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Abstract  

We use two years of inpatient data from 243 California hospitals to quantify the relationship between 
hospital-level workload and patient length of stay (LOS), and its “spillover” effects across patient types.  
Patients are categorized as medical or surgical, and the effects of same type patient workload (occupancy) 
on LOS are analyzed. The analysis is repeated with workload replaced by other type patient occupancy, 
providing a “spillover” effect. We find that the effects of inpatient workload on LOS spillover across 
patient types, which we theorize results from most inpatients, regardless of type, utilizing the same shared 
resources (e.g. pharmacy and laboratory). These spillover effects remain even while we find that the 
effects of workload vary at different time points during a patient’s stay: LOS increases as inpatient 
workload on the day of admission increases, while inpatient workload at the end of the stay has a U-
shaped effect on LOS.  
 
 

1. Introduction and Patient Care Process 

Healthcare spending in the US has increased from $256 billion (9.2% of GDP) in 1980 to $2.7 trillion in 

2011 (17.9%), with hospital care accounting for nearly a third of these expenditures (Centers for 

Medicare & Medicaid Services Office of the Actuary National Health Statistics Group 2012).  As a result, 

there is increasing pressure to identify mechanisms for reducing costs while maintaining quality of care, 

such as through the Affordable Care Act (Sebelius 2013). One important area of focus is determining 

drivers of productivity in acute care hospitals.  Productivity can be thought of as the number of patients 

successfully cared for in a time period divided by the resources used during that time.  Given the high 

fixed costs of hospitals, attempts to increase productivity have primarily focused on increasing bed 

occupancy levels (Roberts et al. 1999).  These occupancy levels are also referred to as “patient load”, or 

more generally, workload. 

Operations management research has shown, however, that the relationship between productivity and 

occupancy levels within an inpatient unit is ambiguous.  High occupancy can lead to either increased or 

decreased length of stay (LOS). First, queuing theory states that under conditions of variation in service 

and arrival times, both of which occur in hospitals (Eddy 1984), queuing will occur.  As utilization 

approaches 100%, queue length and overall throughput time increase dramatically.  In the healthcare 

setting, studies have shown that as patient load become higher, LOS increases (Green and Nguyen 2001) 

and quality of care decreases due to the resulting delays in treatment (Chalfin et al. 2007) and mental 
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strain (Kuntz et al. 2013). We refer to delays in treatment due to a combination of queuing for resources 

and slowing down due to mental strain as “congestion effects.” 

Second, employee behaviors, such as those that emerge when employees have high levels of 

discretion over how they complete their tasks (Hopp et al., 2007), alter predicted  relationships among 

capacity utilization and throughput times (Debo et al. 2008, Hopp et al. 2009, Hopp et al. 2007, Jouini et 

al. 2008).  In discretionary task settings, employees have the ability to decide what tasks to perform for 

their customers, in what order, and what level of quality is acceptable(Hopp et al. 2007).  Thus workers 

have the levers to increase or decrease processing times for customers, which in turn impacts the link 

between workload and overall throughput time. For example, in a study of restaurant employees, Tan and 

Netessine (2012) found that when a restaurant was busy, employees modified the level of service they 

provided to customers such that workers spent less time per customer, and customers spent less time in 

the restaurant. We refer to this behavior as “workload smoothing.”  

Operations management scholars have highlighted the need for empirical research at the intersection 

between human behavior and operations management principles (Boudreau et al. 2003, Hopp et al. 2009, 

Jouini et al. 2008).  In particular, more research is needed to shed insight on the complex relationship 

between employee response to workload and its impact on productivity, such as throughput times 

(Boudreau et al. 2003, Hopp et al. 2009, Hopp et al. 2007, Schultz et al. 2003), particularly in the 

healthcare setting (KC and Terwiesch 2009, KC and Terwiesch 2012). Failing to properly account for the 

impact of patient load on productivity can result in the misalignment of labor (Green et al. 2011) and 

physical resources (Green and Nguyen 2001, Shapiro 1996), and result in poorer performance  (Debo et 

al. 2008, Kuntz et al. 2013, Tan and Netessine 2012). Scholars have begun to analyze the effect of patient 

load on LOS, and have proposed target occupancy levels that maximize productivity, but they have only 

examined the effect of patient load on patients of the same service type (Chan et al. 2010). However, 

since hospitals are systems of interconnected, semi-autonomous inpatient units (Gittell et al. 2000),  the 

optimal allocation of resources to maximize productivity for the hospital, accounting for workload related 

factors, may be different from the optimal target occupancy and resource allocation when only 

considering the impact of workload in one inpatient unit. 

This paper addresses this call for research by empirically examining the impact of patient load on 

LOS, with a special focus on the “spillover” effect of patient load across the two main types of patients 

within a hospital: medical and surgical. Based on his or her diagnosis, a patient is assigned to a specific 

hospital service, which is the specialty responsible for caring for the patient.  Each service has its own 

physicians, and while there may be some overlap in beds and nursing, the care is generally segregated by 

service (Gittell et al. 2000, Meyer 2011). Ancillary services, such as radiology, pharmacy, laboratory, and 

transport, are shared among all patients in the hospital. We refer to the occupancy of medical (surgical) 
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patients in the hospital as medical (surgical) inpatient workload, while we refer to the occupancy of 

medical (surgical) patients awaiting admission as incoming medical (surgical) patient workload (See 

Figure 1). 

FIGURE 1 ABOUT HERE 

We use survival analysis with two years of patient-level data from 243 California acute care hospitals 

to empirically test the effects of load on LOS.  We analyze 239,400 patients across eight different 

diagnostic groups (DRGs), including both medical and surgical diagnoses. Upon admission to the hospital 

each patient is assigned one of 746 diagnostic related group (DRG) based on the clinical diagnosis and 

primary needs of the patient, including the patient’s severity level (Office of Inspector General 2001).  

While there is some variation among patients of a given DRG, CMS treats it as minimal, and these DRGs 

are used to calculate a payment level from CMS, where CMS reimburses for the treatment of the 

condition, irrespective of the costs incurred (Office of Inspector General 2001).   In addition, we 

supplement our quantitative analysis with interviews of nurses from a California hospital.  

 We use three measures for patient load, all of which are calculated at the level of an individual 

patient: inpatient workload on the focal patient’s day of admission; inpatient workload on the day before 

expected discharge for the focal patient; and incoming patient workload on the day before expected 

discharge for the focal patient. By analyzing inpatient load at two different time points during the stay, we 

can test whether different effects dominate at different times.   For newly admitted patients, we find that 

as the hospital occupancy level of patients of the same type increases, LOS increases, which is consistent 

with congestion effects.  We suspect that this occurs because key tasks are not being performed for the 

newly admitted patients in the “golden” first hours when they are in the hospital (Blow et al. 1999, Buist 

et al. 2002), which results in the patient’s stay being longer overall.  More interesting is that these effects 

also spillover from one type of patient to another (e.g., a high volume of medical patients increases LOS 

for newly admitted surgical patients) such that as the inpatient load of the other type increases, the LOS of 

the newly admitted patient increases. These results are consistent with increased queuing due to patient 

load, which delays the start of care not just for own type patients, but also for other type patients.    

Meanwhile, on the day before a patient’s expected discharge, we find that an increase in the inpatient 

workload of a patient’s own type is associated with a U-shaped effect on LOS. Specifically, as same type 

inpatient workload increases towards around 85% occupancy, the probability of discharge increases by 

about 7%, so that expected LOS becomes shorter. This is indicative of a workload smoothing effect where 

employees prioritize inpatients who are less far along in their hospital stay by sending home patients who 

are approaching the end of their hospital stay. However, once workload exceeds approximately 85% 

occupancy, the trend reverses, and the probability of discharge decreases, thus increasing LOS. This 

suggests that there is a tipping point where congestion effects dominate the effects of workload 
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smoothing. We find the same U-shaped relationship between LOS and inpatient workload from the other 

type of patients. We observe a decrease in LOS as workload from the different patient type increases at 

lower occupancy levels, followed by an increase in LOS as the occupancy of the different patient type 

reaches a high level.  We find it surprising that—at the lower levels of occupancy of dissimilar patients—

increasing occupancy from dissimilar patients is associated with decreasing LOSs, as this suggests that 

the behavioral response of workload smoothing spills over across patient types.  Specifically, we theorize 

that employees perceive the strain on the hospital’s shared resources, such as pharmacy and radiology, 

from the other type of patients.  This strain can cause delays in the care of their own patients and therefore 

similar to their response to workload from the same type of patients, they prioritize the hospital’s sickest 

patients by discharging those closest to leaving to reduce the hospital system level load.  As with the same 

type of patients, workload smoothing requires spare capacity to undertake discharge procedures, so that as 

the hospital occupancy of dissimilar patients reaches high levels, congestion effects dominate and LOS 

increases, which we believe is due to delays obtaining shared resources. 

Finally, we find that as incoming patient load of the same type increases, the probability of discharge 

on the day before expected discharge also increases, consistent with workload smoothing. However, the 

incoming patient load from the different type patients does not impact the probability of discharge on the 

day before expected discharge. We hypothesize that the reason that there is no spillover effect from 

incoming patients is because they have not yet begun to use resources, but employees caring for same 

type patients know that they face a heavy future workload, and are incentivized to smooth their load by 

discharging patients near the end of their stays.  

Our work makes several contributions to the growing operations management literature on the impact 

of employee behaviors and workload on organizational productivity. First, we identify and quantify 

spillover effects of workload across different types of patients on LOS, which suggests that studies should 

include possible spillover effects if they are to fully account for workload’s impact on productivity.  

Second, we analyze the effects of inpatient workload at the beginning and end of patients’ hospital stays, 

and find that different effects dominate at different times, a concept that we believe has not been fully 

explored in previous work.  Third, our data enable us to separate the effect of inpatient workload from 

that of incoming workload, a distinction that, to our knowledge, has been understudied in prior research. 

Finally, by distinguishing between incoming and inpatient workloads, as well as the timing of the loads, 

we show that there is a congestion spillover effect, which would be expected in situations that involve 

resource sharing, but also a workload smoothing spillover effect, which is a surprising behavioral 

response not theorized to occur with shared resources. Our study has important implications for how 

managers should think about allocating resources across the hospital to achieve optimal hospital-level 

performance.   
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2. Related Literature 

Traditional operations models have generally made the assumptions that the time to complete the work on 

a particular “unit of work”  is a random variable with a constant mean, and that each unit of work is 

independent from each other unit (Dallery and Gershwin 1992).  These assumptions have been extended 

to research in patient care settings.  However, recent research suggests that the time required to complete 

a unit of work is not constant, but is instead influenced by the overall workload, though the direction of 

the change may not be constant.  One reason for this is because workers can speed up or slow down if 

they have discretion over two key behaviors: how many tasks they perform for customers (Batt et al. 

2012, Hopp et al. 2007, Oliva and Sterman 2001) and—even if they have no discretion over which tasks 

to perform—how long they take to perform a standard set of tasks (KC and Terwiesch 2009, Schultz et al. 

1998). For example, in service settings, a worker can respond to her own workload—as implied by the 

number of people waiting for service from her—by either increasing or decreasing the amount of work 

she performs per customer, which impacts quality and the average processing time.  Hopp, Iravani et al. 

(2007) analytically showed that by increasing the capacity in a service setting, effectively reducing the 

workload per worker, servers may provide more service to each customer. Under certain conditions, this 

can paradoxically result in longer queues for customers, despite the increased capacity, reinforcing the 

importance of understanding how the state of the system affects resource use and thus, allocation 

decisions.  

Other analytical studies have found that when customers are queued up waiting for service, the 

average utility of all of the customers can be increased by decreasing the time spent per customer (George 

and Harrison 2001, Ha 1998, Stidham and Weber 1989).This is because the cost of increased effort and/or 

reduced quality is offset by the reduction in waiting times (George and Harrison 2001, Stidham and 

Weber 1989).  Empirical studies of employees’ response to workload have found a general tendency for 

employees to reduce the time they spend per “unit of work” when they perceive an increasing inflow of 

work.  Research has found that as workload increases employees will first work faster (Kuntz et al. 2013), 

and if queuing continues, will then “cut corners” by omitting certain tasks to reduce waiting time for 

queuing customers (Oliva and Sterman 2001).  In a healthcare setting, high patient load has been shown 

to result in premature discharge from the ICU (KC and Terwiesch 2012), as well as incomplete physician 

documentation (Powell et al. 2012  ).  The corner cutting can negatively impact the quality of work, as 

evidenced by higher mortality rates (Kuntz et al. 2013) and lower reimbursement (Powell et al. 2012  ). 

Employees whose number of tasks is fixed, and whose work is standardized may not be able to cut 

corners, but have been shown to speed up when faced with rising inventory levels (Schultz et al. 1999, 

Schultz et al. 1998). 
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The above research suggests that when employees face an increasing workload, they respond by 

reducing processing time by speeding up and cutting corners. However, although a worker’s 

psychological response to increased workload is to try to reduce LOS, congestion effects work in the 

opposite direction of this workload smoothing behavior. Even with the speeding up efforts of employees, 

if the rate of incoming demand is greater than the rate at which the system can process that demand, the 

queue will lengthen and average throughput time will increase (Little 1961). Thus, even though a worker 

may speed up to reduce a particular patient’s LOS, if the change in service rate is not as high as the 

change in workload, then on average, high workload will result in an increase in LOS.  

In addition, heavy workload can cause mental strain and exhaustion, which can also decrease service 

rates, thus increasing processing times.  Tan and Netessine’s (2012) empirical study of restaurant servers 

indicates that as demand increases, servers can increase effort and serve diners more quickly, while 

maintaining or increasing revenue, as follows from the expected optimal behavior. However, during 

periods of very high demand, congestion effects may govern changes in processing times, with diners 

staying longer, but without an increase in revenue, which is due to the inability of servers to effectively 

serve so many customers. In addition, increased load in a healthcare setting has been shown to increase 

the number of interruptions, which often results in repeat set-up periods and re-work due to errors (Tucker 

and Spear 2006). Prolonged heavy load in healthcare has also been linked to worker exhaustion that 

results in slowdown and a propensity for errors (KC and Terwiesch 2009). As a result, slow-down and 

longer LOSs may occur when workload is heavy.   

To reconcile the above observed tension in the direction of change in LOS due to increased workload, 

we examine whether workload has a different effect on LOS at different times during a patient’s stay, and 

at different occupancy levels. We first test whether, and if so, when workload increases lead to congestion 

effects (increased LOS) versus workload smoothing (decreased LOS).  By separating the effects of 

congestion and workload smoothing, we are able to show that when hospitals become busy workers 

prioritize some types of patients by systematically shortening the LOS of other types of patients. This 

highlights the importance of teasing apart the “average” effect of workload to determine its specific 

impact on individual patient types.  We further build on this research by analyzing how workload from a 

different type of patient affects LOS, and if this effect matches the effect from workload from the same 

type of patient.    In the next section we describe our hypotheses on how patients of different types and at 

different times during their stays are affected by workload. 

 

3. Hypotheses 

3.1 Inpatient Workload 
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To test the spillover effects of inpatient workload on LOS of a different type of patient, we need to 

understand the effects related to same type patients and then compare these with the effects due to the 

workload of other type patients.  The greatest costs associated with hospital care are for equipment, 

building, and labor, which are fixed in the short term (Roberts et al. 1999). Consequently, many hospitals 

try to leverage these costs with high utilization of their assets, usually targeting an 85% occupancy rate 

(Green and Nguyen 2001), leading to times where there is high system-level inpatient workload. 

However, in general, the start of a patient’s stay requires the most staff and physical resources (Clarke 

1996), while the remainder of the stay is more focused on recovery.  During this initial period, there is a 

set of time consuming tasks that must be completed. Based on our discussions and observations, these 

include going through the patient’s history, orders, allergies; getting vital signs; and—if the patient’s 

condition is straightforward—beginning treatment.  If the patient’s diagnosis is not definitive, further tests 

may need to be completed before treatment can begin. During periods of high inpatient load, it is more 

likely that there will be queuing delays to complete these tests. Completing these admission tasks also 

requires substantial nursing time.  Therefore, during times of high inpatient workload staff may first try to 

complete important work for their other patients, delaying the start of the treatment process for newly 

admitted patients.  

Furthermore, the benefits of prioritizing the care of newly admitted patients will not be apparent until 

those patients are ready for discharge days later, so the immediate costs of focusing on newly admitted 

patients far outweighs the immediate benefits.  Meanwhile, delays in care due to rework and switching 

back and forth between multiple patients occur when healthcare workers care for multiple patients 

(Tucker and Spear 2006).  Thus, it is possible that during times of high workload, the additional patient 

load inherent with new inpatients will result in a longer LOS for them.  Delaying the start of care for 

critical patients has been shown to increase the overall LOS for a patient, beyond the direct delay in care 

(Chalfin et al. 2007).   Therefore we predict that workers will prioritize patients near completion to reduce 

their total workloads due to those patients being discharged, and thus delaying the care for the newly 

admitted patients. Consequently, as the inpatient workload of same type patients increases on the day of 

admission of a focal patient, we would expect congestion effects to dominate over workload smoothing 

effects for the focal patient and therefore the focal patient will end up with a longer LOS than otherwise 

would be expected.  Thus, 

 

,
0 

(1a)

 

where 	is the LOS of a patient of type i, (medical or surgical), and Occupancyi,0  is the occupancy of 

patients of patient type i on day 0. Formally, 
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Hypothesis 1a: Increased inpatient workload of same type patients on the day of admission is associated 

with an increased LOS. 

 

During the initial period of the stay, patients frequently need diagnostic tests, medications, and any 

treatments begun.  All of these tasks require resources, most of which are shared across the hospital, such 

as radiology, pharmacy, and transport services.  Therefore, even if only other type patients are facing high 

inpatient loads, there will be queuing for resources, which will delay the care of a newly admitted other 

type patient, and increase this patient’s LOS.  Thus 

 

,
0 

 

(1b)

where Occupancyj,0  is the occupancy of patients, j,  of type j on day 0.  

 

Hypothesis 1b: Increased inpatient workload of other type patients on the day of admission is associated 

with an increased LOS. 

 

Each patient has an expected LOS associated with his primary condition, as well as patient specific 

characteristics, such as age, gender, and presence of comorbidities.  The decision to discharge a specific 

patient requires balancing the effects of sending the patient home before he is fully recovered, which 

increases the chance of readmission (Chan et al. 2010, KC and Terwiesch 2012) versus keeping him 

longer, which enables a more thorough recovery, but also incurs greater cost for the hospital and exposes 

the patient to the risks of hospital acquired infections or other medical errors (Hauck and Zhao 2011). We 

hypothesize that when inpatient load of same type patients is high around the time of discharge, the 

decision to discharge will be affected by more than medical concerns alone. It should be noted that if 

inpatient load is going to directly affect discharge timing, we expect it to have the greatest impact on the 

day before expected discharge because most discharge preparations begin on the day before expected 

discharge. If there is a slowdown due to congestion effects on the day before discharge, discharge 

preparations may be postponed, resulting in that patient’s discharge being delayed beyond the expected 

day of discharge. Conversely, if there is a speed-up due to workload smoothing, all the discharge 

preparations may be completed early, resulting in that patient being discharged on the day before 

expected discharge.  

If there is high inpatient workload , workers will desire to reduce their own loads (Green et al. 2011, 

Tan and Netessine 2012) so that they can increase the quality of care for their remaining patients. Nurses 

have been shown to value short-term problem-solving skills (Tucker and Edmondson 2003), and in the 
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case of high inpatient load, they have to prioritize the patients who need their care the most, while still 

caring for patients who need more maintenance, and balancing these needs with their mental and physical 

limits.  Thus, they choose to discharge patients close to completion to have more time to focus on the 

sickest patients, though in doing so they delay care to the newly admitted patients while discharges are 

being processed. Furthermore, in contrast to the day of admission, any additional effort to speed up will 

more directly affect workers as it can result in a discharge, and thus reduction in workload during a shift. 

Reduction of a patient also eliminates the need to “hand-off” the patient at the end of the shift, another 

time consuming task we observed that adds to the load of nurses and physicians. Additionally, workers 

have more discretion over when tasks can be completed to ensure discharge. For example, the discharge 

paperwork can be nearly completed hours before the final discharge occurs. Finally, some tasks may even 

be able to be shifted to outpatient follow-up care.  Therefore as inpatient workload of same type patients 

increases, we would expect the costs of workload smoothing to be less than the benefits for the workers 

so that the LOS for a patient near discharge is reduced. 

However, the ability of a worker to speed-up assumes some spare capacity to work faster and/or 

rearrange tasks to ensure all tasks are completed for an early discharge.  At very high occupancy levels, 

workers may only be able to maintain patients (Aiken et al. 2002) and may be too strained to speed up in 

order to smooth their workloads, and instead will be more likely to slow down (KC and Terwiesch 2009, 

Tan and Netessine 2012). Consequently, we expect that at very high levels of occupancy, congestion 

effects will dominate workload smoothing effects, and the LOS for a patient near discharge will increase.  

For that reason, we expect a U-shaped effect of inpatient workload of same type patients on the day 

before expected discharge on the LOS of a current patient, such that LOS will initially decrease as 

workload increases from low levels of workload, but LOS eventually increases at high levels of workload.    

 

,
0 

 

(2a)

 

,
0 

 

 

where ,  is the occupancy of patients of type i on the day before expected discharge, d-1. 

 

Hypothesis 2a: Increase of inpatient workload of same type patients on the day before expected discharge 

is associated with a U-shaped LOS 

 

As with high inpatient workload on the day of admission, we would expect that the queuing 

associated with shared hospital resources will make caring for current patients more difficult for 

healthcare personnel. Since these workers still want to prioritize the patients that need the most care, and 
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smooth out their own workloads, they will discharge the patients nearest completion to alleviate some of 

the strain on the system.  As with the predicted effect for same type patients, this workload smoothing can 

only occur if there is additional capacity to handle these discharges. Thus, we expect the following 

 

,
0 

 

(2b)

 

,
0 

 

 

 

Hypothesis 2b: Increase of workload of other type patients on the day before expected discharge is 

associated with a U-shaped LOS 

 

3.2 Incoming Patients 

In addition to the number of inpatients in a hospital, there are also incoming patients.  As described 

above, newly admitted patients are very time consuming, and the initial care is considered some of the 

most important for good outcomes.  Independent of the inpatient workload within the hospital, as the 

number of waiting to be admitted patients increases, the expected future load of the workers greatly 

increases.  Since workers try to minimize their own loads so as to reduce the chance of poor quality of 

care (Green et al. 2011), we expect that workers prioritize newer patients, where the effects of proper care 

are greater. Moreover, workers do not want to be perceived as bottlenecks in the system (Schultz et al. 

1999, Schultz et al. 1998), so they will ensure they have space for an incoming patient. However, if 

current patients remain in the hospital, even if they require fewer resources, they still increase mental 

strain.  As a result, as the number of incoming patients increases, we predict that workers will focus 

instead on discharging patients nearing their day-of-discharge earlier than they otherwise would. This 

strategy enables workers to focus more fully on incoming patients. We expect 

  

,
0 

(3) 

where ,  is the relative number of incoming patients of type i on the day before expected 

discharge, d-1. Note that on the day of expected discharge, high numbers of incoming patients may cause 

some workload smoothing, but since the patients are already expected to go home we do not expect to 

observe as strong an effect. Thus, we believe that the largest effect from heavy loads of incoming patients 

will be observed on the day before expected discharge. Nevertheless, for completeness in our model will 

include the effect of incoming patients on LOS on the day of expected discharge. 

 



Spillover Effects of Workload | 11  
 

Hypothesis 3: Increased same type incoming patient load on the day before expected discharge is 

associated with a decreased LOS for current patients. 

Unlike inpatient load, the effects of incoming patients are confined to same type patients as they only 

put pressure on workers in these same type inpatient units since they represent future work, but are not 

currently consuming resources.   

Combining our hypotheses, we model the LOS of patient, i, in hospital, h, as follows 

 , , ,

, , ,  
 

(4) 

Where 	are patient level controls (e.g. age, sex, date of birth, medical condition), and 

 are hospital level controls (e.g. hospital of treatment, day of week of service), and ε is an error 

term representing the stochastic nature of treatment response. Within the hospital controls is the number 

of medical and surgical admissions on the day of admission as well as scheduled admissions on the day 

before and day of expected discharge to control for any cancellation of surgeries due to load, which could 

be a buffering mechanism (For a complete list of controls see Table 1b).  The patient and hospital controls 

provide a baseline amount of time that a patient must be in the hospital to recover for a given medical 

condition with a given set of patient characteristics, and the remaining variables are the workload 

variables of interest (Table 1c). 

 

4. Data 

Our data consists of patient level records for all inpatient discharges in the state of California from 

December 2007 through December 2009 (Office of Statewide Health Planning and Development). We 

sum all patient admissions and subtract all patient discharges for all patients admitted in December, 2007 

to determine the baseline number of patients in each hospital on January 1, 2008.   We restrict our sample 

to only include patients admitted after December 31, 2007, and before November 30, 2009 since our data 

only has patients who were discharged by December 31, 2009, and does not include any patients admitted 

in December, but discharged on or after January 1, 2010, thus making it impossible for us to get an 

accurate census during that month.  We limit our data to acute care hospitals with at least 7000 patients 

over the course of our study (23 months) to ensure enough patients per day to calculate reasonable 

occupancy levels, and a 24 hour ED to ensure there are emergency admissions, resulting in a sample of 

243 hospitals.  Each admission is its own record and includes the date admitted, date discharged, 

demographic information on the patient, hospital of care, diagnoses, major procedures, disposition (i.e., 

discharged home, to home health services, etc.), if an admission was scheduled or not, and DRG, among 

others. Consequently, we know whether the patient was surgical or medical, and if the visit was scheduled 
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or emergent. Lastly, we have dates for all major procedures performed, and the LOS of each patient in 

days.  

The hospitals in our data vary greatly in the number of admissions and number of beds, so the 

absolute level of inpatient workload and incoming patient load can similarly vary. To be able to analyze 

the effects of patient workload across these heterogeneous hospitals, we have converted the absolute 

number of surgical and medical patients currently in the hospital, as well as the number of incoming 

surgical and medical patients, for each date, into a percentage of the maximum for each patient workload 

category. While we would prefer to calculate occupancy based on staffed beds available for a given day, 

the recorded numbers of staffed beds are at the year level, and often quite different from reality. 

Consequently, in a manner similar to that employed by Kuntz et al. (2013) we divide the number of visits 

by the maximum number of daily patient visits, and refer to this value as occupancy. Our methodology 

differs slightly from Kuntz et al. (2013) in that we calculate our maximum number of visits taking into 

account the effects on staffing of seasonality, trends, and the weekend effect, whereby hospitals reduce 

staffing levels on weekends. Specifically, we calculate the 99th percentile of the number of patients treated 

or admitted on weekdays for each quarter-year combination, and then do the same for weekends for each 

quarter-year combination, and these numbers represent our maximum weekday and weekend censuses, 

respectively. We use the 99th percentile to account for any extraordinary circumstances that do not 

actually reflect the number of beds generally available for occupancy. We distinguish between weekdays 

and weekends to account for what is commonly termed the “weekend effect” in hospitals, and we 

distinguish the quarters of the years to account for seasonality in demand.  For example, to calculate the 

congestion for hospital “H” on Monday, June 9, 2008, we first find the 99th percentile of the number of 

patients who were inpatient on a single weekday in hospital H in quarter 2 of 2008, and label that the 

maximum.  We then divide the number of patients actually in the hospital on June 9 by that maximum.   

We focus our analysis on eight DRGs: five medical and three surgical for a total of 239,400 patient 

visits (see Tables 1a, 1b, and 1c for the list of DRGs used as well as summary statistics).  We restrict our 

analysis to these DRGs since they are among the 20 most common DRGs representing 3.7% of total 

patient visits. They also all have average LOSs (as defined by CMS) of at least 3 days, but less than 7 

days.  This average LOS range ensures that the LOS is long enough to detect day level changes in LOS, 

but not so long that it becomes difficult to predict the expected LOS patients, reducing noise in our 

sample.  By analyzing eight DRGs, we ensure that our results are robust across patient types. In the DRG 

classification, there are multiple DRG numbers for the same primary complaint, but differ in severity 

levels.  For example, 469 is Hip or Knee Replacement with major complications and/or comorbidities, 

while 470 is Hip or Knee Replacement without major complications or comorbidities. Each of the eight 
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DRGs in our study represents a specific primary reason for visit and intensity level selected because its 

frequency of occurrence and average LOS met the above described criteria for inclusion.  

To further reduce noise from our analysis of the impact of workload on the focal patients’ LOS, we 

exclude patients who die during their stay since it is very difficult to predict the LOS of a patient who 

ends up dying in the hospital (Kuntz et al. 2013), and the death of a patient should be uncorrelated with 

the LOS of the remaining patients outside of the effect of occupancy.  Furthermore, in our sample, only 

0.50% died within the hospital, so we do not think they will affect our analysis. We also exclude patients 

who are transferred to another hospital, as these patients have LOSs that are impacted by factors that are 

not directly related to the occupancy of the hospital, as there is little evidence that transfers take place due 

to hospital occupancy (Kuntz et al. 2013) and represent less than 2% of the total patients within these 

eight DRGs. Finally, we exclude patients who left against medical advice as it is difficult to predict when 

they will leave, and they are only 1.10% of the sample.  

Note that while we focus on eight DRGs for calculating effects of workload on LOS, the inpatient and 

incoming patient volumes include all DRGs, except transplants, burns, and obstetrics, because the 

incoming work and current occupancy levels in the hospital are comprised of all patient types. We do not 

include transplant, burn, and obstetric DRGs as these patients are often treated in separate areas of the 

hospital by very specialized caregivers.  

In addition to patient level data, we also interviewed five medical/surgical nurses from a California 

hospital about what they did to prepare for a new admission. This was part of a larger research project that 

one of the authors was conducting with the hospital to understand what equipment was required to be 

ready for a newly admitted patient to the inpatient unit.   

 

5. Econometric Specification 

The LOS of a patient can be thought of as a survival function, with discharge being equivalent to exiting 

the system (KC and Terwiesch 2012). Survival analysis allows us to predict a patient’s likelihood of 

discharge on any given day based on an underlying hazard function scaled by the patient’s and hospital’s 

characteristics. Since our LOS data is at the day level, we must use a discrete-time survival analysis. In 

the medical literature it is common to allow the  baseline hazard to vary with time (KC and Terwiesch 

2012), and since our data does not fit a known distribution very well, we include a variable for each day 

to account for this flexible hazard rate. 

We follow Jenkins’ (2004) approach and use a proportional hazard complementary log-log (cloglog) 

regression to model the probability of “failure” (i.e., discharge) at any given time (in our case, for each 

day).  Cloglog is an appropriate model since it can be used with discrete and censored survival times, and 

it is the best estimator when observation times are discrete but the events occur continuously; in our study 
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we have daily census, admission, and discharge data, but patients are admitted and discharged throughout 

the day. This gives us the following hazard for patient i at time t: 

 1 exp exp  
 

(5)

Where  is the baseline hazard on day t and 

 exp  
 

(6)

in which β is a vector of coefficients, and  X is a vector of variables. We restrict our analysis of LOS to 

patients with the eight DRGs of interest, running separate analyses for each DRG given that each will 

have a different baseline hazard function. We calculate this hazard rate for each patient for each day, 

d=1,2,…D, where D is the 99th percentile of LOS for the DRG, providing the baseline hazard function 

associated with time.  We consider the 99th percentile of LOS to be the maximum expected LOS since we 

have observed that patients who have abnormally long LOS often have unobservable medical or social 

conditions unrelated to patient census that is causing the long LOS (e.g., they do not a have a safe home 

environment). To account for this cutoff, we censor patients with a LOS greater than D days, which can 

be interpreted as having had no event before the end of the observation period.  

In addition to the controls listed in Table 1b, we include our variables of interest: medical and 

surgical occupancy, as well as their square terms, on the day of admission and the day before expected 

discharge; medical and surgical admissions on the day before and of expected discharge (See Table 1c). 

Given that we only have midnight occupancy levels, we use the occupancy level at the start of the day of 

admission (the midnight immediately prior to being admitted) for the day of admission occupancy.  For 

the day before expected discharge, we use the occupancy at the end of the day before expected discharge. 

The admission variables are the total number of admissions over the course of the day of interest.  

Since patients have different expected LOSs due to individual patient characteristics, even within a 

single DRG, to calculate the occupancy and admission rates on the day before expected discharge, we 

first need to predict the expected day of discharge.  To do this, we regress, by DRG, patient characteristics 

(see Appendix 1 for a list of controls and model results for the DRG related to hip and knee replacement) 

on log LOS, with robust standard errors clustered by hospital.  We then predict each patient’s LOS using 

the coefficients from our model, and round to the nearest integer.    

We restrict our sample to patients with expected LOSs of at least three days so that we can detect day-

level changes in LOS.  Note, while we observe the workload measures on the day of admission and day 

before expected discharge, we do not control for the level of busyness on the other days of the stay since 

we do not expect them to have a significant effect on LOS.  Furthermore, we are concerned about over-

specification due to the high correlation in occupancy of the same type of patients between days, as 
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shown in Table 2; the correlation between day “D” and day “D+1” is 0.86 for medical patients, and.85 

for surgical patients. 

As it is difficult to interpret hazard rate changes (the β’s in eq. 6), we will present the (1) hazard ratio, 

and (2) hazard rate margins (Hoetker 2007, Kuntz et al. 2013).  A hazard ratio is the ratio of hazard rates 

between the treatment and control group.  In our setting, where the variables of interest are continuous, 

the hazard ratio is the proportional effect of a 1% increase in occupancy on the hazard rate, where a 

hazard ratio of less than 1 means that an event is less likely to happen (i.e., a patient is less likely to be 

discharged, so the LOS increases) as the occupancy increases, compared to the baseline condition. A 

hazard ratio greater than one means the event is more likely to happen (i.e., a patient is more likely to be 

discharged, so the LOS decreases), and a hazard ratio of 1 means there is no difference.  For example, a 

hazard ratio of 0.95 is equivalent to saying that a 1% increase in occupancy is associated with a 5% 

decrease in the hazard rate, and thus a patient is more likely to stay in the hospital longer. The actual 

change in LOS will be dependent on the underlying hazard function for the patient given his 

characteristics. 

In addition to the hazard ratio, we will also present the hazard rate margins at a variety of variable 

values. The hazard rate margins produce the average absolute change in the hazard rate for a 1% increase 

in the occupancy, given that the occupancy is at a set value. This value can be considered the average 

partial effect.  For example, we can find the average hazard rate change that results from an increase in 

the medical occupancy on day of admission by 1%, given that the occupancy was 60%. The reason we 

choose a set of points to evaluate the hazard rate, as opposed to just averaging the partial effects of a 1% 

increase over the given occupancy rates, is our non-linear effects.  Since we predict that increased medical 

and surgical occupancy will have U-shaped effects, we are able to get a better sense of what happens by 

selecting evaluation points.  For marginal effects, we evaluate at occupancy levels of 0%, 25%, 50%, 

65%, 85%, 92%, and 100%.  We chose these values to represent a range on the spectrum, and specifically 

chose 85% as that is often cited as a target occupancy, and 92%, as Kuntz et al. (2013) found that to be a 

tipping point in terms of quality. We ran other values as robustness checks and found similar results. 

Given the set of hazard functions, we can also solve for the patient’s survival function Si(t), which 

gives the chances of surviving past time t, and equals 

 
exp ln 1 ,  

0 1 ∀  
 

(7)

As with the hazard function, we can calculate these survival functions for each patient for each day, 

d=1,2,…,D, to yield a survival curve, and find the expected survival time of the patient, or LOS, of a 

patient with a specific set of characteristics, and the relative effects of each of these characteristics, as 



Spillover Effects of Workload | 16  
 

 
∗ 1  

(8)

 

where K is the expected maximum LOS in days. However it should be noted that the effect of occupancy 

on the survival function will vary based on all patient and occupancy level variables. As explained by 

Hoetker (2007), the treatment directly affects the hazard rate, but that rate is also determined by the 

patient’s other characteristics as well as the baseline level of the variable of interest. For example, a 1% 

increase in occupancy from 0% occupancy can have a different change in LOS than a 1% increase at 50% 

occupancy, and the same 1% increase will have a different effect if a patient is 65 years old or 85 years 

old.   When the treatment is binary, survival functions can be determined for each patient both with and 

without the treatment of interest, and the average LOSs can be compared. However, since we have 

multiple variables of interest, and none of our variables of interest are binary, but instead continuous and 

non-linear, and thus the effects of additional occupancy differ at different base occupancy levels, we 

cannot run survival analyses for each possible patient characteristic combination.  Instead, we will present 

the effects of multiple changes in occupancy for a given patient simply to provide an example of the 

magnitude and directions of changes of LOS associated with each variable. 

We use Stata 12 for all of our analysis. The hazard functions are solved using maximum likelihood 

estimation on our inpatient hospital dataset, yielding us a model of defined coefficients for each hazard 

function. We use the hr command for hazard ratios, and margins for our margins/average partial effects. 

 

6. Results 

6.1 Inpatient Workload 

On the day of admission, the occupancy of same type patients has a statistically significant effect on the 

LOS of patients (Hypothesis 1a).  As seen in Model 1 of Table 3, for the five medical DRGs, the hazard 

ratios for Cellulitis and Heart Failure are statistically significantly less than 1 at 0.9919 (p<0.05) and 

0.9928 (p<0.10), respectively. Similarly, for surgical patients, the hazard ratio for Hip and Knee 

Replacement/Revision patients is statistically significant at 0.9948 (p<0.05). The hazard ratios for the 

other DRGs, with the exception of spinal fusion patients, are directionally consistent, with values less 

than 1. This indicates that patients who are admitted to the hospital, on a day when there is a high 

occupancy of the same type of inpatient, will have a longer LOS than otherwise expected.  Furthermore, 

when we look at the marginal effects (Table 4) of same patient type occupancy on day of admission, we 

see that at low to medium occupancy levels (under 85% occupancy), each additional patient reduces the 

hazard rate, thus increasing the LOS, with a flattening out (and slight reduction for some surgical DRGs) 
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as occupancy approaches 100%. Again, this is consistent with Hypothesis 1a that increased inpatient 

workload of same type patients on the day of admission increases LOS due to congestion effects.   

TABLES 3 AND 4 ABOUT HERE 

We believe that this is because admitting a new patient is a time consuming process that is difficult 

for nurses to accomplish if they have a heavy load of current patients.  As a result, when occupancy levels 

are high, the newly admitted patients’ care might be postponed until the nurse can complete important 

work for his or her other patients.  All five nurses whom we interviewed stated that admissions were time 

consuming, and as a result, they tried to first make sure that their current patients’ needs were met before 

beginning the process of admitting a new patient. For example one nurse described the challenge a co-

worker had trying to balance the work demands of a new admission with her existing patients. “She had a 

little difficulty.  She was struggling to juggle her patients, ‘Should I go see this new patient first?  But if I 

see this new patient, I’m missing the opportunity to see my other three patients who are on the floor.’  

When she did attend to the newly admitted patient, she was in that room for at least a good hour.” 

We also find evidence that the occupancy level of the other type of patients affects LOS, such that 

medical (surgical) patient occupancy affects the LOS of surgical (medical) patients on the day of 

admission (Hypothesis 1b).  Looking at Model 2 of Table 3, we see that for the 3 surgical DRGs, the 

hazard rates associated with medical occupancy levels are all statistically significantly less than 1 (0.9704, 

p<0.01 Cholecystectomy; 0.9806, p<0.05 Spinal Fusion; 0.9674, p<0.01 Hip and Knee 

Replacement/Revision).  For medical patients, the effects of surgical occupancy are not as strong 

statistically, but again, are in the same direction.  The effects may not be as strong due to the fact that for 

the typical hospital, there are two times as many medical patients as surgical, so the absolute effects of 

surgical patients on shared resources are smaller. We find similar results as above in the marginal effects 

model (See Table 4). We also observe some decreasing of LOS in the square term when the occupancy 

gets very high. From these collective results we conclude that there is a leveling off of LOS increases due 

to congestion effects.   This may be because at high levels of occupancy, staff might be too busy to 

prioritize discharges, and as a result, the care of incoming patients is not delayed by prioritizing discharge 

patients, as it is for lower levels of occupancy.  

To give a sense of the magnitude of the effects of same and other type congestion on the day of 

admission on LOS, we first generated the expected LOS for a “typical” hip and knee replacement patient 

(See Appendix 2 for values used).  We then varied the medical and surgical occupancies on the day of 

admission (see Figure 2a).  We find that the maximum change in LOS due to own type (surgical) 

occupancy occurs as occupancy increases from 0% to 51%, with a change of 0.11 days (2.7 hours), or 

2.8% over the 0% occupancy.  It should be noted, that this is a conservative estimate as the actual 

maximum occurs somewhere between 51 and 85%. The maximum change in LOS due to other type 
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(medical) occupancy occurs as occupancy increases from 0% to 86%, with a change of 0.76 days (18.2 

hours), or 22.9% over the 0% occupancy LOS.  As we mentioned above, the effect of medical occupancy 

is expected to be stronger due to the absolute number of medical patients being greater.  

FIGURE 2a ABOUT HERE 

As same type occupancy increases on the day before expected discharge, we find an increase in the 

hazard rate at lower occupancy levels, and a decrease in the hazard rate at high occupancy levels, 

consistent with a U-shaped effect on LOS (Hypothesis 2a).  Model 1 of Table 5 shows that the linear 

occupancy terms for medical and surgical patients result in hazard ratios statistically greater than one for 

own type patients. For each DRG, the results are significant at the p<0.01 level for all conditions, with a 

range in hazard ratios of 1.0539 to 1.0695 for medical patients, and 1.0201 to 1.0278 for surgical patients. 

Thus, as occupancy of one’s own patient type increases, the probability of being discharged early 

increases. This is indicative of a workload smoothing effect where employees discharge current patients 

near the end of their stay to make room for incoming patients. However, this effect is moderated by the 

occupancy level. The square occupancy terms for both medical and surgical patients are statistically less 

than 1 (p<0.01), suggesting that at high occupancy levels, an additional patient reduces the probability of 

discharge and increases the LOS, which is consistent with congestion effects where work stalls due to 

queuing and mental overload. Table 6 shows the marginal effect of increased occupancy at different base 

occupancy levels.  We find that for occupancy levels below 85%, an increase in occupancy of 1% 

increases the hazard rate, thus reducing LOS, but over 85% (around the target occupancy level of most 

hospitals), the same 1% increase in occupancy reduces the hazard rate, resulting in an increased LOS. 

These results support Hypothesis 2a that increased occupancy of same type patients on the day before 

expected discharge has a U-shaped effect on LOS.  Thus, workload smoothing defines the effect of 

increased load, until congestion effects take over at loads above 85%. 

TABLES 5 AND 6 ABOUT HERE 

Consistent with Hypothesis 2b, we find the same U-shaped effect on LOS when other type patient 

occupancy increases on the day before expected discharge (Model 2 of Table 5). The linear hazard ratios 

range from 1.0129 to 1.0697 (p<0.01 for all), with the square hazard ratios ranging from 0.9996 to 0.9999 

(p<0.01 for all).  Margin analysis shows that between 65 and 85% occupancy results in a switch from 

decreasing LOS to increasing LOS as occupancy increases (Table 6). These results are consistent with the 

fact that while beds and certain medical personnel, such as physicians, are specialized, resources 

throughout the hospital are shared. As a result, occupancy of other types of patients causes queuing and 

slow down for many resources, such as radiology tests, pharmacy, and patient transport. 

Again, we use survival analysis to measure the magnitude of the change in expected LOS associated 

with changes in occupancy on the day before expected discharge (see Figure 2b). As same type (surgical) 
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occupancy increases from 0% to 51%, the LOS decreases by 0.68 days (16.4 hours), or 14.4% from the 

maximum.  As same type occupancy continues to increase, the expected LOS increases by 0.19 days (4.5 

hours) or 4.6% from the minimum.  Similarly, when other type (medical) occupancy increases from 0% to 

86%, the expected LOS decreases by 2.62 days (62.8 hours), or 39.1%. Once the occupancy increases to 

100%, the expected LOS increases by 0.16 days (3.9 hours), or 4% from the minimum.  

FIGURE 2b ABOUT HERE 

 

6.2 Incoming Patients 

Our results show that on the day before expected discharge, a higher number of same type admissions 

results in a hazard ratio greater than one. Four of the medical DRGs and two of the surgical DRGs are 

statistically greater than one, while the others are directionally, though not statistically, greater than one 

(See Model 1 of Table 7).  Thus, a 1% increase in the relative number of same type admissions results in 

a 0.1%-0.2% increase in the hazard rate, resulting in an earlier discharge and lower LOS, as predicted in 

Hypothesis 3.  On the day of expected discharge, only pneumonia has a statistically significant hazard 

ratio greater than one, suggesting that the greatest effect is when patients are nearing discharge, and an 

early discharge is possible (Model 3 of Table 7).  Using survival analysis, we find that the effect of 

incoming surgical patients causes the LOS of a “typical” hip and knee replacement patient to decrease by 

0.07 days (1.6 hours) or 1.6%. Unlike with inpatient workload, the number of the other type of patient 

admissions (i.e. medical) on the day before expected discharge does not affect the LOS of incoming 

patients (i.e. surgical) (Model 2 of Table 7).  These results are consistent with our hypothesis that 

incoming patients cause employees to prioritize discharging current patients as a means to smooth their 

workloads and avoid the negative consequences of overwork. 

TABLE 7 ABOUT HERE 

6.3 Robustness 

As a robustness check, in addition to analyzing the eight different DRGs, we also restricted our sample 

for analysis to only Medicare patients. Given that during the time of our study, Medicare paid a fixed fee 

for each DRG, there was an increased incentive for hospitals to discharge patients as soon as possible.  

The presence of this incentive makes any observed increase in LOS a conservative estimate of the overall 

effect.  Although recent legislation prohibits Medicare payment for expenses related to unnecessary 

readmissions or medical errors made by the hospitals—which might encourage hospitals to keep patients 

longer than they otherwise would to help ensure that they do not have unreimbursed readmissions or 

medical treatment due to errors—this  legislation was not enacted during our study period. Furthermore, 

Medicare patients are by definition over 65 and therefore are a more homogenous group than the regular 
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patient population, which will reduce noise in the sample.  We find that these results are consistent with 

our findings, lending additional credibility to our results (See Appendix 3).  

 

7. Discussion and Conclusion 

We have contributed to the operations management literatures on healthcare operations and employee 

productivity by refining and characterizing the definition of workload and its effect on patient LOS.  We 

distinguish between inpatient and incoming patient workloads, as well as their effects at differing points 

during a patient’s stay.  Our work shows that the type and timing, as well as the level, of patient workload 

matters in terms of LOS, with congestion effects dominating during the initial stage of a patient’s stay, in 

addition to periods of very high load (>85% occupancy) towards the end of a patient’s stay. On the other 

hand, workload smoothing characterizes the effects of increased load towards the end of the stay. 

Additionally, we show that when resources are shared across separate streams of patients the congestion 

and workload smoothing effects “spillover” across patient types. These results are significant since in 

most hospitals, each inpatient unit within a hospital generally optimizes its own staffing, capacity levels, 

and early discharging decisions.  Our work shows that by doing so they may be producing less than 

optimal hospital-level performance, though each inpatient unit is optimized.  Moreover, there has been 

little research into how shared resource capacity, such as laboratory staffing, affects LOS, but our work 

suggests that in addition to bed capacity, the availability of these shared resources has a significant impact 

on patient LOS. More work needs to address how the load of the hospital can be managed to improve 

productivity at the hospital level. Some hospitals may be better at optimizing at the hospital level, and we 

leave it for future work to determine which are, and what characteristics define them. 

Most of the previous research on these topics has explored the effect of ICU workload on ICU LOS.  

We extend this body of research by analyzing workload at the hospital level, taking into account the entire 

LOS in the hospital. In contrast to prior research which finds that increasing workload is associated with 

shorter LOS (Chan et al. 2010, KC and Terwiesch 2012), we find that at very high workloads (>85%) or 

during the initial portion of the stay, LOS increases with increasing load. While at first glance our finding 

seems to contradict the prior literature, it is not necessarily inconsistent because prior studies have 

focused on settings where the ICU is at or very near 100% occupancy near the time of a patient’s 

discharge, so those employees have no option but to discharge a patient from the ICU to make room for a 

severely ill incoming patient. In addition, this patient will likely be discharged to another inpatient unit 

within the hospital, which in our dataset would still be counted in the patient’s LOS (making it longer), 

whereas in the prior studies, the unit-level discharge would be considered a shorter LOS.  Furthermore, at 

low and medium occupancy levels, we also find that increased inpatient workload at the end of the stay 

increases the probability of an early discharge, but in these cases it seems that patients are truly leaving 
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the hospital rather than just moving to another inpatient unit. Finally, unlike previous studies, our results 

also included the effect of increased inpatient workload at the beginning of the stay, which results in 

increased LOS. 

We find it interesting that our data suggest that 85% occupancy on the day before expected discharge 

is where additional inpatient workload increases the LOS because 85% is generally espoused as the target 

occupancy for optimal performance (Green and Nguyen 2001). Our work suggests that running at a 

slightly lower occupancy rate might reduce the hospital-level LOS of patients, thus allowing the same 

number of patients to be treated, but using fewer days per patient. One policy implication of our findings 

is that aggregate hospital capacity in a geographic region should allow for hospitals to be at less than 85% 

capacity.  Another benefit of this policy could be a possible reduction in readmissions.  While we do not 

analyze the effects of occupancy on clinical outcomes or readmissions, Kuntz et al. (2013) have shown 

that there is a tipping point, around 92% occupancy, at which mortality dramatically increases with 

increased workload.  Even more concerning is that it has been suggested that the corner cutting that 

causes reductions in quality can persist even after the workload is reduced (Oliva and Sterman 2001). 

Others have shown that higher occupancy is also associated with higher readmissions, which effectively 

reduce the capacity of the hospital (KC and Terwiesch 2012), and as we show, have implications which 

are often underestimated as these readmitted patients affect patients beyond just the inpatient unit to 

which the patient is readmitted. 

One possible mechanism to control discharge time as well as improve productivity in general so as to 

be able to maintain a lower occupancy is to employ an admission and discharge nurse. The time 

consuming nature of discharges and admissions suggests that it could be beneficial to have dedicated 

admission/ discharge nurses to ensure that this important work is not compromised when staff nurses 

become inundated with high workloads from existing patients.  Our data suggest that nurses engage in 

workload smoothing by discharging patients earlier than they otherwise would when facing medium to 

high workloads and conversely become unable to discharge patients in a timely manner when they have 

heavy workloads.  High loads from incoming patients of the same patient type also confirm these 

findings. A discharge nurse can eliminate the need for this prioritization and ensure the patient is 

discharged at the appropriate time based on the probability of readmission.  When not working on 

discharges, the nurse can focus on admissions.  Since admissions are time consuming, our work suggests 

that increased inpatient load causes delays in the start of care, which propagates the problem since it 

increases the chance of high workload throughout the stay. While some of the delay is likely due to 

queuing for resources, such as laboratory services, our discussions with nurses indicate that at least some 

is due to interruptions in the initial assessment due to the need to care for other patients.  Adding a nurse 

who can focus solely on admissions and discharge will allow this nurse to perform the initial patient 
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assessment with less probability of interruption due to routine care, thus starting care sooner, reducing the 

chance of negative outcomes, and reducing the LOS.  By removing the parts of care which generally 

require the largest blocks of time, other nurses may be able to attend to more patients, reducing the 

negative effects of high load. Further improving productivity, we would expect the behavioral workload 

smoothing and congestion effects that spillover across patients type would be likely to be reduced as a 

consequence of a discharge/admission nurse who controls the timing of these activities. Thus 

specialization, which is usually considered harmful to productivity in operations since it removes some 

benefits of flexibility, may actually be valuable in increasing in the throughput of patients. 

There remains much to be explored in this area.  As we mentioned, due to data limitations, we do not 

specifically test for changes in outcome quality associated with these changes in LOS. Furthermore, it is 

not yet known if some hospitals are better able to handle load, or if some shared resources have a greater 

effect on changes in LOS than others.  Finally, we have only studied these effects in the hospital setting. 

While we think it is highly probable that these results apply to other settings with high worker discretion, 

such as law firms and call centers, more research is needed to confirm.  However, we believe that this is 

an important contribution to better understanding how workload affects productivity at the hospital level. 
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FIGURES 

Figure 1. Flow of Admitted Patients Through the Hospital  

 

Notes: Patients are categorized as either medical or surgical, and enter either through the ED or via a 
scheduled surgery, and are considered incoming patients at this time. They then move to inpatient care, where 
they are treated separately, but share hospital resources. At this stage, they represent inpatient workload. 
Finally, patients are discharged to home or other nursing facility. 

 
 
 

Figure 2a. Effect of Occupancy on Day of Admission, by type, on LOS of typical hip/knee 
replacement patient.  

 

Notes: Variables kept at mean or most common values if categorical.  The dotted line shows the effect of 
surgical occupancy at the start of day of admission as it moves from 0% to 100%, holding all other variables 
constant. The gray line shows the same, but for changes in medical occupancy. 
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Figure 2b. Effect of Occupancy on Day Before Expected Discharge, by type, on LOS of typical 
hip/knee replacement patient.  

 

Notes: Variables kept at mean or most common values if categorical. The dotted line shows the effect of 
surgical occupancy at the end of the day before expected discharge as it moves from 0% to 100%, holding all 
other variables constant. The gray line shows the same, but for changes in medical occupancy. 
 
 
 
 
TABLES 
	
Table	1a.	Hospital	Level	Summary	Statistics	
Number	of	Hospitals	 243
Total	Hospital	Visits/Hospital	(1/08‐11/09)	 26349 (15811)	
Average	Medical	Patients/Day	 71.3 (41.5)	
Average	Surgical	Patients/Day	 43.7 (36.5)	
%	Medical	Patients	 65.10% (11.2)	

Patients	in	Sample	 239,400
Average	LOS	(days)	 4.84 (2.06)	
Average	Calculated	expected	LOS	(days)	 4.9 (1.94)	
Standard	Deviations	in	Parentheses	
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Table	1b.	Summary	Statistics	of	Controls	(DRGs	of	Interest)	

Continuous	Variables	(Averages)	
Procedure	count	 2.04 (1.53)	
Number	of	comorbidities	 7.93 (4.81)	
Age	 64.54 (16.36)	
Scheduled	admission	census		

Day	before	expected	discharge	 40.05 (28.29)	
Day	of	expected	discharge	 37.42 (28.79)	

Categorical	Variables	(Percentages	for	most	common	categories)	
Day	of	Week	‐	Weekday	 88.53%
Disposition	‐	Home	 46.41%
Quarter	of	Year*	

First	 25.86%
Second	 25.35%
Third	 24.67%

Year	–	2008**	 50.94%
Admit	type	‐	Emergency	 53.02%
Primary	procedure	day	‐	Day	of	
admission	 69.18%
Race	

White	 66.73%
Black	 6.57%
Hispanic	 18.43%

Sex	‐	Female	 59.42%
Pay	category	

Medicare	 52.31%
Medicaid	 8.85%
Private	Insurance	 29.81%

Previously	admitted	 28.78%

Primary	diagnosis	[by	DRG]	
No.	Primary	
Diagnoses		

Most	Common		
Primary	Diagnosis	

Kidney/UTI	w/o	MCCŦ	[690]	 21	 UTI,	site	not	specified	
Nutritional	and	Metabolic	
Disorders	w/o	MCC	[641]	

49	 Dehydration	

Cellulitis	w/o	MCC	[603]	 68	 Cellulitis,	leg	
Heart	Failure	w/CC§	[292]	 26	 Congestive	Heart	Failure,	

unspecified	
Pneumonia	w/CC	[194]		 19	 Pneumonia,	organism	

unspecified	
Laparoscopic	Cholecystectomy	
w/o	CDE+	w/CC[418]	

53	 Acute	cholecystitis,	no	
obstruction	

Spinal	Fusion	w/o	MCC	[460]	 109	 Lumbar	or	lumbosacral	
intervertebral	disc	

Hip/Knee	Replacement	w/o	
MCC	[470]	

210	 Osteoarthrosis,	lower	leg	

*Based	on	visits	in	2008;	**Sample	does	not	include	12/2009;	
Ŧ MCC	=	Major	complications	and/or	comorbidities;	§CC	=	Complications	and/or	
comorbidities;	+CDE	=	Common	duct	exploration	
Standard	Deviations	in	Parentheses	
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Table	1c.	Summary	Statistics	of	Independent	Variables	
(Average	%	for	DRGs	of	Interest)	
Medical	inpatient	census	

Day	of	admission	 75.72 (12.27)	
Day	before	expected	discharge	 74.77 (12.29)	

Surgical	inpatient	census	
Day	of	admission	 70.81 (14.88)	
Day	before	expected	discharge	 73.47 (14.55)	

Medical	admissions	census	
Day	of	admission	 64.50 (16.33)	
Day	before	expected	discharge	 62.14 (16.61)	
Day	of	expected	discharge	 62.03 (16.77)	

Surgical	admissions	census	
Day	of	admission	 60.49 (20.69)	
Day	before	expected	discharge	 52.41 (22.06)	
Day	of	expected	discharge	 51.01 (22.41)	

Standard	Deviations	in	Parentheses	
 

Table	2.	Correlation	Table	
(1) (2) (3) (4)

D D+1 D D+1 D D+1	 D	 D+1

Medical	
Occupancy	

Inpatient	(1)	
D	 1
D+1	 0.858 1

Incoming	(2)	 D	 0.237 0.529 1
D+1	 0.248 0.25 0.202 1

Surgical	
Occupancy	

Inpatient	(3)	
D	 0.234 0.249 0.154 0.183 1
D+1	 0.249 0.26 0.153 0.169 0.854 1	

Incoming	(4)	
D	 0.198 0.168 0.132 0.126 0.229 0.534	 1	
D+1	 0.186 0.203 0.15 0.172 0.228 0.237	 0.261	 1

D=Day;	D+1=Day	after	Day	D;	All	values	are	significant	at	the	p<0.05	level
 
 

Table	3.	Hazard	ratios	associated	with	a	change	in	inpatient	occupancy	(by	type,	medical	or	surgical)	
on	the	day	of	admission	for	the	focal	patient,	where	the	focal	patient	is	one	of	the	eight	DRGs	listed.	
		 		 		 Same	Type	(Model	1)	 Other	Type	(Model	2)	

DRG	 n= Medical (Medical)^2 Surgical	 (Surgical)^2

Medical	

Kidney/UTI	(690)	 190,641	 0.9945 (1.47)	 1.0000 (1.03)	 0.9975	 (1.29)	 1.0000 (1.07)	

	Metabolic	(641)	 137,221	 0.9971 (0.80)	 1.0000 (0.58)	 0.9996	 (0.15)	 1.0000 (0.04)	

Cellulitis	(603)	 219,170	 0.9919* (2.16)	 1.0000+ (1.73)	 0.9980	 (0.96)	 1.0000 (0.47)	

Heart	Failure	(292)	 178,604	 0.9928+ (1.85)	 1.0000 (1.60)	 0.9960+	 (1.75)	 1.0000 (1.42)	

Pneumonia	(194)	 227,273	 0.9949 (1.46)	 1.0000 (0.72)	 1.0015	 (0.67)	 1.0000 (0.81)	

		 DRG	 n= Surgical (Surgical)^2 Medical	 (Medical)^2

Surgical	

Cholecystectomy	
(418)	 63,520	 0.9944 (1.16)	 1.0001 (1.62)	 0.9704**	(3.72)	 1.0002** (3.48)	

Spinal	Fusion	(460)	 99,351	 1.0003 (0.07)	 1.0000 (0.34)	 0.9806*	 (2.17)	 1.0001+ (1.96)	

Hip	and	Knee	(470)	 412,575	 0.9948* (2.25)	 1.0000* (2.49)	 0.9674**	(7.82)	 1.0002** (7.26)	
+p<0.1;	*p<0.05;	**p<0.01;	Standard	Errors	in	parentheses
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Table	4.	Average	marginal	change	in	hazard	rates	associated	with	a	1%	increase	in	occupancy	(by	type)on	day	of	admission	on	patients	of	
each	DRG,	at	baseline	occupancies	of	N,	where	N=0,	25,	50,	65,	85,	92,	and	100%	

		 		 Medical	 	 Surgical	

  

Kidney/UTI	
(690)	

	Metabolic	
(641)	

Cellulitis	(603) Heart	Failure	
(292)	

Pneumonia	
(194)	

	 Cholecyst‐
ectomy	(418)

Spinal	Fusion	
(460)	

Hip	and	Knee	
(470)	

   N=	 190641	 137221	 219170	 178604	 227273	 	 63520	 99351	 412575	

Medical	
Occupancy	

0	 ‐0.0014	
(0.0010)	

‐0.0008	
(0.0010)	

‐0.0020+	
(0.0010)	

‐0.0017	
(0.0010)	

‐0.0011	
(0.0008)	

	 ‐0.0077**	
(0.0022)	

‐0.0043*	
(0.0021)	

‐0.0058**	
(0.0006)	

25	 ‐0.0010	
(0.0006)	

‐0.0005	
(0.0006)	

‐0.0012*	
(0.0006)	

‐0.0011+	
(0.0006)	

‐0.0009+	
(0.0005)	

	 ‐0.0046**	
(0.0014)	

‐0.0028*	
(0.0014)	

‐0.0043**	
(0.0005)	

50	 ‐0.0007*	
(0.0003)	

‐0.0004	
(0.0003)	

‐0.0008**	
(0.0003)	

‐0.0006*	
(0.0003)	

‐0.0007**	
(0.0002)	

	 ‐0.0021**	
(0.0005)	

‐0.0015*	
(0.0007)	

‐0.0023**	
(0.0003)	

65	 ‐0.0005**	
(0.0001)	

‐0.0002	
(0.0002)	

‐0.0005**	
(0.0001)	

‐0.0003**	
(0.0001)	

‐0.0005**	
(0.0001)	

	 ‐0.0009**	
(0.0003)	

‐0.0009**	
(0.0003)	

‐0.0012**	
(0.0001)	

85	 ‐0.0002	
(0.0002)	

‐0.0001	
(0.0002)	

‐0.0001	
(0.0002)	

‐0.0000	
(0.0002)	

‐0.0004**	
(0.0001)	

	 0.0004	
(0.0003)	

‐0.0001	
(0.0002)	

0.0002	
(0.0001)	

92	 ‐0.0002	
(0.0002)	

‐0.0001	
(0.0003)	

0.0000	
(0.0002)	

0.0001	
(0.0002)	

‐0.0004*	
(0.0002)	

	 0.0009*	
(0.0004)	

0.0002	
(0.0003)	

0.0007**	
(0.0002)	

100	 ‐0.0001		
(0.0003)	

0.0000	
(0.0004)	

0.0002	
(0.0003)	

0.0002	
(0.0003)	

‐0.0003	
(0.0002)	

	 0.0015*	
(0.0006)	

0.0005	
(0.0005)	

0.0013**	
(0.0003)	

Surgical	
Occupancy	

0	 ‐0.0006	
(0.0005)	

‐0.0001	
(0.0006)	

‐0.0004	
(0.0004)	

‐0.0009+	
(0.0005)	

0.0003	
(0.0004)	

	 ‐0.0010	
(0.0010)	

0.0001	
(0.0008)	

‐0.0010*	
(0.0004)	

25	 ‐0.0004	
(0.0003)	

‐0.0001	
(0.0004)	

‐0.0003	
(0.0003)	

‐0.0006+	
(0.003)	

0.0002	
(0.0003)	

	 ‐0.0005	
(0.0006)	

0.0002	
(0.0006)	

‐0.0006*	
(0.0003)	

50	 ‐0.0002+	
(0.0001)	

‐0.0001	
(0.0002)	

‐0.0003+	
(0.0001)	

‐0.0003*	
(0.0001)	

0.0000	
(0.0001)	

	 0.0000	
(0.0003)	

0.0003	
(0.0003)	

‐0.0002	
(0.0001)	

65	 ‐0.0001	
(0.0001)	

‐0.0001	
(0.0001)	

‐0.0002**	
(0.0001)	

‐0.0002+	
(0.0001)	

‐0.0000	
(0.0001)	

	 0.0003+	
(0.0002)	

0.0003*	
(0.0002)	

0.0000	
(0.0001)	

85	 0.0000	
(0.0001)	

‐0.0001	
(0.0002)	

‐0.0002	
(0.0001)	

0.0000	
(0.0002)	

‐0.0001	
(0.0001)	

	 0.0008*	
(0.0003)	

0.0004+	
(0.0002)	

0.0003*	
(0.0001)	

92	 0.0001	
(0.0002)	

‐0.0001	
(0.0002)	

‐0.0001	
(0.0002)	

0.0001	
(0.0002)	

‐0.0002	
(0.0002)	

	 0.0009*	
(0.0004)	

0.0005	
(0.0003)	

0.0004*	
(0.0002)	

100	 0.0001	
(0.0002)	

‐0.0001	
(0.0003)	

‐0.0001	
(0.0002)	

0.0002	
(0.0003)	

‐0.0002	
(0.0002)	

	 0.0022*	
(0.0005)	

0.0005	
(0.0004)	

0.0005**	
(0.0002)	

+p<0.1;	*p<0.05;	**p<0.01;	Standard	Errors	in	parentheses
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Table	5.	Hazard	ratios	associated	with	a	change	in	inpatient	occupancy	(by	type,	medical	or	surgical)	
on	the	day	before	expected	discharge	for	the	focal	patient,	where	the	focal	patient	is	one	of	the	eight	
DRGs	listed.	
		 		 		 Same	Type	(Model	1)	 Other	Type	(Model	2)	

DRG	 n= Medical (Medical)^2 Surgical	 (Surgical)^2

Medical	

Kidney/UTI	(690)	 190,641	 1.0673** (13.24)	 0.9995** (13.33) 1.0165**	(4.13)	 0.9999** (4.09)	

	Metabolic	(641)	 137,221	 1.0648** (15.12)	 0.9995** (16.08) 1.0129**	(3.47)	 0.9999** (3.60)	

Cellulitis	(603)	 219,170	 1.0603** (17.08)	 0.9996** (17.77) 1.0189**	(5.44)	 0.9999** (5.22)	

Heart	Failure	(292)	 178,604	 1.0539** (11.45)	 0.9996** (12.73) 1.0178**	(4.91)	 0.9999** (4.75)	

Pneumonia	(194)	 227,273	 1.0695** (17.41)	 0.9995** (18.21) 1.0132**	(3.22)	 0.9999** (3.26)	

		 DRG	 n=	 Surgical	 (Surgical)^2	 Medical	 (Medical)^2	

Surgical	

Cholecystectomy	
(418)	

63,520	 1.0278** (5.25)	 0.9998** (5.85)	 1.0639**	(10.70)	0.9996** (10.16)

Spinal	Fusion	(460)	 99,351	 1.0201** (4.11)	 0.9998** (4.96)	 1.0622**	(11.01)	0.9996** (11.23)

Hip	and	Knee	(470)	 412,575	 1.0251** (4.05)	 0.9998** (5.35)	 1.0697**	(14.43)	0.9996** (14.43)
+p<0.1;	*p<0.05;	**p<0.01;	Standard	Errors	in	parentheses
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Table	6.	Average	marginal	change	in	hazard	rates	associated	with	a	1%	increase	in	occupancy	(by	type)on	day	before	expected	discharge	on	
patients	of	each	DRG,	at	baseline	occupancies	of	N,	where	N=0,	25,	50,	65,	85,	92,	and	100%	

		 		 Medical	 	 Surgical	

  

Kidney/UTI	
(690)	

	Metabolic	
(641)	 Cellulitis	(603)

Heart	Failure	
(292)	

Pneumonia	
(194)	

	 Cholecyst‐
ectomy	(418)

Spinal	Fusion	
(460)	

Hip	and	Knee	
(470)	

   N=	 190641	 137221	 219170	 178604	 227273	 	 63520	 99351	 412575	

Medical	
Occupancy	

0	 0.0113**	
(0.0007)	

0.0121**	
(0.0007)	

0.0077**	
(0.0003)	

0.0078**	
(0.0006)	

0.0090**	
(0.0004)	

	 0.0019**	
(0.0002)	

0.0019**	
(0.0007)	

0.0023**	
(0.0002)	

25	 0.0095**	
(0.0004)	

0.0092**	
(0.0003)	

0.0076**	
(0.0003)	

0.0077**	
(0.0006)	

0.0092**	
(0.0004)	

	 0.0039**	
(0.0002)	

0.0038**	
(0.0010)	

0.0048**	
(0.0001)	

50	 0.0035**	
(0.0001)	

0.0029**	
(0.0001)	

0.0034**	
(0.0001)	

0.0033**	
(0.0002)	

0.0036**	
(0.0001)	

	 0.0033**	
(0.0003)	

0.0032**	
(0.0006)	

0.0039**	
(0.0003)	

65	 0.0010**	
(0.0001)	

0.0006**	
(0.0001)	

0.0008**	
(0.0001)	

0.0007**	
(0.0002)	

0.0010**	
(0.0001)	

	 0.0015**	
(0.0002)	

0.0015**	
(0.0003)	

0.0018**	
(0.0002)	

85	 ‐0.0019**	
(0.0003)	

‐0.0022**	
(0.0003)	

‐0.0026**	
(0.0002)	

‐0.0028**	
(0.0003)	

‐0.0022**	
(0.0002)	

	 ‐0.0016**	
(0.0003)	

‐0.0013**	
(0.0003)	

‐0.0013**	
(0.0002)	

92	 ‐0.0031**	
(0.0003)	

‐0.0035**	
(0.0005)	

‐0.0038**	
(0.0003)	

‐0.0041**	
(0.0003)	

‐0.0034**	
(0.0003)	

	 ‐0.0025**	
(0.0004)	

‐0.0022**	
(0.0005)	

‐0.0024**	
(0.0002)	

100	 ‐0.0046**	
(0.0004)	

‐0.0052**	
(0.0006)	

‐0.0052**	
(0.0003)	

‐0.0055**	
(0.0004)	

‐0.0050**	
(0.0004)	

	 ‐0.0034**	
(0.0004)	

‐0.0031**	
(0.0006)	

‐0.0035**	
(0.0003)	

Surgical	
Occupancy	

0	 0.0034**	
(0.0007)	

0.0029**	
(0.0008)	

0.0031**	
(0.0005)	

0.0031**	
(0.0006)	

0.0022**	
(0.0006)	

	 0.0029**	
(0.0003)	

0.0025**	
(0.0006)	

0.0033**	
(0.0004)	

25	 0.0026**	
(0.0007)	

0.0020**	
(0.0006)	

0.0026**	
(0.0005)	

0.0025**	
(0.0005)	

0.0017**	
(0.0006)	

	 0.0025**	
(0.0005)	

0.0019**	
(0.0005)	

0.0025**	
(0.0006)	

50	 0.0013**	
(0.0004)	

0.0008*	
(0.0003)	

0.0014**	
(0.0003)	

0.0013**	
(0.0003)	

0.0008*	
(0.0003)	

	 0.0009**	
(0.0003)	

0.0006*	
(0.0003)	

0.0009*	
(0.0004)	

65	 0.0004+	
(0.0002)	

0.0000	
(0.0002)	

0.0005**	
(0.0002)	

0.0004*	
(0.0002)	

0.0002*	
(0.0002)	

	 ‐0.0003	
(0.0002)	

‐0.0002	
(0.0002)	

‐0.0001	
(0.0003)	

85	 ‐0.0008*	
(0.0003)	

‐0.0010**	
(0.0004)	

‐0.0007**	
(0.0002)	

‐0.0008**	
(0.0003)	

‐0.0006*	
(0.0003)	

	 ‐0.0018**	
(0.0003)	

‐0.0013**	
(0.0003)	

‐0.0015**	
(0.0002)	

92	 ‐0.0012**	
(0.0004)	

‐0.0014**	
(0.0005)	

‐0.0011**	
(0.0003)	

‐0.0012**	
(0.0004)	

‐0.0009**	
(0.0003)	

	 ‐0.0022**	
(0.0004)	

‐0.0017**	
(0.0004)	

‐0.0020**	
(0.0002)	

100	 ‐0.0017**	
(0.0005)	

‐0.0018**	
(0.0006)	

‐0.0016**	
(0.0004)	

‐0.0016**	
(0.0005)	

‐0.0012**	
(0.0004)	

	 ‐0.0026**	
(0.0004)	

‐0.0020**	
(0.0005)	

‐0.0024**	
(0.0003)	

+p<0.1;	*p<0.05;	**p<0.01,;	Standard	Errors	in	parentheses
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Table	7.	Hazard	ratios	associated	with	a	change	in	incoming	occupancy	(by	type,	medical	or	
surgical)	on	the	day	before	and	day	of	expected	discharge	for	the	focal	patient,	where	the	focal	patient	
is	one	of	the	eight	DRGs	listed.	
		 		 		 Day	Before	Expected	Discharge Day	of	Expected	Discharge	

		 		 		
Same	Type
(Model	1)	

Other	Type
(Model	2)	

Same	Type	
(Model	3)	

Other	Type
(Model	4)	

DRG	 n= Medical Surgical Medical	 Surgical

Medical	

Kidney/UTI	(690)	 190,641 1.0009 (1.61)	 0.9996 (0.77)	 1.0002	 (0.38)	 1.0006 (1.16)	

	Metabolic	(641)	 137,221 1.0029** (4.25)	 1.0002 (0.30)	 1.0007	 (1.15)	 1.0005 (1.01)	

Cellulitis	(603)	 219,170 1.0010+ (1.86)	 0.9997 (0.75)	 1.0002	 (0.53)	 1.0000 (0.13)	

Heart	Failure	(292)	 178,604 1.0023** (3.67)	 1.0003 (0.63)	 1.0004	 (0.72)	 1.0003 (0.60)	

Pneumonia	(194)	 227,273 1.0013+ (1.91)	 1.0000 (0.08)	 1.0017**	(3.39)	 1.0005 (1.01)	

		 DRG	 n=	 Surgical	 Medical	 Surgical	 Medical	

Surgical	
Cholecystectomy	(418)	 63,520 1.0011+ (1.65)	 1.0010 (1.21)	 0.9999	 (0.13)	 1.0001 (0.22)	

Spinal	Fusion	(460)	 99,351 1.0006 (1.20)	 0.9997 (0.49)	 1.0006	 (1.24)	 1.0005 (1.10)	

Hip	and	Knee	(470)	 412,575 1.0009* (2.44)	 1.0002 (0.60)	 1.0001	 (0.41)	 1.0000 (0.14)	

+p<0.1;	*p<0.05;	**p<0.01;	Standard	Errors	in	parentheses
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APPENDICES 

Appendix 1. Estimation of LOS for Hip/Knee Replacement Patients 

Linear regression                                      Number of obs =  124626 
                                                       R-squared     =  0.4147 
                                                       Root MSE      =  .21477 
                             (Std. Err. adjusted for 240 clusters in Hospital) 
             |               Robust 
     log_los |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Day of Week  | 
[Sunday]     | 
  1 (Monday) |  -.0015075   .0080726    -0.19   0.852    -.0174099    .0143949 
          2  |   .0096599   .0082954     1.16   0.245    -.0066815    .0260013 
          3  |   .0149764   .0082331     1.82   0.070    -.0012423     .031195 
          4  |   .0493502   .0098866     4.99   0.000     .0298742    .0688262 
          5  |    .042038   .0076012     5.53   0.000     .0270641    .0570118 
          6  |   .0018502   .0076421     0.24   0.809    -.0132042    .0169046 
Disposition  | 
[Unknown]    | 
       Home  |  -.0921721   .0187588    -4.91   0.000    -.1291258   -.0552183 
 Acute-Hosp  |  -.2378591   .1804571    -1.32   0.189    -.5933485    .1176304 
Acute-Other  |  -.1233339   .0263107    -4.69   0.000    -.1751644   -.0715034 
  SNIC-Hosp  |  -.1076678   .0334552    -3.22   0.001    -.1735725    -.041763 
 SNIC-Other  |  -.0501372   .0193279    -2.59   0.010    -.0882121   -.0120624 
Residential  |  -.0992064   .0246622    -4.02   0.000    -.1477893   -.0506235 
Home Health  |  -.0618525    .018814    -3.29   0.001    -.0989149   -.0247901 
      Other  |  -.0838973   .0201558    -4.16   0.000    -.1236029   -.0441917 
Month        | 
[January]    | 
          2  |  -.0079493   .0033187    -2.40   0.017     -.014487   -.0014116 
          3  |    -.01206    .003743    -3.22   0.001    -.0194334   -.0046866 
          4  |  -.0144458   .0039121    -3.69   0.000    -.0221525   -.0067392 
          5  |  -.0169812   .0039205    -4.33   0.000    -.0247043   -.0092581 
          6  |  -.0163335   .0032961    -4.96   0.000    -.0228265   -.0098404 
          7  |  -.0150674   .0038035    -3.96   0.000      -.02256   -.0075747 
          8  |   -.024063   .0037844    -6.36   0.000     -.031518    -.016608 
          9  |  -.0238179   .0036074    -6.60   0.000    -.0309243   -.0167116 
         10  |  -.0275002   .0038148    -7.21   0.000    -.0350152   -.0199853 
         11  |  -.0286159   .0042595    -6.72   0.000    -.0370068    -.020225 
         12  |  -.0153144    .004293    -3.57   0.000    -.0237714   -.0068575 
Admit type   | 
[Scheduled]  | 
Unscheduled  |   .0203388    .008754     2.32   0.021     .0030939    .0375837 
    Unknown  |   .0294281   .0301144     0.98   0.329    -.0298954    .0887516 
Proc. Count  |   .0351415   .0020497    17.14   0.000     .0311037    .0391794 
Diag. Count  |   .0129505   .0004799    26.99   0.000     .0120052    .0138959 
Hospital ID  | Included 
Primary Diag.| Included 
Primary Proc.| Included 
Proc. Day    | 
[Day Before] | 
          1  |    .086574   .0232324     3.73   0.000     .0408076    .1323404 
          2  |   .1817506   .0238901     7.61   0.000     .1346885    .2288127 
          3+ |   .3481239   .0237305    14.67   0.000     .3013762    .3948715 
Race         | 
[Unknown]    | 
      White  |  -.0051303   .0091705    -0.56   0.576    -.0231957    .0129351 
      Black  |   .0319338   .0105252     3.03   0.003     .0111999    .0526678 
   Hispanic  |   .0106101    .010503     1.01   0.313    -.0100802    .0313004 
    Pacific  |    .018364   .0117236     1.57   0.119    -.0047308    .0414589 
 Nat. Amer.  |   .0299414   .0175769     1.70   0.090    -.0046841    .0645669 
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      Other  |   .0181231   .0113127     1.60   0.110    -.0041622    .0404084 
Age          |   .0010847    .000143     7.58   0.000      .000803    .0013664 
Sex          | 
[Male] 
     Female  |   .0412991   .0026962    15.32   0.000     .0359878    .0466104 
      Other  |   .1704533   .0105226    16.20   0.000     .1497244    .1911823 
    Unknown  |   .0298172   .0195533     1.52   0.129    -.0087017     .068336 
Ins. pay type| 
[Blank]      | 
   Medicare  |  -.0138867   .0524626    -0.26   0.791    -.1172348    .0894615 
   Medicaid  |   .0562161   .0529284     1.06   0.289    -.0480496    .1604819 
    Private  |  -.0307179   .0523652    -0.59   0.558    -.1338742    .0724383 
 Work. Comp  |   .0341272    .052001     0.66   0.512    -.0683117    .1365661 
County Ind.  |   .0338987   .0540748     0.63   0.531    -.0726254    .1404228 
 Other Gov.  |  -.0049211    .057483    -0.09   0.932    -.1181591    .1083169 
 Other Ind.  |   .0232248   .0602885     0.39   0.700    -.0955399    .1419895 
   Self Pay  |  -.0054752   .0546648    -0.10   0.920    -.1131615    .1022111 
      Other  |   .0105268   .0526042     0.20   0.842    -.0931004    .1141539 
Revisit      | 
[No revisit] | 
          1  |   .0104333   .0093399     1.12   0.265    -.0079658    .0288323 
          2+ |   .0115101   .0096493     1.19   0.234    -.0074986    .0305187 
Constant     |   2.130724   .0671367    31.74   0.000     1.998469     2.26298 
------------------------------------------------------------------------------ 
*[Baseline] 
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Appendix 2. Values used to produce survival functions for hip and knee replacement patients 

Variable	Name	 Value	
Day	of	week	of	admission	 Tuesday	
Disposition	 Home	Health	Service	
Quarter	 2	
Year	 2008	
Race	 White	
Sex	 Female	
Admission	type	 Scheduled	
Primary	Diagnosis	 Osteoarthrosis,	lower	leg	
Insurance	type	 Medicare	
Revisit	 1st	visit	
Primary	procedure	day	 Day	of	admission	
Number	of	procedures	 1	
Number	of	diagnoses	 4	
Hospital	 Cedars	Sinai	Medical	Center	
Medical	Admissions	(Day	of	admission)	 73%	
Medical	Admissions	(Day	before	expected	d/c)	 69%	
Medical	Admissions	(Day	of	expected	d/c)	 71%	
Surgical	Admissions	(Day	of	Admission)	 73%	
Surgical	Admissions	(Day	before	expected	d/c)	 63%	
Surgical	Admissions	(Day	of	expected	d/c)	 64%	
Scheduled	Admissions	(Day	before	expected	d/c)	 60%	
Scheduled	Admissions	(Day	of	expected	d/c)	 69%%	
Medical	Occupancy	(Day	of	admission)	 87%	[0,1,50,51,85,86,99,100]	
Medical	Occupancy	(Day	before	expected	d/c)	 85%	[0,1,50,51,85,86,99,100]	
Surgical	Occupancy	(Day	of	Admission)	 81%	[0,1,50,51,85,86,99,100]	
Surgical	Occupancy	(Day	before	expected	d/c)	 83%	[0,1,50,51,85,86,99,100]	
Note: For the occupancy values, the first number is the value during analysis if it is not the variable of 
interest, while the numbers in [] are the values used when the specific occupancy is adjusted to show 
changes in LOS related to the variable of interest 
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Appendix 3. Hazard Ratios for Medicare Only Focal Patients 

	 	 Medical	 Surgical	
	 MS‐DRG	 690	 641 603 292	 194	 418	 460 470	
	 N=	 121,875	 89,715 84,941 126,080	 150,338	 23,515	 38,462 251,460	

Occupancy:	
Day	of	

Admission	

Medical	 0.9890 0.9980 0.9957 0.9895 0.9980 0.9661 0.9779 0.9675
	 (2.48)* (0.37) (0.69) (2.32)* (0.49) (2.26)* (1.57) (6.64)**

(Medical)2	 1.0001 1.0000 1.0000 1.0001 1.0000 1.0002 1.0001 1.0002
	 (1.88)+ (0.13) (0.41) (2.09)* (0.28) (2.25)* (1.41) (5.96)**

Surgical	 0.9983 0.9989 0.9984 0.9983 1.0017 0.9751 1.0000 0.9933
	 (0.71) (0.38) (0.48) (0.62) (0.63) (2.38)* (0.01) (2.72)**

(Surgical)2	 1.0000 1.0000 1.0000 1.0000 1.0000 1.0002 1.0000 1.0001
	 (0.50) (0.20) (0.01) (0.46) (0.92) (2.57)* (0.35) (2.93)**

Occupancy:	
Day	Before	
Expected	
Discharge	

Medical	 1.0760 1.0682 1.0658 1.0532 1.0690 1.0805 1.0635 1.0730
	 (13.26)** (12.67)** (11.93)** (9.83)** (15.05)** (7.28)** (7.33)** (14.85)**

(Medical)2	 0.9995 0.9995 0.9995 0.9996 0.9995 0.9995 0.9996 0.9995
	 (14.59)** (13.08)** (12.37)** (10.79)** (15.40)** (7.15)** (7.11)** (14.48)**

Surgical	 1.0081 1.0102 1.0164 1.0182 1.0157 1.0274 1.0262 1.0263
	 (1.61) (2.15)* (3.38)** (4.33)** (3.51)** (2.74)** (3.49)** (4.16)**

(Surgical)2	 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998
	 (1.65)+ (2.29)* (2.90)** (4.10)** (3.44)** (2.79)** (4.09)** (5.30)**

Admissions:	
Day	of	

Admission	

Medical	 1.0005 1.0000 1.0007 1.0000 1.0003 1.0020 0.9999 0.9993
	 (1.26) (0.03) (1.26) (0.06) (0.83) (1.48) (0.08) (1.77)+

Surgical	 1.0003 1.0004 1.0002 1.0004 0.9999 0.9986 1.0016 1.0021
	 (0.86) (1.21) (0.63) (1.05) (0.27) (1.28) (1.55) (3.86)**

Admissions:	
Day	Before	
Expected	
Discharge	

Medical	 1.0017 1.0025 1.0014 1.0024 1.0015 0.9995 0.9998 1.0005
	 (2.22)* (3.02)** (1.62) (3.22)** (1.94)+ (0.36) (0.23) (1.14)

Surgical	 0.9991 1.0012 1.0001 0.9998 0.9999 1.0008 1.0016 1.0006
	 (1.28) (1.44) (0.10) (0.28) (0.18) (0.65) (1.75)+ (1.46)

Admissions:	
Day	of	
Expected	
Discharge	

Medical	 1.0000 1.0016 1.0003 0.9999 1.0018 0.9983 0.9997 1.0002
	 (0.04) (2.24)* (0.46) (0.22) (2.76)** (1.27) (0.42) (0.52)

Surgical	 1.0014 1.0003 0.9990 1.0011 1.0003 1.0005 1.0000 0.9997
	 (2.13)* (0.47) (1.52) (1.81)+ (0.61) (0.42) (0.04) (0.93)

+p<0.1;	*p<0.05;	**p<0.01;	Standard	Errors	in	parentheses	
 


