does not rely
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on reputations or other considerations beyond the immediate interaction. A necessary condition for

focusing is that preferences directionally align on the second-period issue, while a necessary condition

for pinning requires conflict on the second-period issue. When these necessary conditions are met,

we show that focusing and pinning occur when the players differ significantly regarding which issue is

relatively more important. Furthermore, pinning and focusing also emerge in a model in which both

issues are considered in the first period but can be delayed to the second period. With the pinning

and focusing mechanisms and equilibria in hand, the paper then explores the implications of pinning

and focusing for issue content, issue order, and then bargaining.

An intriguing property of focusing and pinning equilibria is that an ostensibly more attractive

proposal may be strategically disadvantageous. Given the choice between two versions of a second-

period issue proposal, the version that provides both players a weakly higher utility payoff if it is

adopted may encounter a significantly lower chance of adoption due to the players’ endogenous actions.

For example, a focusing outcome will prevail with the lower-utility proposal while the higher-utility

proposal leaves agents following static self-interest. Since focusing increases the chances of adoption,

the equilibrium payoff is higher with the lower-utility proposal. This outcome reflects the implicit

‘threat’ regarding future action that the higher-utility proposal embodies, namely, that an agent will

devote more effort to supporting that proposal. When this is a proposal on which both players interests

directionally align, the other agent loses the incentive to focus since strong support on the alignment

issue will be forthcoming anyway should delay occur. In contrast, the lower-utility proposal implies

weaker support on the alignment issue and the other agent has an incentive to focus and remove the

competing proposal from the future period.

The paper also examines the value to an agenda setter of reordering the sequence in which two

decisions are considered across periods. The order question is most interesting when the players have

partially conflicting and strong relative preferences so that one order would lead to focusing while the

other would lead to pinning. Because focusing operates through the focusing player exerting all of her

first period resources against static self interest to support an issue that the focused player likes, the

focused player always prefers the focusing agenda.

When bargaining is feasible, our non-cooperative equilibrium results provide a foundation for un-

derstanding the threat points for bargaining. Decision outcomes based on static rather than dynamic

self-interest do not provide appropriate threat points when there are strong relative preferences and

some underlying conflict. For example, under Nash bargaining we show that pinning and focusing
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threats lead the players to experience discontinuous shifts in their shares of a smoothly changing over-

all surplus when the equilibrium changes from one in which pursuit of static self-interest is optimal to

either a focusing or pinning regime.

In addition to the particular implications of focusing and pinning for issue content, issue order,

and bargaining, a general point of the analysis is that there is frequently strategic value to resolution

in a world with possible delay and multiple decisions. Even if a current issue is of limited concern

to one player, delaying that issue’s resolution creates a claim on future resources for the other player.

Therefore, a player may be quite willing to expend significant resources to secure resolution of an issue

of no direct importance. The mere fact of resolving an issue may carry more significance than the

specific manner of the resolution.2

Pinning and focusing activities exist in a wide range of situations. Perhaps the most common

setting involves committee decisions such as the promotion decisions discussed previously. A related

application involves political dynamics. One intriguing example that can be interpreted through

a pinning lens involves the events just after the Watergate scandal. In 1974, amid pressure from

the Watergate scandal which would ultimately scuttle his presidency, an embattled Richard Nixon

proposed a comprehensive national health insurance plan in his State of the Union address. President

Nixon’s support gave national health care insurance legislation, a traditionally Democratic issue, a

real chance for passage, but Democratic support did not materialize and a plan was never passed.

The timing of Administration’s formal support coupled with the bill’s substantive attractiveness to

the Democrats have led some cynics to interpret Nixon’s proposal as strategic.3 If the Democrats

wanted genuine progress on such legislation, they needed to focus their attention on health care and

they needed the support of the Republican administration. Had they pursued this course of action,

2Delay is representative of a class of decision problems involving endogenous commitment. Deferring a decision until

the next decision point is equivalent to no commitment, while a decision, if irreversible, constitutes full commitment.

In the former case, the delayed decision becomes part of the subsequent decision agenda and potentially changes each

decision maker’s allocation of influence activity.

3Light (1991; p. 256) [13] states, for example, that “struggling to distract a Democratic Congress from the Watergate

crisis, Nixon offered national health insurance as a last-second bargain to save his Presidency.” National health care

insurance legislation was more attractive to the Democratic party than the Republican party, though Nixon had supported

it as well. The leading Democrat advocating national health care insurance was Ted Kennedy who had run for President

in 1972. The 1974 failure to pass a national health care insurance plan was reportedly Kennedy’s “biggest regret.”

(Washington Post, August 28, 2009)

5



Congressional action on Watergate would likely have been delayed through the remaining two years

of Nixon’s term and would certainly have been reduced in intensity.4

While delayed actions and deferred decisions rarely involve the toppling of a president, they are

commonplace in business, politics, and even personal life. Elements of pinning, for example, also are

found in litigation between horizontal competitors in which the first-period decision involves expen-

ditures on litigation and the second-period decision involves subsequent expenditures relevant to the

ongoing competition. Litigation expenditures influence the duration and outcome of the legal dispute.

Resolution or non-resolution, in turn, affects the marginal value of investments in competition through,

for example, the impact of uncertainty regarding the outcome of litigation on the players’ abilities to

attract complementary investments from third parties.5 Similarly, firms that compete across multiple

product or geographic markets frequently pin each other’s resources by opening second fronts in mar-

kets that are important to their rivals. Although, such market-based competition lacks the explicit

timing of a final resolution point, one can interpret it as an attempt to delay a rival’s entry into a key

market.6

Focusing, which requires an issue over which no conflict exists, is most applicable to settings involv-

ing some level of explicit or implicit cooperation, e.g., a business joint venture or a political coalition.

Both types of organizations almost invariably navigate proposals over which there are areas of agree-

4 In terms of our model, Nixon’s State of the Union address adds national health insurance (NHI) into the active

legislative agenda alongside the possibility of Watergate impeachment hearings. Nixon’s gambit can be interpreted as

an attempt to use influence resources to increase the probability that NHI would become sufficiently attractive as a

legislative option that the Democrats would divert their influence resources towards NHI and away from Watergate

hearings (i.e., pinning), with hopes that NHI would not be resolved by the end of his term. Ultimately, however, the fate

of the Nixon NHI proposal was resolved early when Kennedy failed to support it, so the attempt to pin did not succeed.

5The protracted litigation between AMD and Intel regarding AMD’s access rights to Intel intellectual property as a

former second source for the 286 microprocessor can be interpreted as Intel pinning AMD to more expensive R&D and

customer development under conditions of uncertainty. This litigation finally settled after the access to the rights was

no longer competitively significant.

6MacMillan, van Putten, and McGrath (2003) [14] call this class of tactics “feints” in which an attack in one market

diverts resources from another market. They describe how Philip Morris attacked R.J. Reynold’s U.S. position in

premium cigarettes and, thereby, diverted RJR’s resources away from important Eastern European markets. The

authors also discuss a competitive interaction between Gillette and Bic in which Gillette, by withdrawing from the

disposible lighter market, induced Bic to invest more in the disposible lighter market and to pull resources out of

disposible razors.
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ment and disagreement. By sequencing the consideration of the proposals to create incentives for one

party to focus the other, both parties can more easily support each other’s key proposals without the

need for other enforcement mechanisms.7 Focusing also highlights when partnering firms sometimes

help each other solve problems that are unrelated to the partnership itself. Finally, returning to the

hypothetical promotion decision, suppose that instead of opposing the Field 2 candidate, the Field

1 department intrinsically favors that candidate’s promotion. Then the Field 2 department has an

incentive to focus the Field 1 department by assisting the Field 1 deparment to secure its candidate’s

promotion in the earlier period, thereby, freeing the Field 1 department’s resources in the following

year for possible use to support the Field 2 candidate.

Little, if any, research has used analytical models to explore the effects of limited attention and

delay on organizational decision making. Our analysis connects research on influence activity to that

of agenda setting. The influence activity models of Milgrom and Roberts (1988 [16], 1990 [17]) focus

on the design of incentives for agents who, given the incentive structure, optimally split their time

across current production and influence activities that impact all of the agents’ payoffs. Our interest in

strategic decision delay and their interest in organizational design lead to quite different models. We

build a dynamic model to explore deferred decisions, but do not address various optimal organizational

designs that structure the nature of the intra and inter-period decision-maker interactions.8

Agenda setting models in the economics and the formal political science literatures (see, e.g. Plott

and Levine 1978 [20]) explore the effects of decision order. While we explore select consequences of

the ordering of decisions, our primary focus is not with agenda design. Instead we focus on how an

existing agenda is altered as the result of strategic choices. Agenda-setting models also typically focus

on the influence of decision order when decision payoffs and outcomes are linked across decisions. By

constrast, our focus on the impact of deferred commitments on the allocation of influence does not

require any outcome or payoff link across decisions. Stated alternatively, we focus on across-meeting

decisions whereas most of the agenda setting literature focuses on within-meeting decisions.

Some of the tensions between conflict and cooperation among decision making parties which we

7In presidential and parliamentary political systems with modest party discipline, influence activities involve keeping

party members in line with party positions regarding the current legislative agenda. Where party discipline is very

strong, keeping party members in line is easy and a key use of party leadership resources involves allocating leadership

attention to issues that require negotiation prior to their introduction.

8See also, Dessein and Santos (2006 [9]), Gilligan and Krehbiel (1987 [11]), and Powell (2015 [21]).
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address in this paper are explored in a number of articles. In the evolution of cooperation literature,

for example, Skaperdes (1992) [23] examines how different levels of marginal productivity in the use

of resources can lead to varying degrees of equilibrium cooperation in a two-player static model where

each player divides its resources between joint production of a product and increasing the probability

that it will “win” the value of that product. In the literature on moral hazard in teams, Bonatti

and Hörner (2011) [2] build a dynamic model of moral hazard in which (possible) team production

of a public good is delayed because the equilibrium time path of investment is slowed by free-riding

incentives and pessimistic updating of the value of investment. Both of these papers focus on a

single good and, therefore, cannot address the use of strategic delay to manipulate a rival’s use of

resources across issues. In Bonatti and Rantakari (2015 [3]), the organization decides to adopt the

first completed project or wait until the other project becomes available. The prospect of delay arises

because one agent can postpone adoption of a competed project until their own project is ready. In

this setting, delay influences both the type of project and the effort level chosen by an agent.

In the next two sections we develop and analyze our basic model. Section 4 discusses which

combination of preferences leads to pinning and to focusing and then characterizes the conditions

under which an order that induces pinning is preferred to an order that induces focusing. Section 5

examines some implications of the analysis for bargaining and Section 6 examines a symmetric model

of decision making and establishes that strongly asymmetric and partially conflicting preferences

necessarily result in an equilibrium with simultaneous pinning and focusing. In Section 7 we discuss

the organizational context of our analysis as well as applications and limitations. Section 8 concludes.

2 Model

Our model consists of two players, A and B, who, over two periods, independently allocate their

respective attention resources to influence the outcomes of two unrelated proposals,  and  . Two

players is usually considered the smallest number needed for decision conflict; two periods is the

minimal time structure that can capture the effects of delay; while two decisions is the smallest

number that forces an allocation of attention.

We begin with a sequential model in which one proposal is on the agenda in the first period

while the other is added in the second period. The allocation choices in the first period result in the

proposal being accepted or delayed to the second period, while in the second period the allocation
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choices result in proposals being either accepted or rejected. We denote by  →  and  →  the

sequential models in which proposals  and  , respectively, are first on the agenda. These simple

sequential models are sufficient for focusing and pinning to emerge in equilibrium and also allow us to

examine the implications of such strategic actions for the preferred ordering of the proposals. When

two issues are on the agenda, we have the additional complication that focusing and pinning may

occur simultaneously with player  attempting to focus player  on one issue at the same time player

 is attempting to pin the player  on the other issue. For this reason, we begin with sequential

models where only one issue is on the agenda in period one. In Section 6 we examine a more general

symmetric model in which both proposals are on the agenda in period one and each proposal may be

accepted, rejected or delayed.

The advantages and disadvantages of delaying a decision depend on the nature of conflict between

the two players. We focus on the strategically interesting case of partial conflict in which the players’

preferences conflict on issue, but align on issue  . Within this general context, of course, substantial

variation may exist regarding the relative intensities of conflict or alignment. We assume that player

 has a utility   0 when proposal  is accepted and   0 when proposal  is accepted. Player

’s utilities upon acceptance are similarly represented by   0 and   0.

Condition 1   0   (Conflict on ),   0 and   0 (Alignment on  ).

Utility for the rejection of a proposal is normalized to 0 Consequently, the acceptance utilities

are more precisely viewed as the incremental utility or disutility of accepting versus rejecting the

proposal. Additionally, we make three simplifying assumptions: no discounting occurs; the utility

associated with each proposal is independent of the outcome of the other proposal; and the preferences

of each player are known to the other player. Each player maximizes the two-period sum of expected

utility.

In each period a player allocates resources (e.g., attention or effort) to influence the outcome of

proposals on the agenda. We model each player as choosing probability influence increments.9 A

player supports (opposes) a proposal when she chooses a positive (negative) probability increment.

We assume that each player’s allocations have a direct effect which is linear and additive and that

9This structure with probability increments and the assumed properties for the resource frontier can be derived as

endogenous properties for an underlying model of effort choice in which additional effort yields a diminishing marginal

effect on probability and the agent is equally effective at influencing adoption of one issue or the other.

9



influence is neither cumulative nor storable across periods. This simple structure has the advantage of

isolating the across-period strategic effects since additivity eliminates strategic interaction in a static

single-period setting. Thus, when proposal  is on the agenda and player  chooses  and  chooses

, proposal  is accepted with probability

 =  +  +  (1)

where  is a shift parameter reflecting exogenous factors that affect the probability of acceptance.10

We differentiate first-period and second-period actions by using lower case and upper case proposal-

identifying subscripts, respectively.

When the agenda only contains proposal ,  chooses  while  chooses . When the agenda

contains both proposals, player  chooses probability increments  and  and  chooses  and

 . To reflect the assumption that total influence is constrained in a multi-issue setting, we assume

that there is a probability influence frontier .

Condition 2 Influence choices for player  (similarly for ) satisfy | | ≤ (| |) for  ∈ [−̄ ̄],
where the probability frontier  satisfies (i)  is decreasing and concave over the interval [0 ̄], with

(0) = ̄ and (̄) = 0, (ii)  is symmetric around the 45◦ line:  = ()⇔  = ( ), and (iii)

0(0) = 0 and 0(̄) = −∞.

Under this resource constraint, the maximum probability influence on a single issue is equal to ̄.

The advantage of ’s concave frontier structure is that influence allocation choices in a multiple issue

setting will be interior to the interval (−̄ ̄). Symmetry of  with respect to the 45◦ line comparably
situates each issue. In the first period, Condition 2 reduces to the requirement that influence choices

on the single issue lie in [−̄ ̄].
Finally, we assume that uncertainty cannot be eliminated.

Condition 3 2̄    1− 2̄ (feasible influence choices never lead to deterministic outcomes).

Thus, for any choices  and  on proposal , the probability  is always in (0 1). In the sequential

agenda model, the first period has no reject possibility, so the probability of delaying proposal  is

1− . In the second period, there is no delay state, so the probability of rejection is also 1− .

10For example, in a hierarchical setting with two subordinates seeking to influence a superior,  would constitute the

superior’s initial bias regarding the decisions at issue.
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2.1 The Static Equilibrium Benchmark

The optimal second-period actions provide building blocks for the dynamic analysis and a benchmark

case in which strategic interaction is absent. These actions depend on whether delay occurred in the

first period. We begin with the simplest case of no delay. If only the aligned issue  remains in

period 2 (i.e., given the  →  agenda,  was accepted), then the players have directionally common

interests as  and  are both positive. Clearly, each player will choose ̄ such that the likelihood

of accepting  is maximized. The resulting payoffs associated with  are then  =  ( + 2̄) and

 =  ( + 2̄). If, instead, only the conflict issue remains (i.e.,  was accepted under the  → 

agenda), then the players have opposing interests since   0   and they will take offsetting

actions ( = −̄  = ̄). This results in payoffs of  =  and  = 

Now consider the two-proposal case which arises whenever the first-period proposal has been

delayed. We solve for a Nash equilibrium in which each player allocates their own probability influence

across each of the two issues. Given a choice by player , say  and  , player ’s problem is to

choose influence levels to max(  )  [ +  +  ] +  [ +  +  ] over feasible influence levels

relative to the probability frontier. Since player ’s actions only have an additive effect on this payoff,

the optimal choice by player  is given by

−


= 0(∗) (2)

on issue  and ∗ =  (∗) on issue  . Player  faces a similar problem except that  will seek to

oppose proposal . Thus, − ∈ [0 ̄] and the solution is




= 0(−∗) (3)

on issue  and ∗ =  (−∗) on issue  . The magnitude of a choice depends only on the preference
intensity, defined by  ≡

¯̄̄



¯̄̄
and  ≡

¯̄̄



¯̄̄
 Optimal choices equalize the probability trade-off and

utility trade-off between  and  . As the preference intensity for  rises, an increase in  or , the

magnitude of the action on  rises, while that for  falls. The sign of a choice always follows the sign

of the utility effect.

These choices constitute the Nash equilibrium for the static game. It is precisely because the

other player’s action does not impact the marginal benefit of one’s own action that the two players

optimize independently of each other and there is no strategic interaction. Critically, however, each

player’s payoff does depend on the other player’s actions. This is the channel for dynamic strategic
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effects in our model: anticipating that another player will support or oppose an issue that remains

unresolved, an incentive exists to take action today to influence the other player’s future move. To

analyze this channel, we need the payoff outcomes for the simple static Nash equilibrium and we define

 =  ( + ∗ + ∗) +  ( + ∗ + ∗ ) and  =  ( + ∗ + ∗) +  ( + ∗ + ∗ ) 

2.2 Dynamic Equilibrium Choice

The static equilibrium strategies described above are also the optimal second-period equilibrium strate-

gies. We now turn to the first-period actions. Consider the  →  sequence ( →  is analogous).

From our analysis of the static case, we have the continuation payoffs for the players across the two

possible states according to whether proposal  was delayed to the second period. The probabilities

of each state are given by: { } with  and { } with (1− ) The payoffs for the players at a

candidate set of period 1 choices are then given by the sum of the expected period 1 and 2 payoffs:

 ≡ [ +  ] ( +  + ) +  (1− ( +  + )) (4)

  ≡ [ +  ] ( +  + ) +  (1− ( +  + )) (5)

The incentives for players  and  to allocate influence in period one are, respectively:




=  +  −  (6)

 


=  +  −   (7)

We are now ready to examine equilibrium choices and strategic delay in period 1.

3 Player Preferences and Strategic Delay

We first analyze focusing in a  →  agenda and then analyze pinning in a  →  agenda.

3.1 Partial Conflict and Focusing ( →  Agenda)

The first step is to determine the optimal second-period allocations of attention. This was done in the

static benchmark analysis above. The next step is to analyze the optimal first-period allocations. The

linear structure of influence implies that the objective functions for players  and  are maximized by

allocating all influence to support issue  if and only if  + −  0 and  + −  0,

respectively. See (6) and (7).
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Lemma 1 Under the  →  agenda, player ’s optimal first-period allocation  is ̄. (See Appendix

for all proofs).

Lemma 1 shows that ’s strategic and myopic interests coincide. If  were to use negative

influence, she would increase the probability that issue  will be delayed in the first period, which is

costly. The effect in the second period would also be negative because there would now be a higher

probability that both  and  are on the agenda in which case  will be opposed by  on issue .

Player  has a direct incentive to oppose  in the first period. But if  is off the agenda in the

second period, player  will allocate all of its attention to supporting issue  which benefits .

This incentive to focus player ’s attention on issue  becomes stronger as ’s relative intensity of

preference is greater for issue  than issue .

Definition 1 (Focusing) A player focuses his rival on proposal  when the player’s first-period allo-

cation on  is greater than his static optimal allocation. A player follows static self-interest when the

player chooses a first-period allocation equal to his static optimal allocation.

The incentives for focusing can be usefully characterized as a function of the ratios of the preference

intensities for  to  for each of the two players.

Proposition 1 Under the  →  agenda: (a) For any preference ratio  for player  there exists a

focusing cut-off preference ratio  below which in equilibrium it is optimal for player  to focus  by

selecting  = ̄ and above which  follows static self-interest by selecting  = −̄;  always follows

static self-interest by selecting  = ̄; (b) The focusing cut-off for Player A, ̄ (), is increasing in ,

satisfies ̄ (0) = 0 and ̄ ()   for   0, and is bounded above by 2̄(1− ); (c) Focusing only

occurs when both players’ preferences are aligned over the issue that is first introduced in the second

period; (d) For   ̄ (), the unique equilibrium involves  focusing  where we have  = ̄ and

 = ̄; For   ̄ (), the unique equilibrium has both players following static self-interest.

Proposition 1 establishes that a region of preferences always exists for  and  in which  will

uniquely focus . Let E denote this region, the set of ( ) with  ≤ ̄ (). Figure 1 depicts

this region in preference-intensity space illustrating focusing and no focusing regions under an  → 

agenda. These regions are separated by the cutoff function  ().

Player ’s incentive to focus  depends on both the intensity of preference  has for its key issue

( ) and the relative gain  gets from focusing—the difference in the payoff to the { } state and the
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Figure 1: Equilibrium Taxonomy Under  →  Agenda

{ } state. Because the { } state payoff depends on ’s intensity of preference, as  increases
 allocates less resources to issue  in the { } state and hence the benefits to  of focusing

increase (part b). If, instead,  cared much more about issue  than issue , the gain to focusing

 on issue  would not be great, as  would have been relatively focused on  regardless of any

focusing efforts. Thus, as depicted in Figure 1, the focusing region grows with . Part (c) establishes

that preference alignment on issue  is necessary for a focusing equilibrium.11 Focusing increases the

probability that the second-period agenda will consist solely of issue  .  alone is attractive under

alignment since both players work together, whereas under conflict their efforts will offset.

Focusing is inherently cooperative, but the strategic outcome achieves neither social efficiency nor

Pareto-optimality because there is always a positive probability that in the second period both issues

will be on the agenda with the resulting wasteful offset of resources on the conflict issue . Focusing

is, however, an efficiency improvement over the static benchmark. Clearly, the focusing player is

better off since focusing is an optimal strategy. The focused player benefits because of the increased

probability that the focused player’s favored issue is accepted in the first period. One interpretation of

focusing is that it is endogenous incentive-compatible log-rolling. Focusing also facilitates an agenda

design that can support stable coalitions.

11 It is not, however, necessary that a conflict exists regarding the first issue. This is because the benefit of focusing

derives from taking issue  off the agenda and is greatest to a player when it has a preference intensity ratio strongly

favoring  while the other player does not.
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When we move from a single issue to a multiple-issue first-period setting (Section 6), first-period

choices interact strategically and this leads to a more subtle set of incentives than in our base model.

The incentive for focusing remains, but it is less dramatic than that of our base structure in which

optimal first-period choices are cornered.

We now develop a focusing example with a preference structure that we will also use to illustrate

pinning and to discuss agenda preferences.

Example 1 ( →  Agenda): Suppose that resources are traded off according to ( ̄) =
p
̄2 − 2

with ̄ = 01  = 02, and let the preferences be  = −0075 = 1 = 1 and = 0075. Then

the equilibrium allocations are

Eq Alloc 1st period 2nd { } 2nd { }
Issue   = 01 NA = −007

= 01 NA = 0099

Issue  NA = 01 = 0099

NA = 01 = 0007

In this example both players have strong preferences regarding the outcome of one proposal but

not the other, and the primary concern of one player is the secondary concern of the other. The

intensity ratio  is large which means that, when faced with both proposals in the second period, 

would allocate most of her resources to proposal . Player , therefore, receives an incremental

benefit from focusing  on proposal  . Of course, player ’s low intensity of preference regarding

proposal  makes it less costly to support proposal  against his static interest. In the example,

player ’s payoff is about five percent greater under focusing than under a myopic (suboptimal static

self-interest) strategy. Focusing boosts player ’s payoff by about thirty percent.

3.2 Partial Conflict and Pinning ( →  Agenda)

Now consider the  →  agenda. The analysis is analogous to that for  →  , except that the

issue order has been reversed. The conflict issue  is now the second issue and the alignment issue

 is the first issue. Note that by Proposition 1c focusing cannot occur with this configuration of

preferences.

If player  followed her preferences, she would support issue  in the first period. However,

dynamic considerations will sometimes cause  to oppose  in the first period to improve the strategic

situation in the second period. Essentially,  works to keep issue  on the agenda because if both
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 and  are on the agenda in period two, then  will allocate more influence to supporting  and

less influence to opposing  on issue .  pins  to an issue that is important to .

Definition 2 (Pinning) A player pins her rival to proposal  when the player’s first-period action is

less than the player’s static optimal action.

Player ’s decision to resist her static preferences depends on the relative strengths of the incentive

to accept issue  and the dynamic benefits of pinning player  to issue  by delaying it to the second

period.  chooses  to maximize ( + )( +  + ) +  (1− ( +  + )) where  + 

captures the value of accepting  in the first period and  the value of delaying  to the second

period. It is clear from the objective function that    +  is a necessary and sufficient

condition for  = −̄ (which goes against ’s preference).
Because there is conflict over ,  = .  , of course, depends on the optimal static

allocations (see (2) and (3)). Following a similar solution approach as above, we establish existence of

a unique pinning equilibrium, a comparative static result, and a necessary condition for pinning.

Proposition 2 Under the  →  agenda: (a) For any preference ratio  for Player  a pinning

cut-off preference ratio ̄ () exists above which in equilibrium it is optimal for  to pin  by selecting

 = −̄ and below which  follows static self-interest  = ̄; (b) The pinning cut-off for Player B,
_
 (), is increasing in  and satisfies

_
 ()   for  ≥ 0; (c) Pinning can only occur when

both players’ preferences conflict over an issue that is first introduced in the second period; (d) For

 
_
 () the unique equilibrium involves  pinning  where we have  = −̄ and  = ̄; For

_
 ()     the unique equilibrium has both players following static self-interest.

The key element here is the relative size of the preference intensities. Existence requires that 

is large relative to : we must have preference intensities in the set E ≡ {( ) |  ≥ ̄ ()}. That
is, compared to player , player  has a stronger relative preference for . In turn, this relative

preference implies that in the static { } game, the net impact of influence on issue  will be

positive and ∗ + ∗  0 holds. In contrast, with  alone the player allocations cancel out each

other. Thus,  pins  by going negative on  in period 1, acting against (static) interest, to increase

the likelihood that issue  is alive for the second period. Figure 2 provides a graphical representation

of the pinning regions in preference-intensity space. Even as  →∞, such that player  does not care

at all about issue  ,  will still have an incentive to affect the outcome associated with  because

of that outcome’s indirect resource implications for the outcome of issue . Thus, one should not
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be surprised to see a player exert influence activity on an issue of little relative importance to that

player.

The gain to  from delaying issue  depends on how  splits his resources in period 2 when both

of  and  are on the agenda. ’s gain is largest when  = 0 since  will then fully support  and

devote no resources to opposing . As  rises,  shifts resources from supporting  to opposing 

and, consequently, the gain to  from pinning  will decline. This makes pinning unattractive for

a wider range of  preferences and the cutoff,
_
 , must rise with  (part b). Finally, a preference

conflict on the second issue is necessary for a pinning equilibrium (part c).12

Here, in contrast to the focusing equilibrium, there is no direct analog of Lemma 1 to guarantee

that the other player will always act in accord with preference and support issue  . Instead, it is

easy to show that Players  and  are symmetric with respect to pinning incentives.13 Hence, there

are two pinning regions in Figure 2. For any pair of  and  utility preference intensities, however,

at most one of the players will have an incentive to pin since pinning requires that one intensity be

sufficiently greater than the other. When the intensities are comparable in magnitude both players

will follow static self-interest (part d).

A pinning strategy is inherently defensive. Therefore, given opposition on the alignment issue

 in the first period and wasteful offsetting use of resources regarding issue  in the second period,

pinning equilibria are not socially efficient. Finally, pinning equilibria, unlike focusing equilibria,

are not Pareto-improving versus static allocations. While the pinning player’s expected utility is

improved, the pinned player’s expected utility declines.

The same preference structure and parameters in Example 1 can be used to illustrate pinning in

the  →  agenda. In this  →  agenda example, player  has a weak relative preference for 

and, as such, will pin player  to proposal  in the second period. The optimal first period allocation

of player  is  = −01 which is the opposite of ’s static self-interest choice of 01. Player ’s

12Pinning can also occur in  →  settings involving pure conflict. Suppose player  prefers to accept both issues

whereas player  prefers to reject both issues. When, for example, ’s preference intensity ratio heavily favors issue 

while player ’s intensity ratio heavily favors issue  , then it is optimal for player  to delay issue By so doing, 

increases the probability that player  will be pinned to issue  .

13We employ notation that identifies which player is pinning, but there is a common cut-off function, ̄ () = ̄ ()

for any utility intensity  ≥ 0. In part (d) of Proposition 2 we need only interchange  and  to identify when  pins .
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Figure 2: Equilibrium Taxonomy Under  →  Agenda

first-period allocation of  = 01 is consistent with ’s static self-interest.14

3.3 Preferences and Issue Pair Content

One key feature of focusing and pinning equilibria was that they were more and less efficient, re-

spectively, compared to a static self-interest benchmark. These results suggest that issue pairs that

are nearly equivalent in terms of both players’ preference intensities may differ substantially in terms

of expected payoffs. Consequently, there may be a strong incentive for a player to get even a small

change in issue pair content, when possible. The most interesting candidates for such a change would

be issue pairs that result in preference intensity combinations which fall just inside or just outside of

the focusing and pinning regions.

In this subsection we first explore the relative attractiveness of two issue pairings for which the

associated preference intensities locate the first pair at the focusing boundaries and the second pair just

outside of the focusing region. We make direct comparisons between the expected payoffs associated

with the two issue pairs, thereby avoiding modeling the process by which a player could obtain a

revision of an issue pair. But the analysis does provide a sense of the incentives for a player to obtain

a minor revision to an original issue pair. Accordingly, we make comparisons between issue pairs in

which the more desirable issue pair merely involves one player with a lower utility on  , the alignment

14The second-period { } allocations are  = −0007,  = 0099,  = 0099, and  = 0007. The second-period
{} allocations are  = −01 and  = 01.
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issue, while holding all other utility levels constant.

More formally, each of the issue pairs compared contain the same issue , but they differ in the

other issue with  − and  + in pairs 1 and 2, respectively. We first analyze an  to  agenda pair

in which  − =  + but  −   +  Hence, player ’s utility from any accepted issue is the same

for both pairs, but player ’s utility from an accepted issue  is less in the case of pair 2. In Figure

1, pair 2 lies directly south of pair 1 (point C) because a decrease in the issue  utility of  means

an increase in the preference intensity . Corollary 1 shows that for preference intensities that place

the issue pair just “south” of the focusing boundary, an issue pair with the lower utility ( −) will be

preferred by  in equilibrium to the issue pair with the higher utility ( +).

Corollary 1 Equilibrium payoffs are everywhere continuous in (       ) with the exception

of (i) the focusing boundary in the  →  agenda where the payoff of the focused player has an

upward jump of 2̄[+ − ] at (̄ () ) as we cross from self-interest to focusing; and (ii) the

pinning boundary in the  →  agenda where the payoff of the pinned player has a downward jump

of 2̄[ −  −  ] at ( ̄ ()) as we cross from self-interest to pinning.

While the Corollary is agnostic regarding the origins of the comparison pairs, the issue-pair compar-

ison illustrates how focusing affects the attractiveness of particular issue-pairs and, therefore, provides

a partial guide to understanding settings where issue content is (locally) endogenous. Furthermore,

the specific comparisons encompass a class of revisions which seem quite feasible: the revision to  ,

the issue that both players would like to be accepted, only reduces player ’s direct utility value on

 without affecting any other relevant values. The gains from focusing along with continuity in the

payoff for player  then help to identify minor utility changes in issue  that would leave both play-

ers better off in equilibrium. As implied by Corollary 1, a similar comparison applies to the  → 

agenda and pinning.

The Corollary thus describes a threshold effect at each of the focusing and pinning boundaries.

With a single issue on the current agenda, a small change in preferences (issue content) leads one

player to switch positions and this has a large (discontinuous) impact on the other player. At one

level, this is not surprising since resources cannot be stored for future use—with a single current issue,

a player will always choose an extreme position.15 However, the intuition and rationale for the switch

15 In Section 6 both issues are on the agenda in period 1 and influence action varies smoothly with changes in utility.

There, the emergence of focusing and pinning in equilibrium is gradual as players do not jump between ̄ and −̄. The
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do not reflect intense “single-issue” preferences. Rather, it is the prospect of influencing future events

that triggers the switch to focusing and pinning behavior.

4 Decision Order, Payoffs, and Agenda Selection

The analysis of partial conflict in the previous section highlighted the dynamic incentives associated

with decision delay in a multi-issue setting. In this section we examine the effect of issue order on

player payoffs.

In our model, there is a potential structural advantage to a player to have his favored issue

considered first because overall more resources are potentially available to influence acceptance of that

issue relative to the other issue. However, strategic actions may offset such benefits. In period 2

the single-issue state is a liability when the players conflict over the issue, but that single-issue state

is a possible benefit when the players’ interests align. The incentive of  to expend initial resources

on  in the  →  agenda thus depends on the sign of  +  −  in (6). When positive,

player  will focus player  to increase the probability of { }. Focusing is possible because the

prospect of possible cooperation in the second period may induce “cooperation” in the first period

over an otherwise contentious issue . Now consider the  →  agenda. If  +  −  in (7)

is negative, then a player  with a strong intensity of preference regarding issue  has an incentive

to delay issue  to increase the probability of the { } state through pinning.
Figure 3 combines Figures 1 and 2 to reveal the regions in preference-intensity space for which

different types of equilibria exist under both the  →  and the  →  agendas. For the  →
 agenda addition, there are three regions: pinning by  (demarcated by  ()), pinning by 

(demarcated by  ()), and no pinning by either player. Proposition 1c (2c) rules out focusing

(pinning) for the  →  ( →  ) agenda. Figure 3 illuminates agenda choice consequences

because, for a given set of preference intensities, one can better understand whether focusing or

pinning will occur.

In the upper left (northwest) region of Figure 3 we see that a  →  agenda results in fo-

cusing by  while a  →  agenda results in pinning by . This region is given by E ≡©
( ) |  ≥ max©[̄ ]−1() ̄ ()ªª. We now explore this region to determine how anticipated

strategic action affects the ordering preferred by each player. Analysis of the regions where static

larger point regarding efficiency gains from inducing focusing and avoiding pinning is unchanged.
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Figure 3: Equilibrium Taxonomy Under Both  →  and  →  Agendas

self-interest prevails is straightforward.

In E the question of order preference hinges on whether it is better to put the conflict or the
alignment issue first. Player  for example, must consider whether it is better to be pinned by 

under  →  or to focus  under  →  . This choice has several subtle aspects since  must act

against static self-interest to focus  while pinning has  taking action to neutralize ’s efforts. In

contrast, 0s choices are intuitively much simpler since the focusing equilibrium has  going against

myopic interest to support  and this should redound to ’s benefit.

Proposition 3 Suppose ( ) ∈ E so that equilibrium under the  →  agenda has focusing

by player  and equilibrium under the  →  agenda has pinning by . Then  always prefers

 →  (focusing).  always prefers  →  (pinning) if either (i)  ≤ 25 or (ii)   25 and

 + 2̄  1− 2̄2.

In E ,  strongly favors , while  strongly favors  . Under the  →  agenda the conflict

issue arises first and  will focus  by helping to accept . Under the  → ,  will pin . By

choosing to pin, clearly,  prefers the payoff associated with the { } second-period state to that
associated with  +  . Then, since the worst outcome for  in the  →  agenda is bounded

below by the payoff associated with the { } state, a preference configuration that leads  to pin

implies that  always prefers the  →  agenda.

The comparison for  is more subtle. There is a natural bias in favor of  →  and pinning

because  +   + . But the cooperative element in focusing means that  is accepted and,
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therefore, period 2 has only the  issue, with probability  + 2̄; under pinning the corresponding

probability for  and then  only is . Proposition 3 provides a strong result regarding the relative

importance of these effects: pinning is preferred to focusing by  for any preferences in E provided
only that  + 2̄ is not too close to 1. Even when (i) and (ii) do not hold,  still prefers pinning to

focusing whenever it is near the focusing boundary (where  + − = 0). Intuitively, focusing

only dominates pinning for  when we have near certainty in the outcome ( + 2̄ → 1) and only 

matters (→ 0). In this limiting case, the probability effect overwhelms the natural bias for pinning

under  →  since focusing under  →  leads to  being accepted with probability one. Except

for this limiting case,  will prefer pinning.

To see the effect of various agenda orders, consider again Example 1 and its  →  analog

from the previous sections. The individual payoffs for those examples are in the Table 1 below.

For comparison, we also provide the payoffs to a disequilibrium set of strategies in which each player

merely allocates according to myopic self-interest. In both of these agendas, the incentives for focusing

and pinning for the “strategic” player are modest, but the effects of those actions on the other player

are substantial.

Table 1: Payoffs under Example 1 Preferences with  →  and  →  Agendas

Agenda Strategy  payoff  payoff

 →  (Ex. 1)  focuses  0.301 0.601

myopic 0.293 0.458

 →   pins  0.425 0.307

myopic 0.565 0.299

.

Table 1’s comparison of various agenda orders provides insight into the value of being able to

change the agenda or being able to impose costs on those that do.16 First, Proposition 3 asserts that

conflict between the parties regarding agenda choices will be common, especially with asymmetric issue

preferences. Even when the parties have aligned preferences regarding some proposals, strategic action

implies that conflict rather than consensus will prevail with regard to agenda choice. In addition, and

as the example illustrates, the value of an agenda to a player has a subtle component as the preference

16Of course, decision situations are rarely fully malleable to changes in the agenda. Timing frequently reflects some

underlying flow of relevant information that provides a natural ordering to decisions and oftentimes one proposal is

clearer in its likely parameters at an earlier time than other proposals.
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across agendas does not hinge upon creating an opportunity to engage in strategic behavior but,

rather, it turns on positioning the other player so that the other player will be led to focus or to pin.

5 Bargaining and Asymmetric Preferences

When the ability to strike cooperative agreements is limited, equilibrium outcomes such as focusing or

pinning are predicted by our model. In circumstances where bargaining is possible, focusing or pinning

outcomes serve as threat points or disagreement outcomes. In such cases, predictions employing threat

points based on static self interest will be misleading. One critical element here is the payoff impact

on the focused or pinned player that arises as one transitions from preference cases where all players

follow static self-interest to the more asymmetric preference cases that lead to focusing and pinning

in equilibrium (recall Figure 3). We find that even with movements in preference space that increase

social surplus, focusing and pinning lead to discontinuous decreases in negotiational payoffs for one

player and corresponding increases for the other.

The Nash bargaining solution (NBS) provides a convenient and familiar framework for addressing

the division-of-surplus issue. Even under other bargaining protocols, we expect similar results because

the NBS result stems from changes in the threat points of the bargaining parties. To begin, we specify

the threat points and set of feasible agreements. Assume that the threat points are given by the

equilibrium payoffs of the  →  agenda, denoted by  for  and  for ; these threat points

involve focusing whenever   ̄ () and static self-interest otherwise. A feasible agreement can

specify (i) the agenda, either  →  or  → , (ii) the actions for each player in period 1 and also

in period 2, contingent on period 1 outcomes, and (iii) a transfer payment between  and .17 Social

surplus, , is defined as the sum of the expected utilities for the players and under (i-iii) we solve

directly for the maximized social surplus, ∗. The generalized NBS is the division of ∗ with shares

for each player such that  =  + (∗ −  − ) for  and  =  + (1− )(∗ −  − ) for 

where  parameterizes the bargaining power of .

To find ∗, we begin with the period-2 contingent actions. Since  is the alignment issue, we have

 ≡  +   0 and positive actions of  =  = ̄ are optimal when only issue  is on the

agenda. For the conflict issue , suppose that  ≡  +   0; then actions of  =  = ̄

17For simplicity, we assume transferable utility which then implies a linear Pareto frontier. While deriving the set of

feasible payoffs with non-transferable utility is possible, the resulting structure is much more complicated.
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are optimal when only issue  is on the agenda (we omit the case where   0 as it has a similar

analysis). Finally, when both issues are on the agenda, we need only apply the logic of the static

benchmark choice with two issues to the social surplus values of  and  . This logic yields the

optimal actions of  =   0 for  =  via 0() = − ≡ − and  = (); denote

these solutions by (). The joint payoffs for the period-2 states are then

 = ( + 2̄) for  = 

 = ( + 2()) + ( + 2(())) 

Maximized social surplus is then found by solving

∗ = max
(→→)

{∗→  
∗
→}

where

∗→ ≡ max
()

{( + ) + (1− )} 

∗→ ≡ max
()

{( +) + (1− )} 

The resulting optimal agenda is then  →  when    and  →  when    and in

each case the optimal actions on the first issue are ̄. We focus on the case of     The case of

    though omitted, follows a similar logic.

We now undertake the comparative statics exercise on bargaining outcomes with respect to prefer-

ence asymmetry. First, consider a point on the 45◦ line where  = . (See Figure 1.) From Proposition

1, we know the threat outcome will be the static self-interest () equilibrium for  →  , with pay-

offs  = ( +  ) +  (1 − ) and  = ( +  ) +  (1 − ). Now suppose  rises

(becomes less negative) and, hence, that issue  becomes more important relative to  for . We

then move to the left from the 45◦ line but, initially, remain to the right of the focusing cut-off

level of ̄ (). In this range, the threat payoffs vary smoothly with  ; at the same time, maximal

social surplus rises smoothly, reflecting the added value from the rise in  . Once  rises suffi-

ciently that we hit the focusing boundary, the threat outcome shifts to focusing ( ) with payoffs

 = ( +  ) ( + 2̄) +  (1−  − 2̄) and  = ( +  ) ( + 2̄) +  (1−  − 2̄). At the
boundary, when player  is just willing to shift from static self-interest regarding  in period 1 to

focusing, we necessarily have  +  −  = 0 and  varies smoothly with  (i.e.,  =  on

the focusing boundary). The maximal social surplus also continues to rise smoothly. In contrast, 
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jumps up in value by ( +  −  )2̄  0, by Corollary 1, once focusing commences. As a result,

at the boundary the NBS for player  jumps up while that for  jumps down.

Thus, focusing leads to a strong shift in the bargaining outcome. When  faces a rival who has a

strong preference for the alignment issue  relative to ’s preference, the shift in equilibrium behavior

to focusing corresponds to a shift in the threat points that favors . Interestingly, even though ’s

increased preference for  implies an increase in the social surplus that can be shared, the focusing

effect on bargaining threats leads to a lower payoff for .

The formal version of this comparative statics result identifies the role of the variation in preference

intensity, ( ), relative to the boundary for self-interest and focusing, ̄ (), and that for pinning,

̄ (). To keep track of the optimal agenda choice it is helpful to define the set

F ≡ {( ) |  ≥ 1 + (1 + )(  )} ;

given any  and  for the alignment issue,  →  is the efficient agenda for ( ) in F as the

defining condition reduces to    . Finally,  ≡ ( + )( − ) is where the lower boundary
of F intersects the 45◦ line. The role of  is to provide a reference point in F so that as we perform

the comparative static, by varying  or , we know that  →  remains the optimal agenda and that

the threat point shifts from self-interest to focusing or to pinning. We then have

Proposition 4 Consider any given  preferences where    . Then, (a) F contains all points

on the 45◦ line where  =  ≥ ; (b) For any  ≥ , F contains all ( ) such that  ≤  and, hence,

F contains the focusing boundary ̄ (); (c) For any  ≥ , F contains all ( ) such that  ≥ 

and, hence, F contains the pinning boundary ̄ (); (d) For any ( ) ∈ F on the focusing boundary,

 = ̄ (), the NBS shares are discontinuous with

 −  = −( −  ) = 2̄( +  −  )  0;

where  and  index the shares for focusing and static self-interest threat points, respectively; (e)

For any ( ) ∈ F on the pinning boundary,  = ̄ (), the NBS shares are discontinuous with

 −  = −( −  ) = (1− )2̄( +  −  )  0

where  and  index the share for the pinning and static self-interest threat points, respectively.

Apart from the focusing and pinning boundaries, we have continuity in ( ) for the threat payoffs.

The shift in strategic behavior when focusing or pinning commences, however, always has a discrete
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impact on the focused or the pinned player. Thus, player  benefits by being focused, through the

shift in ;  suffers by being pinned, through the shift in . This proposition also identifies the

critical aspect of preference intensity, as measured by the position of ( ) relative to the focusing

and pinning boundaries, rather than preferences with respect to one issue for one player.18

6 A Symmetric Model of Acceptance, Rejection, and Delay

In this section we show that the intuition from the asymmetric model carries over to symmetric decision

settings. To establish the robustness of our earlier results, we modify the asymmetric model to include

both proposals in the first period and to allow each proposal to be accepted, rejected or delayed in the

first period, effectively eliminating the role of issue order. We find that focusing and pinning continue

to emerge in such settings and that for sufficiently asymmetric preferences the equilibrium necessarily

involves focusing by one player and pinning by the other player.

Including both issues in the first period introduces an initial tradeoff between  and  regarding

the optimal use of resources (recall Condition 2 and the  function). To include rejection, we model

delay, acceptance and rejection of the decision as follows: first, with probabilities  and 1 − ,

respectively, decision  is delayed to the second period or it is resolved. If resolved, then the proposal is

accepted with probability  and rejected with probability 1−.19 Delay is modeled as  = −
where  is the exogenous decision delay probability and  is a scaling factor for the endogenous delay

effect caused by conflict or agreement over issue . The multiplicative functional form employed here

implies that agreement reduces delay while disagreement increases delay.20 We rule out deterministic

18A number of the special assumptions we made can easily be modified without affecting the main insight regarding

the jump in bargaining outcomes. If  →  is the surplus maximizing agenda, then we need only observe that this also

varies smoothly with ( ). We can then do a comparative static with player  in which the ( ) variation is due to

changes in  and  ; for instance, when  falls, so does social surplus, ’s share will again jump up as we cross the

pinning boundary.

19Given that the sum of the probabilities of the possible decision consequences must sum to one, this particular

acceptance-rejection-delay structure distributes the changes in delay probabilities proportionately across accept and

reject outcomes.

20Most observers have found a positive correlation between the desire to attain decision consensus and delay. Conflict

which makes consensus more difficult would then also seem positively correlated with delay. Our delay assumption

seems particularly appropriate for environments in which decision makers favor some degree of consensus over pure
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outcomes and assume that ̄2    1− ̄2.

The optimal static equilibrium strategies are, as before, also the optimal second-period equilibrium

strategies for this symmetric model. With both  and  in the first period, we now have four

possible agenda states in the second period. The probabilities of each state are given by: ∅ with
(1 − )(1 −  ), only {} with (1 −  ), only { } with (1 − ) , and { } with  

The payoff for player  (similarly for player ) at a candidate set of period 1 actions is then given by

 ≡ (1− ) [ +  ] +  (1−  ) [  +  ]

+  + (1− ) (1−  ) [ +   ]  (8)

The incentives for player  for allocating influence across the two proposals are:




=  −  + [− + ( −  −  ) +  ]




=  −   + [− + ( −  −  ) +  ]

with analogous incentives for player 

Consider first the benchmark case of no endogenous delay ( = 0) Here, players maximize an

objective function strictly analogous to that faced in the second period (static) setting. Hence we have

Lemma 2 Consider the symmetric model. If delay is exogenous,  = 0, then the optimal first-period

actions are the same as the corresponding optimal actions in the static equilibrium when issues  and

 are both on the agenda.

This result means that the effect of exogenous delay on optimal actions is isolated in the model

from the effects of strategic delay. Hence, we can attribute changes in first-period actions relative to

the optimal static equilibrium actions as resulting from strategic choices.

We now show that focusing and pinning occur in the symmetric model with sufficiently extreme

relative preferences.

formal authority or adherence to strict voting rules. For example, in a study of a medical school, Bucher (1970 p. 45 [6])

observed that “most of the opposition to an idea is worked through...or else the proposal dies.” The positive relationship

between conflict and delay is not, however, uncontroversial. Eisenhardt’s (1989) [10] study of decision making speed

in microcomputer firms found examples where conflict slowed decisions and where it did not depending on whether the

firms valued or did not value consensus, respectively.
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Proposition 5 For  sufficiently small (→ 0) and  sufficiently large ( →∞), every equilibrium
involves (i)  focusing  on issue  , by acting against static self-interest on  in period 1, ∗  0

and ∗  0 and (ii)  pinning  on  by acting against static self-interest on  in period 1, ∗  0

and ∗  0.

Proposition 5 highlights preference-intensity settings in which pinning and focusing necessarily

occur in equilibrium (for sufficiency, an existence result is provided in the appendix). In Figure 3,

the case of a small  for  and a large  for  corresponds to the regions for focusing and pinning

equilibria under the  →  and  →  agendas, respectively. Weaker forms of focusing and pinning

occur when a player does not allocate resources at the static self-interest levels but does maintain a

direction of support (or opposition) that is consistent with static self-interest.

7 Discussion

In this section we consider how the model provides insight for a broad range of decision settings and,

in so doing, address some limitations of the analysis. Throughout this paper we have emphasized

strategic opportunities posed by decisions which may be delayed rather than resolved. The strategic

use of focusing and pinning to influence delay can be interpreted more broadly as action that increases

or decreases the probability of a commitment. Under this commitment interpretation, delay includes

“resolved” decisions that are easy to revisit (e.g., a private decision to launch a product with no

immediate supporting actions, in contrast to a public commitment to launch a product combined with

purchase of specialized assets). In the asymmetric model  (probability of acceptance) would then

be a measure of the likelihood of first-period commitment regarding matter , while in the symmetric

model this measure would be 1−  (one minus the probability of delay). Modeling more nuanced

levels of commitment is potentially an interesting extension.

Our model applies to settings in which players who choose to influence decisions (or that make

decisions) have limited resources such as constraints regarding time and attention. Such constraints

have been emphasized by the organizational decision-making literature as central to decision making.

Simon (1947, p.294) [24], for example, views “[a]ttention...[as] the chief bottleneck in organizational

activity” and argues that “the bottleneck becomes narrower and narrower as we move to the tops

of organizations...”21 The importance of attention for organizational decision making has also been

21Divided attention is a common theme in the decision making literature. Wood and Peake (1998) [26] find, for
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highlighted in more political conceptualizations of organizations such as Pfeffer’s (1978) [19] microp-

olitics model or the organized anarchy (garbage-can) model of Cohen, March, and Olsen (1972) [8].

Elaborating upon the latter model, March and Olsen (1979) [15] regard participation in various choice

decisions as dependent on organizational obligations, various symbolic aspects of decision making, and

rational action regarding the allocation of attention across various alternatives.

“There are almost no decisions that are so important that attention is assured...The re-

sult is that even a relatively rational model of attention makes decision outcomes highly

contextual....Substantial variation in attention stems from other demands on the partici-

pants’ time (rather than from features of the decision under study). If decision outcomes

depend on who is involved..., if the attention structures are relatively permissive and unseg-

mented, and if individuals allocate time relatively rationally, then the outcomes of choices

will depend on the availability and attractiveness of alternative arenas for activity. The

individuals who end up making the decision are disproportionately those who have nothing

better to do...” (March and Olsen 1979 [15], pp. 46-47).22

While March and Olsen’s comment regarding the influence of the idle reflects an element of whimsy,

it reflects a serious undercurrent regarding the use of resources that are non-storable. Our model

adopts the starkest version of attention resources: there is no marginal cost of use up to a fixed

maximum. As such, our model is directly applicable when the benefit or cost of the less important

decision outcome exceeds the marginal cost associated with influence activities. Because our results

depend on relative rather than absolute issue preferences, this zero marginal cost-of-use assumption

is not particularly limiting. Alternatively, one could treat the marginal cost of effort as a filter that

limits the number of decisions that are sufficiently important to attract the attention of parties with

example, that presidential attention to important unresolved foreign policy issues declines when other foreign policy

issues become more prominent. Redman (1973) [22] (pp. 55-57) also delineates numerous examples illustrating the

effects of divided attention in the legislative setting. He describes, for example, how an “amendment in committee”

strategy for grafting a National Health Service Corps onto another health bill in 1970 was derailed by the U.S. invasion

of Cambodia. More recently, attention to health care reform was seen by some legislative aides as “sucking all the

oxygen out of the room” and distracting legislative attention away from fully understanding various potential loopholes

that lobbyists were introducing in financial reform legislation (Hirsh 2013 [12]).

22See Bendor, Moe, and Shotts (2001) [1] for a critical review of the research program addressing the garbage-can

model of organizational decision making.
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significant influence resources.

In terms of decision-making settings, our model would apply to decision making both by committee

and within a hierarchy.23 Consider a committee structure. While committee decision making

typically involves more than two players, the impact of different preferences on the incentives to

allocate influence resources to affect delay in committee decision settings is arguably captured in our

two-player model. In our model a player  with unbalanced preferences has an incentive to take a

strategic action against myopic interest when another player  also has unbalanced preferences. Other

involved players who have more balanced preferences have an incentive to take actions consistent with

their static self-interest. The actions of these “other” committee members can then be interpreted as

being captured by , the exogenous probability parameter.

Next consider an extension of the two-player model to accommodate N decision makers each of

whom may have unbalanced preferences. We conjecture that equilibria exist in such models which

involve multiple players taking focusing or pinning actions while others act with static self-interest.

When expanding from a two-player setting to multiple-player settings, one must account for a more

complex preference set. Recall that two factors determine whether a player will focus (or pin): the

relative intensity of own preferences and the incremental value of such a strategic action relative to

the baseline of acting with static self-interest. Incremental value depends on the anticipated actions

which the other players will take in the single-issue-only and in the multiple-issue states. One can

propose a multi-player equilibrium and then check deviations by examining each player’s incentives

based on their respective preferences and the “net” actions implied by the equilibrium for the other

players. The additive separability inherent in the model’s structure facilitates such an analysis.

Hierarchical decision making represents the other extreme in which a single person is the decision

maker. Within this context, each of the two players in our model can be interpreted as taking

actions to influence the ultimate decision maker. Subordinates commonly have considerable latitude

regarding the influence and attention they devote to any given decision. Bower (1970) [4], for example,

describes strategy choice as a resource-allocation process in which a firm’s strategy emerges from a

decision making system in which upper management primarily controls organizational level decisions

(e.g., a firm’s overall direction or its culture) but implicitly relies on the judgment of middle managers

who compete over project-level decisions. Decision making from this perspective is seen as “decidedly

23See Persico 2004 [18] and Visser and Swank 2007 [25] for research that focuses on information issues in committee

decisionmaking.
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multilevel and multiperson,” (Bower, Doz, and Gilbert 2005, p.13) [5]. In this interpretation  would

constitute the bias of the decision maker.

8 Conclusion

“In a minute there is time [f]or decisions and revisions which a minute will reverse.”

(The Love Song of J. Alfred Prufrock, T.S. Eliot 1915)

When the outcome of a decision does not involve real commitment, the decision remains either

explicitly on the agenda because the decision was deferred or implicitly on the agenda because the

decision is reversible (e.g., 2010 Affordable Care Act). Important but reversible decisions continue to

attract decision making attention thereby affecting future influence allocations and, therefore, future

outcomes. Consequently, anticipating such future effects, decision makers may alter their allocation

of current resources. Such decision dynamics prompt two closely-related strategies: taking actions

against myopic interest to pin a rival’s future attention to a proposal carried over from the current

round or taking actions against myopic interest to remove a distracting issue and focus a rival’s

future attention on a particular issue. These strategic actions emerge in equilibrium when decision

participants have strong relative preferences for one issue over another. Strategies of pinning and

focusing also alter the value of having one issue precede another issue. The analysis, therefore, has

implications for across-meeting agenda setting, rather than for the more commonly analyzed problem

of within-meeting agenda setting.

There is much room to extend the theoretical analysis to multiple participants with varying re-

sources as well as to consider additional issues. In addition to exploring the effect of deferring decisions

empirically, other arguably interesting avenues would be to examine the effect of related decisions in

which adoption of one proposal changes the utilities associated with other proposals and to further

explore design of proposal content to take dynamic advantage of decision participant preferences. Fi-

nally, allowing for incomplete information regarding preferences on issues would naturally lead to a

role for signaling and reputations.
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Appendix

The following simple result characterizes the optimal static actions for any configuration of player

preferences. We make frequent use of this result in subsequent proofs, including those for Propositions

1 and 2.

Lemma A1 Let  ≡
¯̄̄



¯̄̄
and  ≡

¯̄̄



¯̄̄
denote the preference intensities. Then, the strategies in

the static Nash equilibrium when X and Y are on the agenda are given by

i) 0(| |) = − and 0(| |) = −
ii) (| |) = | | and (| |) = | |
iii) () = () and () = () for  =  .

Proof : We prove the results for Agent ; the proof for  involves a simple change of labels.

Property (iii), () = (), is trivial. If   0 but   0, then   0  − and −  0
is a better choice for . Similarly, if   0 but   0, then −  0 is again a better choice. For

(ii), (| | = | |, suppose not. Then, by feasibility, we have (| |)  | |. If   0, then a choice

of  and ̂ = (| |) yields a higher payoff. Similarly, if   0, then using the slack in resources

to set ̂ = −(| |) increases the payoff. Because the objective,  +   , is linear and the

constraint set, (| | ≥ | | for 0 ≤ | | ≤ ̄, is symmetric, Properties (ii) and (iii) of Lemma A1

imply that we can solve ’s choice problem for any (   ) by first solving the problem for the case

of   0 and   0 and then making an adjustment of sign on the optimal influence choices. Thus,

for   0 and   0 the choice problem of  reduces to

max [ +  ()]  0 ≤  ≤ ̄

This is a continuous objective on a compact set and therefore has a solution. Since  is strictly

concave, the solution is uniquely determined by the first-order condition  +  
0() = 0. By

part (iii) of Condition 2 for , the solution is interior. For reference, we use () and  () to

denote the solution for any ratio  ≡ | |  0. Comparative statics are straightforward. Defining
() ≡ [0]−1 (−), these are given by 0() = −100(())  0 and 0 () = 00(())  0.

Finally, note that 0() + 0 () = 0 (Envelope Theorem).¥

Proof of Lemma 1: By Condition 1, we have  =  since  = −_ and  =
_
 are the

optimal choices. Similarly,  = (+2
_
) , since  =  =

_
. Finally,  =  ( + ∗ + ∗)+

 ( + ∗ + ∗ ), by the optimal static choices (denoted by
∗) from Lemma A1 when  and  are

both on the agenda. Player  chooses  to maximize (++ )( + )+ [1− (++ )] .

Clearly, since the objective is linear,  =
_
 iff  +    . Simplifying, this inequality reduces
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to

 + ( + 2
_
)  ( + ∗ + ∗)  + ( + ∗ + ∗ ) 

This is valid because (1) 1   + ∗ + ∗ , by Condition 3; (2)  + 2
_
 ≥  + ∗ + ∗ by

_
 ≥  and

_
 ≥  , and (3) each of   0 and   0 holds by Condition 1.¥

Proof of Proposition 1, Part A: Player  chooses  to maximize {(++)(+ )+[1−
(++ )] }. The solution is  =

_
 iff  +   (it is  = −

_
 when  +   ).

Substituting for  and  with the optimal static actions, rearranging terms, and dividing by

  0, we have

 +    ⇔ (2
_
 − ∗ − ∗ ) +




(1−  − ∗ − ∗)  0

Now, using the definitions of  ≡ −


 0 and  ≡ 


 0, and writing the the optimal choices

in the { } state in terms of the solutions to the first-order conditions from Lemma A1, that is

(∗  
∗
 ) = (−()  ()) and (∗  ∗ ) = (()  ()), our condition for  =

_
 becomes

( ) ≡ £2_ −  ()−  ()
¤− [1−  + ()− ()]  0

We claim that, for any   0, the function ( ) is (1) decreasing in , (2) positive at  = 0, (3)

negative as  → ∞, and, hence, (4) there ∃!  3  crosses 0. To show (1), differentiate  w.r.t. 

and apply the envelope theorem, 0 () + 0() = 0, to find  = −[1 −  + () − ()]  0,

as follows from Condition 2 for interior probabilities. For (2), let  → 0 and note that () → 0

and  () →
_
, so that (0 ) =

£_
 −  ()

¤
 0. For (3), letting  → ∞ in ( ) and noting

()→
_
 and  ()→ 0, we see ( )→ −∞. Then, (4) follows by continuity and ( ) crosses

zero one time at a unique  = ̄ () ∈ (0∞). Thus, ( )  0 holds for 0    ̄ () and then

 = ̄, while ( )  0 holds for   ̄ () and then  = −
_
.

Part (b): To verify that ̄ () is increasing, simply note that ̄
0
 () = −, the ratio of

partials for . From above, we know   0. Calculating, we find  = 0() − 0 ()  0.

Hence, ̄0 ()  0 holds. To verify that ̄ (0) = 0 observe that (0) = 0 and (0) =
_
 so that

( 0) =
_
 −  () − [1 −  + ()] At  = 0, we have (0) = 0 and  (0) =

_
. This implies

(0 0) = 0 and, hence, ̄ (0) = 0. To show that ̄ ()   for any   0, it is sufficient to show that

( )  0 since this implies  crosses zero to the left of . Simplifying ( ) at  = , we have

( ) = 2[
_
 −  ()]− [1− ]
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Since  is concave, we have
_
 −  ()  −0(())() = (), where the last step is by the

first-order condition for . This implies 2
_
  2() + 2 (). Since 1 −   2

_
 by Condition

3 and
_
 ≥ (), we have [1 − ]  2() and, thus, the inequality for ( )  0 is valid.

Finally, for the upper bound on ̄ (), write (̄ () ) = 0 as (suppressing arguments) ̄ =

[2
_
 −  −  ][1−  +  −  ]. Since  and  are non-negative and (̄ )  () for ̄  ,

the upper bound of ̄  2
_
(1− ) follows directly.

Part (c): Suppose  is a conflict issue. In a focusing equilibrium, player  chooses  = ̄ against

own interest based on   0. The choice  = ̄ is optimal iff  +  −   0. Substituting

for  and  , noting that ̂ + ̂ = 0 [where ̂ and ̂ are the optimal actions when only (the

conflict) issue  is on the second-period agenda] as players  and  choose oppositely in  , and

rearranging terms yield  +  −   0⇔

 [1− ( + ∗ + ∗)]− (∗ + ∗ )  0 (9)

To show that alignment in  is necessary, we show that the first order condition for focusing (9)

cannot hold when players and conflict on issue  . There are two cases for conflict (A)   0  

and (B)   0   .

Case A (  0 and   0   ): Consider (9). Substitute with  = −   0 and

simplify with the solutions to the first-order conditions, (∗  
∗
 ) = (−()  ()) and (∗  ∗ ) =

(()− ()), to see that (9) holds iff

[ ()−  ()]−  [1− ( − () + ())]  0

This expression is strictly decreasing in  since the partial (applying the Envelope Theorem) is

− [1− ( − ())]  0. At  = 0, the expression reduces to  () − ̄  0. Hence, the expres-

sion is never positive, which is a contradiction.

Case B (  0 and   0   ) : Consider (9). Substitute with  =    0 and simplify with

the solutions to the first-order conditions, (∗  
∗
 ) = (−()− ()) and (∗  ∗ ) = (()  ()),

to see that (9) holds iff

[ ()−  ()]−  [1− ( − () + ())]  0

Since this is the same expression as in Case A, we have a contradiction.

Part (d): By Lemma 1,  always chooses  = ̄. Since  chooses  according to the cut-off

function, ̄ (), the equilibrium result follows directly. Finally, note that in the knife-edge case when
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( ) lies on the focusing boundary we have  +  −  = 0; any  ∈ [−̄ ̄] is then optimal
and part of an equilibrium.¥

Proof of Proposition 2, Part (a): The partial conflict pinning assumptions are:   0   

  0 and   0 Player  chooses  to maximize (++ )( +)+ [1− ( ++ )] .

Thus,  = −̄ iff  +    . Substituting for  and  with the optimal static actions,

rearranging terms and dividing through by   0, we have

 +    ⇔ 1− [ + ∗ + ∗ ]−



(∗ + ∗)  0

Using  ≡ −


 0 and  ≡ 


 0, and writing the the optimal choices in the { } state in
terms of the solutions to the first-order conditions, that is (∗  

∗
 ) = (−()  ()) and (∗  ∗ ) =

(()  ()), our condition for  = −̄ becomes

( ) = 1− [ +  () +  ()]−  [()− ()]  0

Next, we claim that, for any   0, the function ( ) is (1) increasing in  for    and decreasing

in  for   , (2) positive at  = 0, (3) negative as  → ∞, and, hence, (4) there ∃!  3  crosses

0. To show (1), differentiate  w.r.t.  and apply the envelope theorem, 0 () + 0() = 0, to find

 = ()− (). From the proof of Lemma A1, we know that () ≷ () as  ≷  since both

are increasing in the utility intensity. Then, (1) follows directly. For (2), let  → 0 and note that

()→ 0 and  ()→
_
, so that (0 ) = 1− [ +  () + ̄]  0, by Condition 2. For (3), letting

 → ∞ in ( ) and noting () →
_
 and  () → 0, we see ( ) → −∞. Then, (4) follows

by continuity and ( ) crosses zero one time at a unique  = ̄ () ∈ (0∞). Thus, ( )  0

holds for 0    ̄ () and then  = ̄, while ( )  0 holds for   ̄ () and then  = −
_
.

Note that, by property (1), for a given , the maximum of  over all  ≥ 0 occurs at  = . Since

( )  0, it follows that  crosses zero in  to the right of  =  and we therefore have ̄ ()  .

Finally, note that (0 0)  0, so that we have ̄ (0)  0.

Part (b): Implicit differentiation of (̄  ) = 0 yields ̄
0
 () = −, the ratio of partials. We

know   0 holds when (̄  ) = 0. Also, we easily find that  = −0 () + 0()  0. Hence,

̄0 ()  0. Finally, ̄ ()   was shown just above.

Part (c): Suppose  is an alignment issue. In a pinning equilibrium player  chooses  =

−̄ against own interest based on   0. We know  = −̄ is optimal when the condition

 +−  0 holds. Substituting for  and  and rearranging terms  +−  0⇔

 [1− ( + ∗ + ∗ )] + (̂ + ̂)− (
∗
 + ∗)  0 (10)
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where ̂ and ̂ are the optimal actions where only issue  is on the second-period agenda. There

are two cases of alignment for :

Case 1 (  0   0): This implies ̂ = ̂ = ̄ But then  [1− ( + ∗ + ∗ )] + (2̄−
∗ − ∗)  0, which contradicts (10).

Case 2 (  0   0): This implies ̂ = ̂ = −̄. Then  [1 − ( + ∗ + ∗ )] − (2̄ +

∗ + ∗)  0, which again contradicts (10).

Hence, pinning cannot occur with alignment over the second issue.

Part (d): A completely symmetric argument shows that Player  also has a cut-off value, denoted

by ̄ () and it is defined by the condition (̄  ) = 0. The claim regarding a pinning equilibrium

now follows directly. For   ̄ (), we know Player  optimally chooses  = −
_
. Because ̄ ()  ,

we see that    holds. We then have ̄ ()     and Player  optimally chooses  = ̄.¥

Proof of Corollary 1: Continuity away from the pinning or focusing boundary follows trivially

from continuity of the period-2 actions in  and . For →  and the focusing boundary, we calculate

the payoff difference via

 
 −  

 = [( + 2̄)( +  ) + (1−  − 2̄) ]− [( +  ) + (1− ) ]

= 2̄[ +  −  ]

which is strictly positive, by Lemma 1. For  →  and the pinning boundary, a similar calculation

yields the difference as stated in the Corollary for 
 − 

 . To see that this is strictly negative,

simplify to obtain (1−−∗ −∗ )  (∗+∗) . The left-hand side is positive by feasibility and

  0 while the right-hand side is negative since (∗ + ∗)  0 holds as ̄ ()   and   0.¥

Proof of Proposition 3: The payoff comparison for  across the two agendas,  →  and

 → , is given by

 
 ≡ ( + 2̄)( +  ) + [1− ( + 2̄)]  ( + ) + (1− ) ≡  



⇔ ( + 2̄)( +  −  )  ( +  −  )

By Lemma 1, we have  +  −   0. By existence of the pinning equilibrium, we have

 +  −   0. Thus, the inequality holds.

The payoff comparison for  across the two agendas is more subtle. To begin, we have


 ≡ ( + 2̄)( +  ) + [1− ( + 2̄)]  ( + ) + (1− ) ≡ 



⇔ ( + 2̄)( +  −  )  ( +  −  )
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Note that this inequality always holds at  = ̄ () since this implies  +  −  = 0 while

the right-hand side is positive since

 +  −   0⇔  [1− ( +  () +  ())]− (()− ())  0

as follows from   0   , 1   +  () +  () by feasible probabilities, and ()  () by

  . To extend this to all ( ) for which focusing and pinning equilibria exist, first simplify the

inequality for 
  

 by substituting for the  ,  and  terms and note that 

  

 iff

( ) ≡ ( + 2̄)2 −  − 2̄( +  () +  ())− [ − 2 + 2̄− 2̄( − () + ())]  0

Note that ( ) is strictly decreasing in  and strictly increasing in  since the partial derivatives

satisfy:

 = −(1− )− 2̄[1− ( − () + ())]  0

 = 2̄[
0
()− 

0
 ()]  0

as follows from feasible probabilities and 
0
()  0  

0
 (). If we can show lim→∞(0 )  0, then

we will have ( )  0 for any  ≤ ̄ () since monotonicity in  and  implies lim→∞(0 ) 

(0 )  ( ). From the definition, we find

lim
→∞(0 ) = 2̄( + ̄)− (1− )

since ()→ 0 and  ()→ ̄ as → 0, and ()→ ̄ and  ()→ 0 as  →∞.
To characterize the limiting value of  in terms of the  and ̄ parameters, recall that our feasible

set is given by  and ̄ in (0 1) for which 2̄    1 − 2̄ or, equivalently, 0  ̄  2 for  ≤ 12
and 0  ̄  (1−)2 for   12. Solving for ̄ in the implied quadratic 2̄(+ ̄)−(1−) = 0 from
the lim→∞(0 ) expression, we see that lim→∞(0 )  0 holds when ̄ ≤ [√2 − 2 − ]2. As

is easily verified, this necessarily holds when   25. Over the full feasible parameter set for  and ̄,

we calculate that lim→∞(0 )  0 holds for approximately 89% of the region. Refer to the figure

below.¥
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Proof of Proposition 4: For part (a), we need only verify that any ( ) with  ≥  ≥ 

satisfies the condition for inclusion in F . Since  ≥ , this reduces to  ≥ 1 + (1 + )(  ). This

simplifies to  ≥ ( +  )( −  ) =  and we are done. Note that an immediate implication

is that F contains all ( ) where 0 ≤  ≤  for any  ≥  as well as all ( ) where  ≥  for

any  ≥ , since the lower boundary of F is linear with slope less than 1 and crosses the 45◦ line at

 =  = . For part (b), we know from Proposition 1 that utility intensities in E consist of ( )
such that  ≤ ̄ () ≤ . Since we have  ≥ , we know from part (a) that F contains all  ≤ 

and, therefore, that any ( ) in E is also an element of F when  ≥ . For part (c), we know from

Proposition 2 that E consists of ( ) such that  ≥ ̄ () ≥ . Since we have  ≥ , we know from

part (a) that F contains all  ≥  and, therefore, that any ( ) in E is also an element of F when

 ≥ .

For part (d), the value of the discontinuity is a simple calculation from the NBS share formula

using the threat point and social surplus, as described in the text. In order to be valid, however,

we need to verify consistency with the underlying optimal agenda choice of  →  as we cross the

focusing boundary. This holds by construction: with ( ) ∈ F we necessarily have    and,

since  is the alignment issue where   0, we then have   0. Hence,  →  is optimal

in F . The proof for part (e) is analogous as we need only employ the pinning threat payoffs in the
calculation.¥

Proof of Lemma 2:  = 0 implies that  =  = .  = 2 + (1 − )[ +
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  ] + (1 − )[ +  ] + (1 − )
2[ +   ] which, after rearranging terms and

simplifying gives  = [ +  ] − 2[ +  −  ] + (1 − )[ +   ] Similarly,

  = [ +  ]− 2[ +  −  ] + (1− )[ +   ] Maximizing 
 and   involves

solving max
 

{ +   } and max
 

{ +   } with solutions that are the same as those for
the static actions when both issues  and  are on the agenda.¥

Proof of Proposition 5: To begin, we simplify  from the text and the analogous expression

for   by collecting terms to obtain

 =   + (1− )  +  (1−  ) + (1− ) + (1−  ) 

  =   + (1− )  +  (1−  ) + (1− ) + (1−  )  

The values when only  or only  are on the agenda in period 2 are unchanged from before; also,

values for  and  are determined by the preference ratios. We prove the proposition by taking

limits as → 0 and  →∞. Since the relevant terms involve strict inequalities, our result holds in a
neighborhood of these limiting values. For convenience, adopt the normalization of  =  = 1 and

let  ↑ 0 while  ↓ 0. Then the limiting values for the { } state in period 2 are  = ( + ̄)

and  = ( + ̄), since the actions of  follow ()→ 0 and  ()→ ̄ while those of  follow

()→ ̄ and  ()→ 0. Substituting in the payoffs above and simplifying yield

 =  [ + 2̄−  ̄] + (1−  )

=  +  +  + [ −   ] [2̄−  −  − ̄ ( − )]

and

  =  [ +  ̄] + (1− )

=  +  +  + [ −  ] [̄ ( −   )−  −  ] 

We can now employ a revealed preference argument to show that at any best response we have

 ≥ 0 for  and  ≥ 0 for . For , fix any given (   ) by  and compare the payoff  at

(   ) where   0 to that at ( − ). Note that when (   ) is feasible then so is ( − ).
The payoff is larger with  if and only if

2 {1−  −  [2̄−  − ̄ ]}  0

Since   0 we need only show the bracketed term is positive. By feasibility, we have 1−   ̄2

so it is sufficient to show ̄2   [2̄−  − ̄ ]. Over all  ∈ [−̄ ̄], the function  [2̄−  − ̄ ]
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is strictly concave with an interior maximum at  = ̄(2 − )2 where the function assumes its

maximum value of (̄(2− )2)
2. Our sufficient condition then reduces to 4  (2 − )

2, which is

clearly valid since we always have  ∈ (0 1). Thus,  will never choose   0 in any best response.

The proof that  ≥ 0 in any best response of  is similar and therefore omitted.

The following properties are straightforward to verify:

A1:



= ̄ ≥ 0 if  ≥ 0 (strict if   0);

A2:



= 1−  −  [̄(2− )− 2 −  ]  0 if  ≤ 0;

B1:
 


= 1−  −  [̄ −  − 2 ]  0 if  ≥ 0 and  ≥ 0;

B2:
 


= −̄  ≤ 0 if  ≥ 0 (strict if   0).

Building on these properties, we can now show that i) in any best response to (   ) where

 ≥ 0,  always chooses such that  ≥ 0, and ii) in any best response to (   ) where  ≥ 0,
 always chooses such that  ≤ 0. We prove i) and omit the proof of ii), which is similar. There
are two cases:   0 and  = 0. For   0, compare  at   0 and at −  0 for given

(   ) and  . Then the payoff at   0 is larger if and only if 2 ̄  0. As   0 is

given,   0 is by construction, and  ∈ (0 1), we are done. For the case of  = 0, the payoff

is independent of  since  simplifies to  =  [ + 2̄− ̄] + (1 −  )  Now, if  ≤ 0,
then we see from property A2 above that  is strictly increasing in  . Hence,  = ̄ is optimal

and, therefore,  = 0. If   0, then observe that 2 2
 = 2  0 and  is convex.

The optimal choice of  by  must then be one of the endpoints, either ̄ or −̄. Comparing  at

these two choices, we find that ̄ is optimal if ̄2   [̄(2 − ) −  ]. The maximum value for the

right-hand side is [̄(2 − )2]
2, which occurs at  = ̄(2− )2, and this is clearly less than ̄2.

Thus,  will never choose  ≤ 0 in a best response and i) is established.
Summarizing, we have shown that in any equilibrium we necessarily have:  ≥ 0,  ≥ 0,  ≥ 0,

and  ≤ 0. From this pattern, we now show that all of these inequalities are strict in equilibrium and,
furthermore, that each agent does at least  on their dominant issue, where  is defined by () = ,

where  crosses the 45◦ line. Note that 0() = −1 and ()  ̄2.

We begin with . Since we have  ≥ 0 and  ≥ 0 in equilibrium, property B1 implies that  

is strictly increasing in  . This implies that  = −() in any equilibrium. To see why, recall that
 ≤ 0 holds in equilibrium. If we ever had   −() then the slack could be used to increase 
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and this would lead to a strict increase in  . Next, substituting with  = −() for  in  , the

resulting variation with  is given by

 


− 0()

 




At  = 0, 
0() = 0 holds (note that   is bounded by 1 in magnitude). Since 

  0

from B1, we see that  always chooses   0 in equilibrium. Incorporating   0, a similar

argument allows us to conclude that  = () and that   0 also holds. In turn, we can then

show   0 and   0.

To show that each of  and  exceed , it is straightforward to substitute with  and reduce

each of  and   to a function of only  and  . We can then show that each of these functions

is strictly increasing (in the action on the player’s dominant issue) over the interval [0 ]. For  we

calculate

(  ) =  +  − () + [ +  ()] [̄(2− )−  + () + ̄( ) ]




= [1−  + ̄(2− )() + ()

2]− 2()
+̄

0( ) + 2̄()[( ) +  
0( )]

2

 2


= −2() + ̄
00( ) + 2̄()[2

0( ) +  
00( )]  0

Since  is concave in  , we need only show that 
 is positive at  =  for all  ∈ [0 ̄]

to conclude that  chooses    in any best response. Evaluating and simplifying, we haveµ




¯̄̄̄
 =

= 1−  + [̄(2− )() + ()
2 − 2()− ̄ ]

where we have used the properties () =  and 0() = −1.
Differentiating the above expression with respect to  yields −1 − ̄[() +  ]  0 and,

therefore, the expression is bounded below by the value at  = 1 − ̄2, which is the maximum

feasible value for . Substituting with  = 1− ̄2 in the original expression and simplifying, it is

then sufficient to show

̄2 + ̄(1 + ̄2)() + ()
2 − 2()− ̄(1− ̄2)  0

This expression is increasing in  since ̄3[() +  ]  0 and, therefore, it is bounded below by

the value at  = 0. It is then sufficient to show

̄2 + ̄() + ()
2 − 2()− ̄  0
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This expression is increasing in ̄ since 2̄+ ()−   0 and is therefore bounded below by the

value at ̄ = 0. As a result, it is sufficient to show ()[1 − 2]  0. Since feasibility implies   ̄

and ̄  12, we are done. This establishes that   0 at  =  for all  ∈ [0 ̄].
To show that  always chooses a  that exceeds , we calculate

 (   ) =  + ( ) +  + [ − ( ) ] [̄ − ( )−  + ̄ ()]

 


= [1−  − ̄( ) + ( )

2] + 2( )

+̄ 
0()− 2̄ ( )[() + 

0()]
2 

 2


= 2( ) + ̄ 
00()− 2̄ ( )[2

0() + 
00()]

  is not necessarily concave in  and the proof that    0 for  ∈ [0 ] and  ∈ [0 ̄] is
more complicated than that for agent . To begin, differentiating   with respect to  yields

−1− ̄( ) + ̄ 
0()  0. Hence,   is decreasing in  and, therefore, bounded below

by the value at  = 1 − ̄2, the maximum feasible value for . Substituting and simplifying in

  , it is sufficient to show

̄2 − ̄(1− ̄2)( ) + ( )
2 + 2( ) + ̄(1− ̄2) 

0()− ̄ ( )[() + 
0()]  0

We claim this expression is increasing in . Differentiating with respect to , we need to show

̄2( )− ̄2 
0()−  ( )[() + 

0()]  0

This last expression is positive at  = 0 since ̄(̄ −  )( )  0 and it is increasing in  since,

differentiating with respect to  , we have

−̄2 00()−  ( )[2
0() + 

00()]  0

Thus, we have shown the sufficient condition is increasing in 

As a result, the sufficient condition is bounded below by the value at  = 0 and, in turn, it is now

sufficient to show

̄2 − ̄( ) + ( )
2 + 2( ) + ̄ 

0()  0

for  ∈ [0 ] and  ∈ [0 ̄]. Observe that this last condition is increasing in ̄ since, by differentiation
in ̄, we have 2̄ − ( ) +  

0()  0, as follows from 0() ≥ −1 for  ≤ . Hence, ̄ = 0

provides a lower bound for the sufficient condition and we need only show ( )
2 + 2( )  0,

45



which clearly holds. We have thus established that   is increasing in  for  ∈ [0 ] and that a
best response by  will necessarily involve an action above .

Existence of Equilibrium: we provide a simple pure-strategy existence result. To begin, note

that the players have symmetric best-responses to extreme choices. It is straightforward to verify that

the best-response of  to  = 0 is  = ̄ and, similarly, that the best-response of  to  = 0 is

 = ̄. At the other extreme, the best response of  to  = ̄ is interior and solves the first-order

condition

0 =

µ




¯̄̄̄
=̄

= 1−  + ̄2
0( )

Similarly, in response to  = ̄, the best-response problem for  is identical to that of  once we

substitute  = ̄ in  .

As noted above,  is concave and  has a continuous best-response function that always exceeds 

and is characterized by the unique solution to the first-order condition at any  ∈ (0 ̄], with  = ̄

in response to  = 0. It can be shown that ’s best response is decreasing in  for  ∈ [0 ] but
this need not hold at larger  values.

The complication with  is that   is not necessarily concave. If we make the stronger assumption

on  that

̄( − ̄)00()  −2 + ̄0()

holds for 0 ≤  ≤ ̄, then   is concave, as is easily verified from the above expression for 2  2
 .

As a result,  now has a continuous best-response function, characterized by the solution to the

first-order condition. We know from above that every best response of  is above .

It follows directly from continuity and the common values of  and  in response to 0 and ̄ that

the best-response functions cross each other and an equilibrium exists.¥
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