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THE NTU-VALUE OF STOCHASTIC GAMES

ELON KOHLBERG∗ AND ABRAHAM NEYMAN+

1. Introduction

Since the seminal paper of Shapley [15], the theory of stochastic games has been developed
in many different directions. However, there has been practically no work on the interplay
between stochastic games and cooperative game theory.

Our purpose here is to make a first step in this direction. We show that the Harsanyi–
Shapley–Nash cooperative solution to one-shot strategic games can be extended to stochastic
games.

While this extension applies to general n-person stochastic games, it does not rely on Nash
equilibrium analysis in such games. Rather, it only makes use of minmax analysis in two-
person (zero-sum) stochastic games. This will become clear in the sequel.

2. The Shapley Value of Coalitional Games

A coalitional game is a pair (N, v), where N = {1, . . . , n} is a finite set of players and
v : 2N → R is a mapping such that v(∅) = 0.

For any subset (“coalition”) S ⊂ N , v(S) may be interpreted as the total utility that
the players in S can achieve on their own. Of course, such an interpretation rests on the
assumption that utility is transferable among the players.

Shapley [15] introduced the notion of a “value”, or an apriori assessment of what the play

of the game is worth to each player. Thus a value is a mapping ϕ : R2N → RN that assigns
to each coalitional game v a vector of individual utilities, ϕv.

Shapley proposed four desirable properties, and proved that they imply a unique value
mapping. This mapping – the Shapley Value – can be defined as follows:

(1) ϕiv :=
1

n!

∑
R

(v(PRi ∪ i)− v(PRi )),
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where the summation is over the n! possible orderings of the set N and where PRi denotes
the subset of those j ∈ N that precede i in the ordering R. From this formula, it is easy to
see that the Shapley value has the following properties.

(2) Efficiency
∑
i∈N

ϕiv = v(N).

(3) Linearity ϕ(αv + βw) = αϕv + βϕw ∀α, β ∈ R.

Note: These are two of four properties that characterize the Shapley value. We spell them
out because they will be used in the sequel.

Another property of the Shapley value that is used in the sequel is the following consequence
of (1):

(4) ϕiv ≤ max
S⊂N

(v(S ∪ i)− v(S)) .

3. The NTU-Value of Strategic Games

A finite strategic game is a triple G = (N,A, g), where

• N = {1, . . . , n} is a finite set of players,
• A is the finite set of a player’s pure strategies, and
• g = (gi)i∈N , where gi : AN → R, is player i’s payoff function.

Remark: In order to simplify the notation, we assume that the set of pure strategies is the
same for all players. Since these sets are finite, there is no loss of generality.

We use the same notation, g, to denote the linear extension

• gi : ∆(AN)→ RN ,

where for any set K, ∆(K) denotes the probability distributions on K.

And we denote

• Ai = AS and AS =
∏

i∈S A
i, and

• XS = ∆(AS) (correlated strategies of the players in S).
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Remark: The notation XS = ∆(AS) is potentially confusing. Since X = ∆(A), it would

seem that XS should stand for (∆(A))S (independent choices by the players in S) and not
for ∆(AS) (correlated choices). Still, we adopt this notation for its compactness.

Remark: Of course, (∆(A))S ⊂ ∆(AS).

In a strategic game, utility is not transferable between players; so there is no single number,
v(S), that captures what a coalition, S, can achieve on its own. In particular, then, there is
no direct way to define the Shapley value of the game.

Nevertheless, inspired by the work of Harsanyi [7], Shapley [16], and Aumann and Kurz
[1], we consider an indirect method for defining the value of a strategic game: Assume
that utility becomes transferable after an appropriate multiplication by scaling factors λ =
(λ1, . . . , λn) ≥ 0, λ 6= 0. The total available to all players is then

(5) vλ(N) := max
x∈XN

∑
i∈N

λig
i(x).

Note: In a single-person maximization there is no advantage in using randomized strategies.
So vλ(N) = maxa∈AN

∑
i∈N λig

i(x) . We use the formulation in (5) merely in order to conform
with (6).

In determining the amount that a coalition S 6= N can achieve on its own, we apply the
bargaining model of Nash [11]. In that model, the players in S choose a “threat strategy”,
x ∈ XS, which they commit to deploy if no agreement is reached; and similarly, the players
in N \ S choose a threat strategy y ∈ XN\S.

The model then prescribes that S and N\S receive their “disagreement payoffs” gS(x, y) =∑
i∈S λig

i(x, y) and gN\S(x, y) =
∑

i 6∈S λig
i(x, y), respectively, plus half the “surplus”,

vλ(N)−(gS(x, y)+gN\S(x, y)). In other words, S receives 1
2
vλ(N) + 1

2
(gS(x, y)−gN\S(x, y))

while N\S receives 1
2
vλ(N) − 1

2
(gS(x, y)− gN\S(x, y)).

Since, in the context of the bargaining between S and N\S, the amount vλ(N) is fixed, S
will strive to maximize gS(x, y) − gN\S(x, y), while N\S will strive to minimize the same
expression. Thus we define, for S ⊆ N :

(6) vλ(S) :=
1

2
vλ(N) +

1

2
max
x∈XS

min
y∈XN\S

(∑
i∈S

λigi(x, y)−
∑
i 6∈S

λigi(x, y)

)
.

Note: When S = N this is the same formula as (5), considering that N \N = ∅.
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Having defined a game that captures in a single number the amount that each coalition can
achieve on its own, we can use its Shapley value, ϕ(vλ), to define an “NTU (non-transferable-
utility) value” of the strategic game.

There remains the question of choosing the scaling factors, λ. We do not specify a single λ
but rather accept any λ for which the associated Shapley value can be implemented without
actual transfers of utility. Thus we require that ϕ(vλ) be a rescaling of an allocation in the
feasible set

F := {g(x) : x ∈ XN} = conv{g(a) : a ∈ AN}.
In other words, using the notation

f ∗ g := (figi)i∈N ∀f, g ∈ RN

we require that ϕvλ = λ ∗ ψ, where ψ ∈ F .

Note that, by the linearity of the Shapley value, for every vector λ of scaling factors, and for
every α > 0, if ϕ(vλ) = λ ∗ ψ then ϕ(vαλ) = αλ ∗ ψ. Hence, we can normalize λ to lie in the
simplex

∆ := {λ = (λ1, . . . , λn) ∈ Rn, λ ≥ 0,
∑
i∈N

λi = 1}.

In summary:

Definition 1. ψ ∈ F = conv{g(a) : a ∈ AN} is an NTU value of the strategic game G if
∃λ ∈ ∆ such that ϕ(vλ) = λ ∗ ψ, where vλ is the coalitional game defined by (6).

Theorem 1. For every finite strategic game there exists an NTU value.

This theorem is closely related to the results of Shapley [16] and Harsanyi [7]. A proof is
provided in Appendix A. It is a special case of Neyman [12].

4. Stochastic Games

In a stochastic game, play proceeds in stages. At each stage, the game is in one of a finite
number of states. Each one of n players chooses an action from a finite set of possible actions.
The players’ actions and the state jointly determine a payoff to each player and transition
probabilities to the succeeding state.

We assume that before making their choices, the players observe the current state and the
previous actions.

Definition 2. A finite stochastic game-form is a tuple Γ = (N,Z,A, g, p) , where

• N = {1, 2, . . . , n} is a finite set of players
• Z is a finite set of states
• A is the finite set of a player’s stage actions
• g = (gi)i∈N , where gi : Z × AN → R is the stage payoff to player i, and
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• p : Z × A→ ∆(Z) are the transition probabilities.

Remark: We use the same notation N , A, g, as in a strategic game. The different meanings
should be apparent from the context.

Remark: Again we make the simplifying assumption that the set of stage actions, A, is the
same for all players; furthermore, we assume that the set of actions is independent of the
state. In other words, if Ai[z] denotes player i’s set of actions in state z, then Ai[z] = A for
all i and z.

In order to define a specific stochastic game we must indicate the players’ strategies and their
payoffs. We denote the players’ behavioral strategies in the infinite game by

• σit : (Z × AN)t−1 × Z → ∆(A) and
• σi = (σit)

∞
t=1 , σ = (σi)i∈N .

The strategies σ along with the initial state z determine a probability distribution P z
σ over the

plays of the infinite game, and hence a probability distribution over the streams of payoffs.
The expectation with respect to this distribution is dented by Ez

σ.

Of course, there are many possible valuations of the streams of payoffs. One standard
valuation is obtained by fixing a number of stages, k. We denote:

• γik(σ)[z] = Ez
σ

1
k

∑k
t=1 g

i(zt, at),
• γik(σ) = (γik(σ)[z])z∈Z , and
• γk(σ) = (γik(σ))i∈N .

We refer to the game with this valuation as the k-stage game and denote it by Γk.

Another standard valuation is obtained by applying a discount rate, 0 < r < 1. We denote:

• γir(σ)[z] = Ez
σΣ∞t=1r(1− r)t−1gi(zt, at),

• γir(σ) = (γir(σ)[z])z∈Z , and
• γr(σ) = (γir(σ))i∈N .

We refer to the game with this valuation as the r-discounted game and denote it by Γr.

Note: In fact, Γr is a family of games, Γzr, parameterized by the initial state. Similarly for
Γk.

We denote by vr, respectively vk, the minmax value of Γr, respectively Γk.

5. The r-discounted game: Two-person zero-sum

In a two-person zero-sum stochastic game, N = {1, 2} and g2 = −g1. To simplify the
notation, we denote σ1 = σ, σ2 = τ and γr(σ, τ) = γ1

r (σ
1, σ2) and similarly γk(σ, τ) =

γ1
k(σ

1, σ2).
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Definition 3. v ∈ RZ is the minmax value of the r -discounted game (respectively, the
k -stage game) if ∃σ0, τ0 s.t. ∀σ, τ

γr(σ0, τ) ≥ v ≥ γr(σ, τ0) (respectively, γk(σ0, τ) ≥ v ≥ γk(σ, τ0)).

Note: The vector notation above says that, for all z ∈ Z, v[z] is the minmax value of the
game with initial state z.

We denote by Val(G) the minmax value of a two-person zero-sum strategic game G.

Theorem 2. (Shapley 1953) Let Γr be a two-person zero-sum r-discounted stochastic game.

• Γr has a minmax value and stationary optimal strategies. Furthermore:

• (v[z])z∈Z is the minmax value of Γr with initial state z iff it is the (unique) solution
of the equations

(7) v[z] = Val Gr[z, v] ∀z ∈ Z
where

Gr[z, v](a) := rg(z, a) + (1− r)Σz′p(z, a)[z′]v[z′].

• If xr[z] and yr[z] are optimal strategies for players 1 and 2, respectively, in the (one-
shot) game Gr[z, v], then the stationary strategies σt = xr, τt = yr ∀t are optimal
strategies in Γr, and

We denote by vr, respectively vk, the minmax value of Γr, respectively Γk. (The existence
of vk is obvious, as Γk is a finite game.)

6. Markov Decision Processes

A single-person stochastic game is known as a Markov Decision Process (MDP). Since in a
single-person one-shot game the player has a pure optimal strategy, Theorem 2 implies:

Corollary 1. In an r -discounted MDP there exists an optimal strategy that is stationary
and pure.

Note: The same corollary applies to stochastic games with perfect information. In such
games, at each state z one player is restricted to a single action, i.e., A1[z] or A2[z] consists
of a single point.

In fact, the corollary can be substantially strengthened:
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Theorem 3. (Blackwell 1962) In every MDP there exists a uniformly optimal pure station-
ary strategy. That is, there exists a pure stationary strategy σ∗ such that

(i) σ∗ is optimal in the r-discounted MDP for all r < r0 for some r0 > 0. Furthermore:

(ii) ∀ε > 0, ∃kε > 0, such that σ∗ is ε-optimal in the k-stage game for all k > kε, and

(iii) ḡk := 1
k

∑k
t=1 g(at, zt) converges Pσ∗ a.e., and Eσ∗ limk→∞ ḡk ≥ Eσ lim supk→∞ ḡk ∀σ.

Note: For completeness, we provide a proof of Blackwell’s theorem in Appendix C.

Notes:

• The limit of ḡk exists Pσ∗ a.e. because a stationary strategy induces fixed transition
probabilities on the states, resulting in a Markov chain.

• It follows that the limk→∞ vk = limk→∞Eσ∗ ḡk exists. This implies that vr converges
to the same limit. (One way to see this is to apply Lemma 1 below.)

• Statement (ii) is, of course, equivalent to
(ii’) σ∗ is ε-optimal in the k-stage game for all but finitely many values of k.

• While the theorem guarantees the existence of a strategy that is optimal uniformly for
all small r, it only guarantees the existence of a strategy that is ε-optimal uniformly
for all large k. To see that the optimal strategy in the k-stage game might depend
on k, consider the following example: In state 1, one action yields 0 and transition
to state 2; the other action yields 1 and the state is unchanged. In state 2, there is a
single action yielding 3 and with probability .9 the state is unchanged. The unique
optimal strategy is to play the first action in the first k − 1 stages and the second
action in stage k.

Blackwell’s Theorem establishes the existence of a stationary strategy that is optimal in a
very strong sense. It is simultaneously optimal in all the r-discounted games with r > 0
sufficiently small, and (essentially) simultaneously optimal in all the k-stage games with k
sufficiently large; it is also optimal when infinite streams of payoffs are evaluated by their
limiting average.

In other words, Blackwell’s Theorem establishes the existence of a stationary strategy that
is optimal in the MDP under any one of the three main interpretations of the infinite-stage
model:

(i) Future payoffs are discounted at a very small positive but unspecified discount rate,
or – equivalently – at every stage the game stops with some very small positive
probability.

(ii) The “real” game is finite, with a large but unspecified number of stages.
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(iii) There is an unspecified valuation of infinite streams of payoffs. This valuation lies
between the lim inf and the lim sup of the average payoff in the first k stages.

Blackwell’s Theorem also implies the existence of a value, i.e., a maximal payoff that can be
(uniformly) guaranteed according to each of the three interpretations above.

Indeed, let v := limr→0 vr = limk→∞vk. Then ∀ε > 0 ∃r′ε, k′ε s.t. ∀ σ

(i’) ε+ γr(σ
∗) ≥ v ≥ γr(σ)− ε ∀ 0 < r < r′ε,

(ii’) ε+ γk(σ
∗) ≥ v ≥ γk(σ)− ε ∀ k > k′ε, and

(iii’) Eσ∗ lim infk→∞ ḡk ≥ v ≥ Eσ lim supk→∞ ḡk.

The left inequalities indicate that the payoff v is guaranteed by the strategy σ∗; and the
right inequalities indicate that no larger payoff can be guaranteed by any strategy.

7. The undiscounted game: two-person zero-sum

In an undiscounted two-person zero-sum stochastic game it is not obvious how to define the
value and optimal strategies.

A natural first attempt is to proceed in analogy with Blackwell’s Theorem for MDPs. First,
define a pair of strategies σ0, τ0 for player 1 and 2, respectively, to be optimal, if there exist
r0 > 0 and k0 > 0 such that, for all σ, τ ,

(i) γr(σ0, τ) ≥ γr(σ, τ0) ∀ 0 < r < r0.

(ii) γk(σ0, τ) ≥ γk(σ, τ0) ∀ k > k0.

(iii) Eσ0,τ lim infk→∞ ḡk ≥ Eσ,τ0 lim supk→∞ ḡk.

(Note that (ii) holds in MDPs within ε.)

Next, prove the existence of stationary strategies satisfying these conditions.

However, it turns out that for some games there exist no stationary strategies that satisfy
either (i), or (ii), or (iii), even within an ε.

This is illustrated by the game known as the Big Match (Gilette [6]) where, moreover, there
are even no Markov strategies that satisfy either (i), or (ii), or (iii) within an ε ([5]).

The main difficulty in the transition from MDPs to two-person games is this: In an r-
discounted MDP, the same strategy that is optimal for some small r is also optimal for other
small r; but this is not so in two-person games. For example, the unique optimal strategy
for Player 1 in the r-discounted Big Match, while guaranteeing the minmax value of that
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game, only guarantees (approximately) the maxmin in pure strategies in the r2-discounted
Big Match.

However, upon reflection, it appears that if we wish to define the notion of a player “guar-
anteeing” a certain payoff in the undiscounted game, then the essential requirement should
be this: For any ε > 0 there is a strategy guaranteeing the payoff up to ε, simultaneously in
all the r-discounted games with r sufficiently small. It is not essential that this strategy be
stationary or that it be independent of ε, as is the case in MDPs.

In other words, our requirement should be an analog of conditions (i’) -(iii’) above, where
the strategy σ∗ may depend on ε and it need not be stationary (or even Markov).

Thus we may define v to be the minmax value of the game if Player 1 can guarantee v and
Player 2 can guarantee −v. Formally, we have:

Let σ, σε denote strategies of player 1 and τ, τε denote strategies of player 2.

Definition 4. v ∈ RZ is the (minmax) value of a two-person zero-sum stochastic game if
∀ε > 0, ∃σε, τε, rε > 0, and kε > 0 s.t. ∀σ, τ

(i) ε+ γr(σε, τ) ≥ v ≥ γr(σ, τε)− ε ∀ 0 < r < rε.

(ii) ε+ γk(σε, τ) ≥ v ≥ γk(σ, τε)− ε ∀ k > kε.

(iii) ε+ Eσε,τ lim infk→∞ ḡk ≥ v ≥ Eσ,τε lim supk→∞ ḡk − ε,

Notes:

• Condition (i) can be dropped from the definition as it is a consequence of condition
(ii). (See below.)

• v ∈ R is the uniform, respectively, the limiting-average, value of a two-person zero-
sum stochastic game if ∀ε > 0, ∃σε, τε and kε > 0 s.t. ∀σ, τ (ii), respectively, (iii),
holds.

• Obviously, if the value, respectively, the uniform value or the limiting-average exists,
then it is unique.

• If a minmax value, v, exists then v = limr→0 vr = limk→∞vk.

We now show that (ii) implies (i). More generally, (ii) implies

(iv) ∀ε > 0,∃σε, τε and wε > 0 s.t. ∀σ, τ and for any non-increasing sequence of non-
negative numbers (wt)

∞
t=1 that sum to 1, if w1 < wε, then

ε+ γw(σε, τ) ≥ v ≥ γw(σ, τε)− ε ∀(wt) s.t. w1 < wε,

where γw(σ)[z] := Ez
σ

∑∞
t=1 wtg(zt, at).

This follows from the Lemma below.
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Lemma 1. Any non-increasing sequence of non-negative numbers (wt) that sum to 1 is an
average of sequences of the form e(k)∞t=1, where e(k)t = 1

k
for t ≤ k and e(k)t = 0 for t > k.

Proof. It is easy to see that (wt) =
∑∞

t=1 αkek, where αk = k(wk − wk+1). Clearly, αk ≥ 0

and
∑∞

k=1 αk =
∑∞

k=1 wk = 1. �

Theorem 4. (Mertens and Neyman 1981)
Every finite two-person zero-sum stochastic game has a minmax value.

We denote the minmax value by VAL(Γ).

Notes:

• The first step towards a proof was taken by Blackwell and Ferguson [5]. They showed
that in the Big Match, for any ε > 0, there exist non-Markov strategies that satisfy
(iii) within an ε. This was extended by Kohlberg [8] to a special class of stochastic
games – repeated games with absorbing states. The general definition and existence
theorem were provided by Mertens and Neyman [9].

• A priori there is no reason to rule out the possibility that the uniform value exist
while the limiting-average value does not, or vice versa, or that both exist but differ.
However, the existence theorem for the value implies that (in a finite stochastic game)
both the uniform and the limiting-average values exist and are equal.

• A consequence of the above is that our results apply to the undiscounted value,
whether we consider the uniform or the limiting-average value.

Corollary 2. Let vr (respectively, vk) denote the minmax value of the r -discounted game
(respectively, the k-stage game). Then v = VAL(Γ) iff v = limr→0vr
(respectively, v = limk→∞vk).

Corollary 3. If Γ = (N,Z,A, g, p) and Γ′ = (N,Z,A, g′, p) then

‖VAL(Γ)− VAL(Γ′)‖∞ := max
z∈Z
|VAL(Γ)[z]− VAL(Γ′)[z]| ≤ ‖g − g′‖∞,

where ‖g‖∞ := max(z,a)∈Z×A |g(z, a)|.

To prove the corollary, first note that the stage payoffs in the games Γ and Γ′ differ by at
most ‖g − g′‖∞. Therefore, an optimal strategy in Γk guarantees vk − ‖g − g′‖∞ in Γ′k, and
vice versa; hence ‖vk − v′k‖ ≤ ‖g− g′‖∞. Next, let k →∞ and apply the previous corollary.

Corollary 4. Every MDP has a uniform value.
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Note: Of course, this corollary also follows from Blackwell’s Theorem.

8. NTU-value of the undiscounted game

We now proceed to define the NTU-value of a stochastic game in analogy with the definition
for strategic games.

Let Γ be a stochastic game. For every S ⊆ N , denote by

• XS = ∆(AS) the set of all correlated stage actions of the players in S.
• σSt : (Z ×AN)t−1 × Z → XS a correlated stage strategy of the players in S at time
t.
• σS = (σSt )∞t=1 a correlated behavior strategy of the players in S.
• ΣS = {σS} the set of all correlated behavior strategies of the players in S.

In addition, denote by

• ΣN
s.p. the finite set of stationary pure strategies in ΣN .

We define the feasible set F0 ⊂ RN as follows:

F0 := {x : ∃σ ∈ ΣN s.t. x = lim
r→0

γr(σ)}

Lemma 2.

F0 = conv{x : ∃σ ∈ ΣN
s.p. s.t. x = lim

r→0
γr(σ)}

= {x : ∃σ ∈ ΣN s.t. x = lim
k→∞

γk(σ)}

= conv{x : ∃σ ∈ ΣN
s.p. s.t. x = lim

k→∞
γk(σ)}.(8)

Note: The lemma says that F0 is a convex polytope spanned by the limiting expected
payoffs of the finitely many pure stationary strategies, where the limits can be taken either
as limr→0 γr(σ) or as limk→∞ γk(σ).

Proof. We first show that F0 is convex. Let x′, x′′ ∈ F0. Then ∃σ′, σ′′ ∈ ΣN s.t. x′ =
limr→0 γr(σ

′) and x′′ = limr→0 γr(σ
′′). By Kuhn’s Theorem ∃σ̂ ∈ ΣN inducing the same

distribution on the plays of the game as the mixed strategy 1
2
σ′ + 1

2
σ′′. So γr(σ̂) = γr(

1
2
σ′ +

1
2
σ′′) = 1

2
γr(σ

′) + 1
2
γr(σ

′′) and therefore

F0 3 limr→0 γr(σ̂) = 1
2

limr→0 γr(σ
′) + 1

2
limr→0 γr(σ

′′) = 1
2
x′ + 1

2
x′′.

Next we note that, since F0 is convex, F0 ⊇ conv{x : ∃σ ∈ ΣN
s.p. s.t. x = limr→0 γr(σ)}. To

prove the equality, assume F0 3 x0 6∈ conv{x : ∃σ ∈ ΣN
s.p. s.t. x = limr→0 γr(σ)}.
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Then there is a separating linear functional, y ∈ RN , such that

〈y, x0〉 > 〈y, x〉 ∀x = lim
r→0

γr(σ) s.t. σ ∈ ΣN
s.p..

But this contradicts Theorem 3 w.r.t. the MDF with stage payoff 〈y, g〉.

A similar argument shows that the second set of limits is also a convex polytope spanned by
the limiting expected payoffs of the pure stationary strategies.

Finally, note that if σ is a stationary strategy, then limr→0 γr(σ) = limk→∞ γk(σ) (see Lemma
5). Thus the first and the third sets in (8) are equal, and therefore all three sets are identical
to F0.

�

For future reference, we note the following.

Lemma 3. Let F0(λ) := {λ ∗ x : x ∈ F0}. Then

(i) If y ∈ F0(λ) then yi ≤ λi‖gi‖ ∀i ∈ N , and

(ii) The mapping λ→ F0(λ) is continuous.

We denote by ΓSλ the two-person zero-sum stochastic game played between S and N\S,
where the pure stage actions are AS and AN\S, respectively, and where the stage payoff to
S is given by ∑

i∈S

λig
i(z, aS, aN\S)−

∑
i 6∈S

λig
i(z, aS, aN\S).

And we denote by VAL(Γ) the uniform (minmax) value of the two-person zero-sum game,
or MDP, Γ.

We can now define the NTU (Shapley) value for stochastic games analogously to Definition
1 for strategic games.

Definition 5. ψ ∈ F0 is an NTU-value of the stochastic game Γ if ∃λ ∈ ∆ such that
ϕ(vλ) = λ ∗ ψ, where vλ is the coalitional game defined by

vλ(S) :=
1

2
VAL(ΓNλ ) +

1

2
VAL(ΓSλ) ∀S ⊆ N

Note: In the case S = N , vλ(N) = VAL(ΓNλ ) is the maximal expected payoff in the MDP
with the single player N , where the pure stage actions are AN and the stage payoff is∑

i∈N λig
i(z, a).

Our main result is as follows.

Theorem 5. For every finite stochastic game there exists an NTU- value.
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The proof is presented in Appendix B.

9. NTU-value of the r-discounted game

We now define an NTU value of the r -discounted game Γr. The required steps are obviously
simpler than in the undiscouted case,

We define the feasible set, Fr, as follows:

Fr := {γr(σ) : σ ∈ ΣN}
= conv{γr(σ) : σ ∈ ΣN

s.p.}.(9)

Note: The equation says that Fr is a convex polytope spanned by the expected payoffs of
the finitely many pure stationary strategies. It is a simple analog of the first equation in
Lemma 2.

Since every two-person zero-sum r-discounted stochastic game has a minmax value (Theorem
2), an NTU-value can be defined in the same way as for strategic games.
Let

Val(ΓSr,λr) := max
σ∈ΣS

min
τ∈ΣN\S

(∑
i∈S

λirγ
i
r(σ, τ)−

∑
i 6∈S

λirγ
i
r(σ, τ)

)
.

Definition 6. ψr ∈ Fr is an NTU-value of the r -discounted stochastic game Γr if
∃λr ∈ ∆ such that ϕ(vr,λr) = λr ∗ ψ, where vr,λr is the coalitional game defined by

(10) vr,λr(S) :=
1

2
Val(ΓNr,λr) +

1

2
Val(ΓSr,λr) ∀S ⊆ N

Note: In the case S = N , vr,λr(N) = Val(ΓNr,λr) = maxσ∈ΣN

∑
i∈N λ

i
rγ

i
r(σ)

Theorem 6. For every r-discounted stochastic game there exists an NTU-value.

The proof proceeds in complete analogy with the proof in Appendix A for strategic games.
In particular, it is easy to verify that properties (i) and (ii), required in that proof, are still
valid.
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10. Asymptotic Expansions

Recall that an atomic formula is an expression of the form p > 0 or p = 0, where p is
a polynomial with integer coefficients in one or more variables; an elementary formula is
an expression constructed in a finite number of steps from atomic formulae by means of
conjunctions (∧), disjunctions (∨), negations (∼), and quantifiers of the form “there exists”
(∃) or “for all” (∀). A variable is free in a formula if somewhere in the formula it is not
modified by a quantifier ∃ or ∀. An elementary sentence is an elementary formula with no
free variables.

Lemma 4. For fixed (N,Z,A) the statement of Theorem 6 is an elementary sentence.

The proof is given in Appendix D.

If we think of the variables as belonging to a certain ordered field, then a sentence is either
true or false. For instance, the sentence ∀x ∃y s.t. y2 = x is false over the field of real
numbers but true over the field of complex numbers.

An ordered field is said to be real closed if no proper algebraic extension is ordered. Tarski’s
principle states that an elementary sentence that is true over one real-closed field is true over
every real-closed field. (See, e.g., [2].)

It is well known that the field of power series in a fractional power of r (real Puiseux series)
that converge for r > 0 sufficiently small, ordered according to the assumption that r is
“infinitesimal” (i.e., r < a for any real number a > 0), is real-closed. (See, e,g, [2], or [14].)

Thus, given Theorem 6 and Lemma 4, Tarski’s principle implies the following:

Theorem 7. Fix (N,Z,A). For every 1 > r > 0 there exist ψr ∈ RN , λr ∈ RN and vr,λr ∈ R2N

satisfying the NTU-value conditions (14) to (17), such that each one of these variables has
an expansion of the form

(11) Σ∞k=0αkr
k/M

that converges for r > 0 sufficiently small.

Note: The general form of an element of the field of real Puiseaux series is Σ∞k=−Kαkr
k/M .

However, because the ψ, λ, and v are bounded, K=0.

We now apply this result to derive an asymptotic version of Theorem 5.
Let r → 0. In light of the asymptotic expansion (11), ψr → ψ0, λr → λ0 ∈ ∆, and
vr,λr → vλ0 .

By Lemma 6 (in Appendix C), ψ0 ∈ F0. By Corollary 4, vλ0 is the uniform minmax value of
ΓSλ0 for all S ⊆ N . Thus, ψ0, λ0, and vλ0 satisfy the requirements of Definition 5; hence ψ0

is an NTU-value of Γ.
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Theorem 8. Every finite stochastic game Γ has an NTU-value that is the limit, as r → 0,
of NTU-values of the r-discounted games. Furthermore, these NTU-values, as well as their
scaling factors and the associated minmax values and optimal strategies in the zero-sum scaled
games, are real Puiseaux series converging to their counterparts in the game Γ.

Note: The above provides an alternative proof for the existence of an NTU-value in sto-
chastic games.

Note: An alternative proof of Theorem 7 is obtained by noting that for every fixed (N,Z,A, g, p),
the set of tuples (r, ψr, λr, vr,λr) that satisfy the NTU-value conditions (14) to (17) is a semi-
algebraic set, whose projection on the first (r) -coordinate is (0, 1). Therefore, there is a
function r 7→ (ψr, λr, vr,ψr), such that each one of its coordinates has an expansion of the
form (11). (See, [14]).

11. Discussion

The paper details the extension of the Harsanyi-Shapley-Nash cooperative solution for one-
shot strategic games to finite stochastic games. The properties of a finite stochastic game
that are used are: A) finitely many players, states, and actions, B) complete information,
and C) perfect monitoring, i.e., current state and players’ past actions are observable.

In the general model of a repeated game, which can be termed a stochastic game with
incomplete information and imperfect monitoring, the stage payoff and the state transitions
are as in a classical stochastic game, but the initial state is random, and each player receives
a stochastic signal about players’ previous stage actions and current state.

The result that for each fixed 1 > r > 0 the r-discounted game has an NTU-value, as
well as its proof, are both identical to those given here for the finite stochastic game with
perfect monitoring. The existence of an NTU-value in the undiscounted case depends on
the existence of a uniform value in the corresponding two-person zero-sum model. Note,
however, that the existence of an NTU-value in the undiscounted game does not depend on
the existence of equilibrium payoffs in the corresponding undiscounted games.

12. Appendix A: Existence of NTU-value in strategic games

Theorem 1 For every finite strategic game there exists an NTU-value.

Proof. Recall that F = conv{g(a) : a ∈ A}. Let F (λ) = {λ ∗ x : x ∈ F} and E(λ) ={
y ∈ F (λ)

∣∣ ∑
i∈N yi is maximal on F (λ)

}
. We claim that

(i) yi ≤ Kλi ∀y ∈ E(λ)

(ii) ϕi(vλ) ≥ −Kλi ∀λ ∈ ∆,
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where K := maxi∈N maxa∈A |gi(a)| denotes the largest absolute value of a payoff in G.

To see (i), note that |xi| ≤ K ∀x ∈ F ; therefore |yi| ≤ Kλi ∀y ∈ F (λ), and in particular
yi ≤ Kλi ∀y ∈ E(λ).

To see (ii), note that, by (6),

2vλ(S ∪ i)− vλ(N)

= max
x∈XS∪i

min
y∈XN\(S∪i)

(∑
j∈S∪i

λjg
j(x, y)−

∑
j 6∈S∪i

λjg
j(x, y)

)

≥ max
x∈XS

min
y∈XN\S

(∑
j∈S∪i

λjg
j(x, y)−

∑
j 6∈S∪i

λjg
j(x, y)

)

≥ max
x∈XS

min
y∈XN\S

(∑
j∈S

λjg
j(x, y)−

∑
j 6∈S

λjg
j(x, y)

)
− 2Kλi

= 2vλ(S)− vλ(N)− 2Kλi(12)

so that

(13) vλ(S ∪ i)− vλ(S) ≥ −Kλi ∀S 63 i.

Since ϕivλ is an average of the marginal contributions vλ(S ∪ i)− vλ(S), this implies (ii).

We now define a correspondence H : ∆→ RN as follows:

H(λ) :=

{
λ+

ϕ(vλ)− y
2K

∣∣∣∣ y ∈ E(λ)

}
.

We wish to show that H(λ) ⊂ ∆.

Let z ∈ H(λ). Since the Shapley value is efficient, ϕ(vλ) lies in E(λ), which implies that∑
i∈N(ϕ(vλ)− y)i = 0 for any y ∈ E(λ). Thus

∑
i∈N zi =

∑
i∈N λi = 1.

It remains to show that zi ≥ 0. Indeed, by (ii) and (i),

zi = λi +
ϕi(vλ)− yi

2K
≥ λi +

−Kλi −Kλi
2K

≥ λi − λi = 0

Rewriting

H(λ) = (λ+
ϕvλ
2K

)− 1

2K
E(λ)

and noting that E(λ) is convex, we conclude that H(λ) is convex for every λ.

The minmax value is continuous in the payoffs, and so vλ(S) is continuous in λ. Therefore
– since the Shapley value of a coalitional game v is linear in v(S)S⊂N – ϕ(vλ) is continuous
in λ.
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Clearly, the set-valued mapping λ → F (λ) is continuous, implying that the mapping λ →
E(λ) is upper-semi-continuous. Therefore H : ∆ → ∆ is an upper-semi-continuous corre-
spondence satisfying the conditions of the Kakutani fixed-point theorem.

Thus there exists a λ0 such that λ0 ∈ H(λ0), i.e., ϕ(vλ0) = y0, where y0 ∈ E(λ0). Let ψ0 ∈ F
be such that y0 = λ0 ∗ ψ0. Then ψ0 is an NTU-value of the game G.

�

13. Appendix B: Existence of NTU-value in stochastic games

Theorem 5
For every finite stochastic game there exists an NTU-value.

Proof. The proof is carried out in analogy with the proof of Theorem 1, with the following
adjustments:

• The feasible set F = conv{g(a) : a ∈ AN} is replaced by F0 = {limr→0 γr(σ) : σ ∈
ΣN}.
• The coalitional game vλ is no longer defined by reference to the minmax value of

the one-shot game between S and N\S, but rather it is defined by reference to the
uniform value of the stochastic game played between S and N\S.

The two properties of F that are needed in the proof are that, for some constant K, xi ≤ Kλi
for all x ∈ F , and that the mapping from λ to F (λ) = {λ ∗ x : x ∈ F} is continuous in λ.
These properties hold for F0 as well. (See Lemma 3.)

The two properties of vλ that are needed in the proof are the continuity of vλ in λ and
inequality (13), namely:

vλ(S ∪ i)− vλ(S) ≥ −Kλi ∀S 63 i.

But (13) can be proved in the same way as in the proof of Theorem 1, i.e., by means of the
inequalities (12).

The first and last equation in (12) just state the definition of vλ.

The second inequality says that, if we compare two two-person zero-sum games with the
same payoffs, where in the first game player 1’s (respectively, player 2’s) strategy set is
larger (respectively, smaller) than in the second game, then the value of the first game is
greater than or equal to the value of the second game. But this is true for the minmax value
of stochastic games just as well as it is true for the standard minmax value of matrix games.

The third inequality says that, if we compare two two-person zero-sum games with the same
strategy sets, where the payoffs of the two games differ by at most 2λi‖gi‖, then the values
of these games differ by at most 2λi‖gi‖. By Corollary 3, this holds in stochastic games just
as well, when “payoffs” are replaced by “stage payoffs”.
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Finally, we note that the continuity of vλ is also a consequence of Corollary 3:

|vλ(S)− vλ′(S)| = |uVal(ΓSλ)− uVal(ΓSλ′ |) ≤
N∑
i=1

‖gi‖|λi − λ′i|.

With these adjustments, the proof of Theorem 5 goes through in the same way as the proof
of Theorem 1.

�

14. Appendix C: Stationary Strategies

Lemma 5. If σ is a stationary strategy then

(i) limk→∞ γk(σ) and limr→0 γr(σ) exist and are equal.

(ii) γr(σ) is a bounded rational function in r.

This result is well known (e.g., [4], [13], or [3]). For completeness, we provide a proof.

Proof. A stationary strategy, σt = σ ∀t, induces the same expected payoffs, gσ, and the same
transition probabilities, Pσ, at every stage, where gσ : Z → RN is defined by

gσ[z] = g(z, σ(z)) =
∑
a∈A

σ(z)[a]g(z, a)

and P : Z → ∆(Z) is defined by

Pσ(z)[z′] = p(z, σ(z))[z′] =
∑
a∈A

σ(z)[a]p(z, a)[z′].

Since Pσ is a Markov matrix, ||Pσ|| ≤ 1 . As is well known, this implies that the sequence
1
k

∑k
t=1 P

t−1
σ converges, and therefore

γk(σ) =
1

k

k∑
t=1

P t−1
σ gσ

converges as k → ∞. But the convergence of γk(σ) as k → ∞ implies the convergence of
γr(σ) as r → 0, to the same limit. (This follows from, e.g., Lemma 1.)

To prove (ii) note that, since ||Pσ|| ≤ 1, the power series (1 − r)tP t
σ converges to (I − (1 −

r)Pσ)−1, so that

γr(σ) =
∞∑
t=1

r(1− r)t−1P t−1
σ gσ = r(I − (1− r)Pσ)−1gσ.

Thus γr(σ) is a rational function in r. It is bounded by maxz,a |gi(z, a)|.
�
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Note: Part (ii) provides yet another proof that γr(σ) converges as r → 0.

We now apply the lemma to provide a proof of Blackwell’s theorem.

Theorem 3
In every MDP there exists a stationary strategy σ∗ such that σ∗ is optimal in the r -discounted
MDP for all 0 < r < r0 for some r0 > 0.

Proof. By Corollary 1, for any 0 < r < 1 some pure stationary strategy is optimal in the
r -discounted MDP. Thus, a pure stationary strategy that yields the highest expected payoff
among the finitely many pure stationary strategies is optimal.

Since the expected payoffs of these strategies are rational functions, they can cross only
finitely many times. It follows that one of them is maximal in an interval [0, r0], and so the
corresponding pure stationary strategy is optimal in that interval.

�

Lemma 6. limr→0 Fr = F0

Proof. Let x0 ∈ limr→0 Fr. By (9),

x0 = limr→0

∑
m∈M

µr,m γr(ηm),

where {ηm}m∈M are the finitely many pure stationary strategies, and where µr,m ≥ 0 and∑
m∈M µr,m = 1.

Let rn be a subsequence such that limn→∞ µrn,m = µ0,m ∀m ∈ M . Since ηm is stationary,
limn→∞ γrm(ηm) exists. (Lemma 5). Denoting this limit by γ0(ηm), we have

x0 =
∑
m∈M

µ0,m γ0(ηm).

Let
σ0 =

∑
m∈M

µ0,m ηm.

Then x0 = limr→0 γr(σ0) ∈ F0.
�

The definition:

Definition 7. v ∈ R is the minmax value of a two-person zero-sum stochastic game if ∀ε > 0,
∃σε, τε and kε > 0 s.t. ∀σ, τ
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(i) ε+ γk(σε, τ) ≥ v ≥ γk(σ, τε)− ε ∀k > kε.
(ii) ε+ Eσε,τ lim infk→∞ ḡk ≥ v ≥ Eσ,τε lim supk→∞ ḡk,

where ḡk := 1
k

∑k
t=1 gt.

If we go that route we should say something like:
v ∈ R is the uniform, respectively, the limiting-average, value of a two-person zero-sum
stochastic game if ∀ε > 0, ∃σε, τε and kε > 0 s.t. ∀σ, τ (i), respectively, (ii), holds.

Note: Obviously, if the value, respectively, the unform value or the limiting-average exists,
then it is unique.
Such a modification will require further wording changes thereafter. E.g., uniform value has
to be changed to the minmax value.
We can mention that, apriori, the uniform minmax value can exists when the limiting-average
minmax value does not exists, and vice versa, and that both can exists and differ. However,
in the finite stochastic game the value exists thus each one exists and the two are equal.

15. Appendix D: “NTU-value exists in Γr” is an elementary sentence

Lemma 4

The statement “for every r-discounted stochastic game there exists an NTU-value” is an
elementary sentence.

Proof. Fix finite N, Z, and A. The statement may be written as follows:

∀(g, p) and ∀ 0 < r < 1, ∃ψr ∈ RN , ∃λr ∈ RN , and ∃vr,λr ∈ R2N s.t.

(14) ψr ∈ Fr

(15) λr ∈ ∆

(16) vr,λr(S) :=
1

2
Val(ΓNr,λr) +

1

2
Val(ΓSr,λr) ∀S ⊆ N

and

(17) ϕ(vr,λr) = λr ∗ ψr.

In this statement, the variables g, p, r, ψr, λr, and vr,λr are all modified by ∃ or ∀. So we must
show that (14) - (17) are elementary formulas where these are the only free variables.

In the interest of brevity, we only show that (14) - (17) are elementary formulas. It is
straightforward to verify that no variables but the ones listed above are free in any of these
formulas.
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We first consider (15). The statement that each coordinate in non-negative and the sum of
the coordinates is 1, is obviously an elementary formula.

Next, we consider (17). This is an elementary formula because the Shapley value, ϕ : R2N →
RN , being a linear function, can be expressed in the form

ϕ(v)i =
∑
S⊂N

cSi v(S),

where the cSi are (rational) constants, independent of v.

Next, we consider (16). It is well known that, if G is a one-shot two-person zero-sum game,
then the statement y = Val(G) is an elementary formula. (See, e.g., [2] ). By (7), then, the
statement y = Val(Γr), where Γr is an r-discounted stochastic game, is also an elementary
formula.

Finally, we consider (14). Obviously, (7) applies in the case of a stochastic r-discounted game
with a single-player who has a single strategy, σ. Therefore the statement y = γr(σ) is an
elementary formula. Since Fr is the convex hull of the finitely many γr(σ) corresponding to
pure stationary strategies, (14) is an elementary formula as well.

�
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