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Abstract 

 

I introduce algorithmic and meta-algorithmic models for the study of strategic 

problem solving, aimed at illuminating the processes and procedures by which strategic 

managers and firms deal with complex problems. These models allow us to explore the 

relationship between the complexity of an environment, the sophistication of the problem 

solving processes and procedures used to optimally map problem statements into strategic 

actions, and the organizational structures that are best suited to the implementation of 

solutions. This approach allows us to distinguish among levels of sophistication in the 

strategic management of complex predicaments, specifically among rational, irrational, quasi-

rational and super-rational problem solving processes and responses of strategic managers 

and organizations. It highlights a set of dynamic search and adaptation capabilities that can 

be studied via the algorithmic and computational properties of the problems they are meant 

to solve and the efficiency and reliability by which they search a solution space. It points to 

several new components of competitive advantage that are linked to the complexity 

adaptation of a firm:  ‘offline problem solving’ and ‘simulation advantage’ emerge as key 

strategic differentiators for firms facing complex problems.   
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1. Introduction: Strategy and Algorithmics 

 

All life is problem solving. 

Karl R. Popper 

Using tools and models from computational complexity theory and the algorithmics 
of hard problems that are new to the strategy field, this paper addresses the question of how 
strategic process and structure adapt to the complexity of the strategic scenario or 
predicament. Relevant literature has focused on the effects of environmental complexity on 
firm level decision processes and strategic outcomes (Levinthal, 1997; McKelvey, 1999) and 
on the barriers and obstacles to adaptation, performance and imitation that complexity raises 
at the level of optimization and decision  processes [Rivkin, 2000; Denrell and March, 2001] 
and organizational structures [Siggelkow and Rivkin, 2005; Davis, Eisenhardt and Bingham, 
2008]. An algorithmic perspective on the strategic problems faced by the firm opens up the 
opportunity to systematically explore optimal adaptations to complexity at the level of both 
problem solving processes and organizational architectures, and to distinguish between different 
levels of sophistication in the ways in which strategic processes and structures deal with 
complexity. The current paper pursues this opportunity by contributing an algorithmic and 
computational model of strategic problem solving that allows researchers to distinguish 
between different levels and kinds of adaptations to complexity; and to explore the fit 
between the canonical strategy problems a firm faces, its stock of problem solving 
procedures, and its architectural and procedural adaptations to complexity. 

The question of strategic adaptation to complexity has received significant attention 
in the strategy literature [McKelvey, 1999; Rivkin, 2000; Siggelkow and Levinthal, 2003, 
2005; Moldoveanu and Bauer, 2004; Siggelkow and Rivkin, 2005 Moldoveanu, 2009], which 
has built on the ‘organizations-as-problem-solving-entities imagery and associated 
distinctions of the Carnegie School [March and Simon, 1958; Cyert and March, 1963] to 
showcase the ways in which strategic choices more or less successfully map changes in 
organizational structure and function to payoffs as a function of internally and externally 
generated complexity. This literature has used models strategic environments adapted from 
complex adaptive systems research  [Holland, 1962; Kauffman, 1969, 1993, 1995] to study 
the interaction between strategic choices and consequence under complexity-induced 
constraints, and pointed to a range of structural, cognitive and procedural adaptations to 
complexity that have broadened both the scope of strategy research and the strategist’s 
toolkit. I sharpen the focus of the study of ‘strategy and complexity’ by introducing an 
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algorithmic and computational perspective on strategy making, which allows us to draw new 
and useful distinctions when gauging the effectiveness of strategic processes and the 
capabilities of strategic managers faced with complexity. It uses the lexicon of computational 
complexity theory and ‘algorithmics’ to model the ways in which strategic managers ‘set 
strategy’ by solving ‘hard problems’ – problems that are likely to confront them in complex 
environments - and shows how problem solving procedures, capabilities and the 
organizational structures they engender can differentiate between more or less effective 
strategic processes and procedures. 

I build on recent work that links structural and functional complexity to the 
computational complexity of solving an adaptation problem in a complex environment, but 
expand the range of models of the firm-environment nexus that we can apply complexity 
analysis to. Following [Porter, 1996], Rivkin [2000] models firms as coupled activity systems, 
which in turn are modeled, following [Kaufmann 1969; 1993], as Boolean networks of N 
nodes with K edges per node, wherein the state of each node evolves as a function of the 
previous state of that node and the states of all of the nodes linked to it by edges. If we 
model strategic choices as periodic decisions over alternative coupled activity sets, and 
activity sets as evolving NK networks, we can understand the problem that the strategic 
manager solves as that of predicting the evolution of various NK networks that model the 
value linked activities comprising the fabric of the business. Rivkin [2000] points out that 
this problem is technically intractable [Weinberger, 1996] – in the sense that the number of 
operations required to solve it grows exponentially with N for K>2 - and infers that 
successful ‘complex’ strategies (high N, high K) are hard  to imitate  in the sense that 
successful imitation is statistically very rare. But a careful, algorithmically informed analysis 
of the computational complexity of optimizing NK fitness functions [Wright, Thompson 
and Zhang, 2000] shows that there exists a tractable approximate  solution algorithm for 
optimizing NK fitness functions with arbitrary N and K , suggesting that complexity-related 
barriers to imitation may be  weaker if the fitness landscape is not  sharply peaked and that 
the imitator is in the possession of the right search procedure (the approximation algorithm 
whose performance they demonstrate). Such findings highlight the importance of 
understanding the precise computational structure of the optimization problem that the strategist is trying 
to solve. They suggest that a computational perspective should be applied to other canonical 
strategic problems that are known to be intractable - such as finding the Nash Equilibrium in 
a competitive game that guarantees the firm a set minimum payoff [Gilboa and Zemel, 
1989], or finding the maximum-value configuration of a product’s costly features and 
attributes subject to a maximum cost constraint [Moldoveanu, 2009]. Modeling strategic 
choice and optimization problems in terms of the algorithms that most efficiently solve 
these problems, and complexity in terms of the computational complexity of these 
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algorithms extends the range of models of strategy making that we can study from a 
complexity perspective. 

I extend previous research that models the effects of computational complexity on 
strategic choice and optimization by introducing a range of algorithmic and architectural 
adaptations to complexity that differ in terms of effectiveness, efficiency and reliability. They 
provide measures of the capability of a firm or a strategic manager to search or explore the 
solution space [Newell and Simon, 1972] of a strategic problem.  This represents an advance 
on models of adaptations to complexity  which posit that strategic managers systematically 
avoid certain classes of problems on the basis of their degree of difficulty. Moldoveanu [2009] 
uses the time complexity hierarchy (P-NP, or, tractable-intractable) devised for the study of 
hard problems to study the ways in which strategic managers solve problems, and marshals 
empirical and experimental evidence to argue that strategic managers systematically choose 
tractable over intractable problems as ways of representing their raw predicaments. He 
argues strategic managers exhibit lexicographic preferences over problem types (P>NP) and 
register or collect information solely on the variables needed to solve the tractable problems 
which they have chosen. He predicts that one of the key signatures of computational sloth - 
the systematic and non-adaptive unwillingness to think in terms of NP-hard problems on the 
part of managers – is systematic ignorance of a set of variables, such as network position or 
competitors’ reaction function, that would only matter if managers were actually engaged in 
solving NP hard problems such as computing an optimal network strategy or finding the 
Nash equilibrium in their buyer-seller market). I argue, however, that brute force truncation 
of the solution process and lexicographic problem selection are but two of several strategies 
that strategic managers and firms can use to solve problems for which exhaustive searches of 
the solution space are computationally expensive. I show how meta-algorithms and 
heuristics [Hromkovic, 2003; Michalewicz and Fogel, 2004] can be both used to structure the 
process of solution search so that polynomial time searches will yield acceptable answers to 
NP-hard problems, and how the deployment of such algorithms can be understood to lie at 
the foundation of the firm’s adaptive strategic advantage. We are, as a result, able to texture 
our understanding of the rationality of strategic managers in ways that go beyond the 
distinctions between ‘full’ and ‘bounded’ rationality and ‘optimizing’ versus ‘satisficing’ 
[Simon, 1978; 1991] and include forms of (hyper)rationality that take into account the costs 
and benefits of the processes by which optimization is carried out. Key to such hyper-
rational patterns of strategic response is the set of solution space search procedures 
(algorithms) that an organization can implement. The algorithmic language introduced here 
gives us a set of models for measuring the fit between the structure of a strategic problem 
and the algorithmic suite of procedures for solving it. 

Attempts to understand organizational responses to turbulent environments [Rivkin 
and Siggelkow, 2003, 2007; Siggelkow and Rivkin, 2005, among others] have also focused on 
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examining changes in organizational structures or architectures (more/less centralized 
decision making authority; more-fewer couplings among outcomes of individual level 
decisions) to different environmental regimes (more/less uncertainty; longer/shorter 
required organizational response times). However, structural modifications to an 
organization are costly, and the time required for their implementation is sometimes shorter 
than that needed for a survivable response. Virtual search for optimal solutions - like 
‘fictitious play’ in the theory of games [Brown, 1951]– can provide a low(er) cost alternative 
to solving a strategic adaptation problem by making actual changes to a firm’s allocation of 
tasks, incentives and decision rights. An algorithmic analysis of a firm’s strategic problems 
will be shown to give us tools for gauging a firm’s strategic ‘simulation advantage’, which 
arises from its ability to explore, ‘off-line’, the solution spaces of difficult strategic problems 
more reliably and efficiently than its competitors. ‘Off-line’ strategic problem solving can be 
a useful complement to the ‘on-line’ exploration of fitness landscapes involved in actual 
experimentation, provided that the problem statement guiding the offline, virtual search 
closely tracks the causal structure of the problem statement that guides an online search. But, 
unlike approaches to simplification in strategic problem solving [Gavetti and Levinthal, 
2000; Gavetti, Levinthal and Rivkin, 2005; Gavetti and Rivkin, 2006] that rest on 
representational simplifications – such as metaphors and analogies - to model the ways in 
which strategic managers think their way through complexity, the current work shows how 
computational short cuts and fast solution algorithms can also function as effective 
simplification devices for strategic problems.  

Structural strategic adaptations to high complexity regimes are also be informed by 
the algorithmic models of problem solving introduced here. Some of the technically ‘hard’ 
problems of business strategy are more susceptible than others to decentralized and parallel 
search processes, and some problems will be more likely to yield to fully decentralized (or, 
random) search processes than others. The kind and degree of structural changes (such as 
thickening, patching, coasting and trimming [Siggelkow, 2002]) that will produce beneficial 
effects in the face of environmental change will depend on the algorithmic structure of the 
firm’s problems and its solution space search procedures - in the same way in which 
understanding the class of problems a RISC processor is designed to solve and the class of 
algorithms it is designed to implement can inform optimal architectural enhancements to it.  

Some work in economics [Rubinstein, 1993] has for some time now posited that 
agents may differ not only with respect to their preferences and beliefs, but also with respect 
to their logical and computational prowess. Bounds to computational prowess are also 
bounds to the sophistication of  search procedures [Levinthal, 1997], and make the 
difference between ‘luck’ and ‘skill’ based explanations of strategic outcome [Denrell, Fang 
and Winter, 2003].  This work extends attempts in microeconomics [Rubinstein,1986; 1993  ; 
Gilboa and Zemel, 1989] and the theory of computation [Daskalakis, Goldberg and 
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Papadimitriou, 2006] to model the behavior of agents solving complicated decision problems 
in the face of bounds to the depth of the logical computation they can perform . It broadens 
the reach of the approaches of these prior papers by (1) showing how large classes of 
business strategy problems can be understood in terms of their computational structure and 
complexity, (2) how the time complexity of the associated solution algorithms can be 
measured by inclusion of the canonical problems in one of the classes of algorithmic 
problems known to be either tractable or intractable, (3) how the science of designing 
algorithms for hard problems (‘algorithmics’) [Hromkovic, 2003; Michalewicz and Fogel, 
2004] can be used to understand both a firm’s adaptation to complexity (by making 
intractable problems locally tractable) and superior performance (by developing a capability 
for adaptively solving hard problems under resource constraints). It extends these analyses 
by applying a complexity hierarchy not only to understanding how strategic managers solve 
the problems of their business (cost reduction, strategic pricing, tactical pre-commitment, 
profitable product re-positioning or industry diversification) but also to understanding the 
basic ways in which managers think about data, principles, rules, solution spaces, and about 
search itself in terms of solving problems of known complexity and structure.  

Outline. I show how strategies can be understood as the outcome of computational 
processes and  as algorithmic solutions to strategic problems, and demonstrate the generality 
of the model by showing how many core problems of strategy can be reduced to canonical 
algorithmic processes of measurable time complexity. I show that intractability in itself need 
not pose an insurmountable barrier to strategy: There are families of meta algorithms and 
heuristics for solving intractable problems ‘accurately enough, enough of the time’ in 
acceptable amounts of time and under viable resource constraints; and many strategic 
formulation processes can be understood as the application of such meta-algorithms to 
strategic problems. I put forth an adaptive  capacity to solve hard problems (often 
corresponding to ‘complex’ problem solving environments) as a source of firm-level 
advantage, and create a three-dimensional measure of competitive advantage that 
incorporates the quality (precision, accuracy) of the solution produced, the probability of 
reaching that solution under time and  resource constraints (its reliability), and the speed with 
which a solution of minimum acceptable quality is reached (its efficiency). I derive the 
implications of the algorithmic perspective for the empirical study of strategic procedure, 
process, outcome and performance in terms of a three-fold dependence: of problem solving 
procedures on the computational complexity and structure of the firm’s strategic problems, 
of the optimal structure of the organization on the choice of problem solving procedure, and 
of the metrics and performance measures for problem solving processes on the specific 
procedure used to solve a strategic problem. 
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2. Three Motivational Examples. Consider the following as examples of the ways in which the 
complexity of a problem matters to the strategic and technological choices of a business, and 
the way in which prior insight into the complexity of the problem matters to a firm’s strategic 
choices. 

Example 1. Google, Inc.’s co-founders [Bryn and Page, 1998] solved the problem of 
producing a search engine for billions of WWW pages without either avoiding the problem 
[as Moldoveanu, 2009 would predict] or ‘just stumbling’, via haphazard search [Cyert and 
March, 1963; Newell and Simon, 1972] onto the solution. The problem that the search 
engine solves –that of providing a ranking of web sites in terms of relative popularity, 
influence or impact – can be represented as the problem of searching all of the paths 
through a potentially not-fully connected graph (the network of all 1 Billion www pages 
existing circa 1999)  to find those containing the site of interest and tabulating the number of 
paths in the network that pass through each node – which would require enumerating all such 
paths, whose number is an exponential function  of the number of nodes (1Bn). The insight 
on which the Google search engine, circa 2000, (‘PageRank’) is based captures the basic 
intuition of ranking pages that have more links pointing to them more highly, but restricts 
itself to measuring the relative number of citations among pairs of web sites (i.e. how many 
times does page A cite page B, normalized by the total number of citations A makes). As a 
result, it provides an approximate measure of importance that tracks – but does not always 
equal – the exact solution based on the exhaustive enumeration of all paths through the 
network. 

Example 2. Cisco Systems, Inc.’s makes (designs, builds, sells, services) network 
appliances that link end users, through network hubs (switches and routers) to one another 
and to central transmission points. It is constantly solving the problem of providing mutually 
interoperable hardware, software, firmware and netware ‘stacks’ (protocols, encoding, 
decoding and signal formatting algorithms running on custom and general purpose silicon) 
aimed at matching customer demands with the lumpy characteristics of existing platforms, 
the hard-wired specifications of a large number of IEEE and ETSI technical standards and a 
set of gross margin and operational cash flow constraints. Rather than executing ‘brute force’ 
searches of all possible solutions to this very large scale optimization problem, Cisco evolved 
into an ‘acquisition machine’ of technology firms (and proceeded to acquire some 180 firms 
as of 2011, an average of 6.7 firms acquired per year) that independently and asynchronously 
searched the solution search space, under the influence of high powered incentives provided 
by venture capital investments and the prospect of a high-valuation ‘exit’ (in the form of an 
acquisition by Cisco). This strategy seems to heed the  well-known insight  [Garey and 
Johnson, 1983] that the problem of evaluating the set of solutions to an intractable problem 
for satisfaction of a performance target is a tractable problem. The difficulty of intractably 
large optimization problems consists in the exhaustive enumeration of the solutions in the 
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search space, which must precede the independent evaluation of each candidate; uncoupling 
enumeration from evaluation results in a massive decrease in the computational complexity of 
the task. By contrast, what used to be Nortel, Inc. became famous for a ‘not-invented-here’ 
syndrome that saw the company attempt to develop and re-develop, from scratch, all of the 
hardware and software stacks for its network appliances and base stations, ranging from 
DMS switches to WiMax base stations. Cisco today has a market capitalization of over $100 
Bn, whereas Nortel filed for bankruptcy in 2010. 

Example 3. The securitization of cash flows arising from mortgage debt repayments is 
widely believed to have contributed to the worldwide financial crisis of 2007 and 2008, but 
the connection between the nature of the crisis of confidence and trust in inter-bank lending 
and acquisition of mortgage derivatives has only recently been signaled [Arora, Barak, 
Brunnermeier and Ge, 2010]. The complexity connection revolves around the well known 
‘market for lemons’ model of Akerlof [Akerlof, 1970]: if buyers know that 20% of the used 
cars in the market are ‘lemons’, the price of a used car is $10,000.00, and they cannot easily 
tell lemons apart from reliable cars, then they will not be willing to pay more than $8000.00 
for a used car, which would cause those who do sell reliable cars to pull out of the market 
(because they do not want to sell at a 20% discount), leaving the market to grind to a halt. It 
is possible for Bank of Limonia, say, to create a set of iN derivatives (CDO’s) whose payoff 
depends on the probability of default of up to M different mortagegs (or, tranches of 
mortgages) coming from C different risk classes in such a way that a buyer who wants to 
figure out whether higher-probability-of-default-mortgages (‘lemons’) are reflected in any 
pool of securities would need to calculate whether there is any class of mortgage that is over-
represented in the design of the derivatives, which requires considering all of the links in the 
bi-partite graph linking asset classes and derivatives, which is a computationally intractable 
problem. [Arora et al, ibid] show that a computationally bounded buyer would not be able to 
figure out whether or not the lower payoff is due to change or to the special design of a 
lemon  by the seller. Knowing this, buyers should rationally choose to stay away from the 
market altogether. 

These examples highlight the importance of complexity – as a measure of the 
difficulty of solving certain problems – to both the specific design of a strategy and to 
strategic outcomes. Moreover, they highlight ways in which insight into the complexity of a 
large scale optimization or decision problem can be advantageously  incorporated in the 
strategy making process.  

3. Managerial and Organizational Algorithmics: The Study of the Computational Structure of Business 
Problems and Problem Solving Processes. The computational (or, ‘time’) complexity of a problem 
has become an established measure that indexes the worst- case number of operations that 
the most efficient known procedure – or, algorithm – for solving that problem will take up 
[Cook, 1971 is the seminal paper; Papadimitriou, 1994 provides a thorough review; Rivkin, 
2000, Moldoveanu and Bauer, 2004, Moldoveanu 2009 apply the measure to quantifying the 
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difficulty of solving business problems]. Computational complexity is expressed as a 
function, C(N), of the number of independent variables N of a problem statement. These 
variables may be the set of arguments and constraints of an optimization problem (which 
produces a vector or scalar corresponding to the optimum as a solution) or a decision 
problem (which produces a 0 (‘no’) or a 1 (‘yes’) as the answer. The functional form of C(N) 
lets us distinguish among different types of strategy problems. Some problems can only be 
solved by algorithms with time complexity that grows very quickly as a function of the size 
of the input, whereas others can be solved by algorithms whose time complexity grows 
rather more slowly.  

‘Very quickly’ and ‘more slowly’ need tightening: the polynomial-time property was 
introduced to provide it. Polynomial-time problems (P) are those problems that can be 
solved by deterministic solution algorithms whose (worst case) complexity is at most a 
polynomial function of the number of input variables, i.e. C(N) = Pk(N) is the kth degree 
polynomial of the argument, where 0≤k<∞. By contrast, Nondeterministic Polynomial Time 
(NP) problems are problems that can be solved non-deterministically by polynomial time 
algorithms or deterministically by algorithms with super-polynomial (eg exponential, factorial) 
time complexity -  i.e. C(N) > Pk(N) for any k, and, typically, C(N)≥ekN.  The relevance of the 
exponential term in rendering the exact solution of problems with even small N (30-100 
variables) impractical for state of the art computational devices is well covered in standard 
references [eg Garey and Johnson, 1983; Papadimitriou, 1994].  NP-hardness (for 
optimization problems; NP-completeness for decision problems) is  the key signature of 
intractability of a problem, as a problem solver will predictably run out of time when trying to 
solve it via a deterministic algorithm that exhaustively searches its solution space. Because of 
this, intractability is sometimes held to entail practical unsolvability [Rivkin, 2000]. But, as we 
shall see, intractability need not entail unsolvability: many intractable problems will yield to 
approximation and randomization-based search procedures which can provide ‘good 
enough’ solutions which, moreover, can be monotonically improved through additional 
computation. 

The algorithmic study of the ways in which strategic managers solve problems entails 
(Figure 1) the articulation of well-defined, well-structured (WDWS) problems that represent 
the predicaments faced by the firm’s managers and the encoding of these problems via a set 
of canonical problem statements (decision or optimization problems) whose complexity can 
be measured. We can thereby classify them as easy, hard or intractable and study of the ways 
in which strategic managers and firms go about solving them by comparing the managers’ 
problem solving processes with ‘optimal’ or ‘quasi-optimal’ algorithms that have been 
designed to solve canonical problems in various complexity regimes.  
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Problems

Well 
Defined

Ill Defined
(No well defined 
current, desired 
state, search space)

Well 
Structured

Ill Structured (wicked)
(Search space defined 
but changes as a 
function of  search 
process

Easy 
(Linear or 
constant)

Hard 
(nonlinear)

Tractable
(P hard)

Intractable 
(NP hard/complete)

 

Figure 1: Business Problems: A Map 

 

Figure 2 represents the modeling operation by which problems of strategic managers 
are encoded as canonical problems whose time complexity can be estimated. P hard 
problems encode both ‘easy’ and ‘hard’ problems that are nonetheless tractable as a 
canonical set of problem statements  such as linear optimization, searching, sorting and 
ranking of options, pattern matching. Appendix I presents a canonical ‘library’ of P-hard 
problems useful for the study of strategy because their solution algorithms can be used to 
encode a large number of production tasks that a strategic manager or management team 
undertakes. 

 NP hard (complete) problems encode intractable problems, whose complexity 
grows exponentially or super-exponentially as a function of the number of variables in the 
problem statement. They include problems of finding the equilibria of competitive games, 
designing strategic products or solutions with lumpy constraints and optimizing the network 
flow of information, trust, matter and money. Appendix II presents a library of canonical 
NP-hard/NP-complete problems that encode another large class of problems of strategic 
management. The Appendices are summarized in Table 1. 
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WDWS 
Problems

Recognizing Options

Super-
Polynomial Time 
Complexity
NP)

Polynomial 
Time 
Complexity (P)

Optimizing own
network position

Easy 
(Constant or
Linear 
Complexity)

Hard (Super-
linear 
Complexity)

Tractable

Intractable 

Sorting Options

Ranking Options

Pattern / Trend
Recognition

Linear Optimization:
Pricing, inventory,
Cash flows

Optimizing network 
information flow

Designing sets of  linked 
activity systems for 
optimal performance

Discovering Nash 
Equilibrium strategy sets

Inductive, deductive, 
abductive inference

 

Figure 2: Using Algorithmic Complexity Classes to Map the Problems of Business 

 

Canonical 
Problem 

Problem Statement Complexity 
Class 

Examples of Managerial Problems 
It Encodes 

Correlation Calculate correlation 
between two vectors (e.g. 
time series) 

P Reasoning by analogy: Find 
situation/object with characteristics 
most similar to current one 

SORT Order a random list 
according to a criteria 

P Rank a set of alternatives in terms of 
payoffs, desirability/utility 

K-SAT Given a set of elementary 
propositions, determine 
whether or not they 
satisfy a set of clauses 

NP Predict evolution of densely 
connected value-linked activity chain, 
modify a contractual agreement in a 
self consistent fashion. 
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Canonical 
Problem 

Problem Statement Complexity 
Class 

Examples of Managerial Problems 
It Encodes 

TSP  

(Travelling 
Salesman 
Problem) 

Find minimum distance 
path connecting N 
locations 

NP Optimize workflow on assembly line, 
optimize information flow in network 

KSP 

(Knapsack 
Problem) 

Find optimal subset of 
objects of known value 
and volume that fit into a 
finite volume bag 

NP Find optimal set of product features 
of fixed cost that will maximize profit 

CLIQUE Determine whether or not 
a graph G has a clique of 
size K 

NP Find strategic equilibrium of a 
complexity game that has a given 
minimum payoffs; find specific cliques 
in a organizational or inter-
organizational network. 

COVER Find minimal set of 
subsets of S whose union 
covers S 

NP Find the optimal set of predictors for 
the values of a variable {Y} 

MIN 
VERTEX 
COVER 

Find minimal set of 
vertices in a graph that 
span all of its edges 

NP Network search problems: find 
maximally connected set of 
organizations or individuals in a 
network.  

 

Table 1: Canonical Problems of Known Time Complexity (Columns 1,2) and  the 
Problems of Strategic Management That They Can Be Used to Encode (Column 4). 
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Canonical problem statements provide a toolkit for analyzing not only the substantive 
problems of business strategy (selection of the optimal activity set, large scale optimization 
of cost structure via operational optimization, strategic product and platform design choice 
of partners in a strategic network in order to maximize network advantage, the strategic 
design of contractual arrangements by the construction of a set of clauses that map states of 
the world and actions of the contractants onto payoffs via jointly agreeable mapping 
functions) , but also the fundamental modes of thinking of strategic managers as they tackle the 
problems of their business [Moldoveanu, 2011]. These include ‘one-off, frugal’ heuristics 
such as the recognition heuristic and one-reason decision making (Figure 3a), as well as more 
complicated and systematic  patterns of thought such as regression-based learning (EXACT 
COVER), inductive (COVER), deductive (K-SAT), and abductive (KSAT, COVER) (Figure 
3b). The resulting map is as much a canonical map of the problems of strategy as it is a 
mapping of strategic managers’ modes of thinking through the problems of strategy (Figure 3b). 
One of the advantages of the canonical approach to describing strategic thinking qua 
computation is the availability of a common language for describing both the products and the 
processes of managerial thinking.  

Implications for Strategic Managers’ Cognitive Simplification of Problems. The important point 
is that the basic patterns of inference that managers would need to use to make optimal 
inferences (the best explanation from among a number of explanations all supported to 
some extent by the available data set (abduction); the best inference to a set of rules or 
regularities that most parsimoniously explain a data set (induction); self-consistently adding 
an explanatory axiom or assumption to a set of axioms in a model  (deduction)) can itself be 
understood as solving an intractable (NP hard) problem. Informational restrictions on problem 
statements [Denrell, 2007; Denrell and March, 2001] and cognitive frames and metaphors 
meant to provide simplifications of such inference problems can be understood as 
simplifications of the computational task of solving the full inference problem (deductive, 
inductive, abductive) which is unsolvable for high numbers of independent variables, 
especially when the problem is in the NP (intractable) complexity class). The implication of 
this mapping for strategic problem solving research is that the use by strategic managers of 
simplifications and informational restrictions is doubly contingent: it will vary both with the 
number of variables in the problem statement (N) and with the computational complexity of 
the problem (P, NP).  
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Heuristic or 
Algorithm

Upper-bound on 
Computational 
Complexity

Complexity Class Relative Frequency of  
Utilization (predicted 
and/or estimated)

Availability heuristic MN2 P Presumed High

Representativeness 
Heuristic

MN2 P Presumed High

Recognition Heuristic M P High

Minimalist Heuristic M(N+1) P Medium

Dawes’ Rule N(2M-1)+M P Low→Medium

Franklin’s Rule N(2M-1)+M P Low→Medium

 

 

Figure 3a: The Computational Complexity and Complexity Class Partitioning of 
Commonly Used Heuristics for Making Inferences About M Entities, Using N 
Available Cues That Offer Discrimination Value Between Any Two of the M Entities. 

 

Mode of  Thinking Algorithmic Model Time Complexity / Class

Analogical Correlation Super Quadratic (P)

Deductive Satisfiability Exponential (NP)

Linear Regression Set Cover Exponential (NP)

Inductive Set Cover Exponential (NP)

Abductive 3 Sat, Cover, Exact Cover Exponential (NP)

 

Figure 3b: Encoding of Systematic Modes of Managerial Thinking in Canonical 
Forms. 
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4.  Algorithmics for Hard Business Problems: Dynamic Search Capability as Strategic Ingenuity and 
Degrees of Rationality. The decomposition of the ‘hard problems of strategy’ that emerges via 
encoding strategy problems by intractable (NP hard optimization problems and NP 
complete decision problems) canonical problems suggests that many – and perhaps most – 
problems of business strategy are intractable. One can make sense of this result in several 
ways. One approach [Rivkin, 2000] is to postulate that strategic problems that can be 
accurately modeled by intractable canonical problems are only very rarely solved in real time by 
managers or teams of managers. The NP-hardness of the problem of predicting the 
evolution of a NK network that models value-linked activity chains, for instance, is held to 
entail that complexity is hard to either imitate or replicate, and that it can be a source of local 
competitive advantage because of the difficulty of replicating it. Another approach 
[Moldoveanu, 2009] is to posit that NP-hard problems are systematically avoided by strategic 
managers in practice by a mechanism of ‘lexicographic preferences over complexity classes’ 
of problems: Strategic managers prefer to solve P hard problems rather than NP hard 
problems, even if the cost of solving the two problems is equal, which can occur for low N 
(for instance: for N=4, 2N<N3) and will, accordingly, restrict their attention span to variables 
that they need to solve P hard and not NP hard problems (Figure 4). They will, accordingly, 
encode unstructured situations and difficulties (‘predicaments’) via problem statements drawn 
from the P class, and avoid using NP class problem statements to turn their predicaments 
into WDWS problems.  

Manager’s 
Mind

Competitor’s 
product offerings

• Topology of firm’s 
network

• Competitor’s 
factor costs

• Competitor’s 
conjectures about 
focal firm

• Industry demand 
conditions

• Own factor costs

Variables that manager does 
not pay attention to…

Variables that manager 
attends to…

• Determine optimal 
network strategy 
(NP)

• Determine set of un-
dominated strategies 
(NP)

•Optimize inventory 
(P)
•Find most informative 
precedent for current 
situation (P)

…which would matter if 
manager solves

…to solve
 

Figure 4: Synthesis of “Inattentional Blindness” in Strategic Managers Induced by 
Lexicographic Choices of Problem. 
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However, it is also possible that strategic managers and firms formulate and 
sometimes successfully solve NP- hard optimization and NP-complete decision problems by 
adaptive approximations. Strategic managers tackle hard design problems (finding the optimal 
set of features  of a product, subject to lumpy cost and multiple compatibility constraints), 
craft  complex contractual arrangements (articulating the optimal set of internally consistent 
clauses compatible with a set of external constraints and expectations), perform root cause 
analyses of challenges and difficulties (finding the minimal network of propositions or 
hypotheses that best explain a set of data) and attempt to find specific subsets of Nash 
Equilibria of pricing and pre-commitment games their firms engage in. They need not do so 
by engaging in brute force searches that exhaustively plough through solution spaces. 
‘Randomization’, ‘satisficing’ and ‘muddling through’ have for a long time been recognized 
as hallmarks of organizational problem solving [March and Simon, 1958; Simon, 1991].  But, 
this classical picture of satisficing and randomizing can and should be substantively refined in view of 
the various adaptations to complexity that computational complexity theory contributes. I show that less-
than-exhaustive approaches to solving intractable problems are characterized by varying 
levels of ingenuity, which I distinguish from organizational intelligence as follows: whereas 
organizational intelligence relates to the sheer level of computational work (as in the intensity 
of search) that an organization can coherently organize and marshal towards solving a given 
problem, the ingenuity of the organization relates to the stock of alternative search 
procedures (algorithms and meta algorithms) that can radically enhance the speed of the 
search process over that achieved by exhaustive search and the desirability of the solution it 
produces relative to that produced by blind randomization or other non-adaptive satisficing 
manoeuvres. 

 The Motivational Examples, Revisited. Let us re-examine the examples introduced earlier 
through the lens of the proactive management of and adaptation to computational 
complexity. 

Example 1: Google, Inc.  The problem of computing a measure of the relevance or 
salience of every one of up to 1 x 109  www pages is computationally hard on any of the 
measures of ‘centrality’ (in-degree betweenness, in-degree Bonacic) that could function as 
plausible proxies, and which would have involved enumerating all or most of the 
permutations and combinations of web pages. Moreover, this problem would need to be 
solved at least once a day by any search engine claiming to provide an ‘ordering’ of the web 
pages that provides a timely input to an interested user.  Page [2001] created a special 
centrality measure (‘Google’ centrality) that ranked the number of times a web page was 
cited by any of up to k web pages relative to the number of times these pages cited other pages 
and weighted by the centrality measure of the pages that cited the original page, and thereby 
created a highly sparse 109x109 matrix that could be inverted (an order of 1018) operations, 
executable within a day by a set of linked, parallel computational devices – a patent worth 
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over $300MM in options on Google shares to Stanford University after  Google’s IPO in 
2004. The key to the success of the search engine is the special adaptation to complexity that 
it affords to one who wishes to compute centrality measures for the nodes of a very large 
network in a short period of time. 

Example 2. Cisco Systems, Inc.’s ‘production function’ can be represented by a 
massive collection of COVER problems (see Appendix 2) representing the set of logical 
consistency checks needed to maintain inter-operability and logical consistency among many 
different networking and communication protocols. COVER is NP hard, but the solution 
procedure can be broken up into an enumeration step – whereby all possible combinations of 
the basic elements (standard specs, for instance) are laid out, and an evaluation step, whereby 
each of the solutions is evaluated for consistency. Cisco’s targeted growth-through-
acquisition strategy capitalized on the fact that both steps can be parallelized, which means 
that the generation and partial verification of solutions is provided by the market (fuelled by 
the high powered incentives provided by venture-backed firms). More generally, in the 
context of an industry with high network externalities in which generation of solutions that 
‘fit’ is computationally intractable, a growth through acquisition strategy is coherent with the 
insight that the problem of verifying the solution to an NP-hard problem is only P-hard 
[Papadimitriou, 1994].  

Example 3. The problem of detecting tampering in a large number of derivatives that 
have been constructed from a large collection of mortgages that fall into many different risk 
classes is computationally equivalent to that of identifying dense sub-graphs of a large bi-
partite network [Arora et al, 2010], which is NP-hard. To a buyer that either does not have 
the computational resources to find the solution to the detection problem but understands 
that the problem exists, the problem will be unsolvable, and the buyer will rationally choose 
to stay out of the market, as Akerlof ‘market for lemons’ model predicts. If the prospective 
buyer does not understand the computational structure of the detection problem, the 
problem is non-existent. However, a buyer that is armed with a P-hard approximation 
algorithm [as can be found in Charikar, 2000] for the detection of the dense subgraphs in a 
network that gives a performance guarantee (it will not overestimate or underestimate by 
more than a factor of 2, or of 1.x) there arises the possibility of investigating a pool of 
derivatives with respect to the degree to which they have been tampered with, and thereby 
rejecting the ‘lemons’ on the basis of a due diligence process that does not overwhelm 
computational resources.  

These cases highlight the importance of a structural (Cisco)or functional (Google) 
adaptation to computational complexity. They point to the extent to which ingenuity – or, 
the complexity-adaptive deployment of intelligent computation  – can make a very large 
difference both to strategic choice and ensuing dynamics. An algorithmic and 
computationally informed study of strategic problem solving offers additional ‘resolving 



 

Page | 19  
 

power’ above and beyond the classical ‘satisficing-optimizing’ distinctions inherited from the 
Carnegie School (Figure 5). Strategic managers faced with computationally intractable 
problems have traditionally been deemed boundedly rational to greater or lesser degrees 
depending on whether their solution search procedures are more characteristic of satisficing 
approaches (random guessing, one reason or one criterion decision making) or optimizing 
(commonly assumed to consist of exhaustive searches among possible solutions – including 
multiple optima in the case of optimization problems and choosable options in the case of 
decision problems). However, as the examples above highlight, strategic managers can also 
function as ‘meta-optimizers’ who seek  procedures for solving computationally hard problems 
that are optimal given the structure and the complexity of the problem and the time and resource constraints 
available for solving it –i.e ‘adaptively optima;’.  

Is there a Silver Bullet Among Intractable Problem Solving Procedures? It is tempting to ask: is 
there a problem solving procedure that ‘beats out’ all others on any given problem?  A 
powerful result from the theory of search [Wolpert, 2001] suggests that the adaptation of 
problem solving procedures (algorithms) to the structure of the problem faced is a required 
pre-condition for successful adaptation: Wolpert proves that no single algorithm or family of 
algorithm can statistically or deterministically dominate any other algorithm against any hard 
problem. Thus, ‘meta-rationality’ – as an adaptation to complexity – is grounded in the 
insight of the strategic manager into the computational complexity and structure of the 
problem under consideration and the range of problem solving procedures that strategist and 
organization can devise and implement.  

 

Figure 5: Illustrating Degrees of Computational Intelligence and Exploratory 
Ingenuity in Strategic Problem Solving. 
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Strategic Ingenuity: Intelligent Adaptations to Complexity. The study of strategic problem 
solving stands to learn a lot from feats of NP-hard problem solving (Figure 6) such as that 
involved in solving a 4663 city TSP - wherein brute force would require C(4663-TSP)~  5 x 
10¹⁴⁰³ calculations, which would take 1.6 x 10¹³⁸³ years on a state of the art machine -  in 
about 6.9 minutes on a non-state-of-the-art Pentium-powered PC via a local neighborhood 
search algorithm devised by Lin and Kernighan [1973]: The degree to which a problem is 
‘solvable’ within the available resource limitation of the problem solver depends on (a) the 
structure of the problem and (b) the nature of the solution search procedure. The Lin-
Kernighan ‘local neighborhood search’ heuristic was used to produce a reduction of 101384 in 
the time required to find the shortest path linking the 4663 cities. 

Problem: 
“Find minimum-length 
tour connecting Canada’s 
4663 cities”

Solution:

 

Figure 6. A TSP Problem Search Space for Canada’s 4663 Cities and Solution to the 
Problem Using Lin Kernighan Local Search Heuristic 
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The examples above suggest that one should look carefully for a systematic way to 
study ‘good enough’ solution procedures for hard problems ( ‘ingenuity’) – as well as to 
precisely characterize ‘good-enough-ness’ on a problem-specific basis - and that is what the 
field of ‘algorithmics for hard problems’ [Hromkovic, 2003; Michalewicz and Fogel, 2004] 
provides. I examine families of algorithms and algorithm design techniques (‘meta-
algorithms’) for solving intractable problems, and show how the judicious deployment of 
such techniques can form the basis of both ‘adaptive strategy-making’ and of a new measure 
of adaptive advantage. 

 Table 1 provides a road map to this project: Faced with a difficult (intractable) 
problem, strategic managers can engage in a full, exhaustive search of the space of solutions 
(which may exceed the computational and operational limits of the strategist and the firm);  
they can engage the kind of blind, random guessing at a solution that  characterizes 
‘muddling through’; or they can use complexity-adaptive search methods which involve 
intelligent approximation and randomization to arrive at a good enough solution most of the 
time. In order for a model to add value to a research enterprise, this approach should allow 
researchers to make new and more precise distinctions that can be linked to measurable 
properties of the process and outcome of strategic search. Table 2 summarizes the ways in 
which intelligent approximation and randomization procedures for solving intractable 
problems can be distinguished at the levels of process and outcome from blind 
randomization - ‘just guessing’ and ‘muddling through’, as elaborated below. 

Algorithmic or 
Meta-Algorithmic 
Procedure for 
Solving 
Computationally  
Hard Problem 

 

 

How it Differs from Blind Search and Random Guessing at the Level of 
Process and Outcome Pattern 

 

Branch and Bound 

(Strategic Solution) Process: rapid, tree-structured  generation and evaluation of trial 
strategic  solutions and elimination of under-performing families of solutions; 

 

Outcome (performance) Pattern: lower number of trial solutions, lower probability of 
competency traps (local optima), faster convergence to global optimum. 

 

Divide and Conquer 

(Strategic Solution) Process: early partitioning of strategic solution search space into more 
easily searchable sub-spaces,  parallelization of the search effort; 

Outcome (performance) Pattern: lower number of trial solutions (local optima), ower 
probability of getting caught in local optima, faster convergence to global optima. 
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Algorithmic or 
Meta-Algorithmic 
Procedure for 
Solving 
Computationally  
Hard Problem 

 

 

How it Differs from Blind Search and Random Guessing at the Level of 
Process and Outcome Pattern 

 

Local Neighborhood 
Search 

(Strategic Solution) Process: early iterative modification of a promising trial strategic 
solution and evaluation of modified variants vis a vis first guess and subsequent 
modifications, continued iterative search around local optima; 

Outcome (performance) Pattern: clustering of intermediate solutions around a local subset 
of the solution search space; lower spread of the local optima to which solution procedure 
converges; lower probability of settling into local optimum; faster rate of convergence to 
global optimum. 

 

Stochastic Hill 
Climbing 

(Strategic Solution) Process: early generation of multiple starting points and trial solutions 
for the strategic search process, frequent evaluation of solutions vis a vis one another and vis 
a vis solution criteria; 

Outcome (Performance) Pattern: lower probability of getting caught in local optima, higher 
probability of escaping local optima and finding global optimum, faster convergence to global 
optima. 

 

Genetic/ 

Evolutionary Search 

(Strategic Solution) Process: early and parallel generation of components of global solution, 
frequent alteration and recombination of candidate components into multiple candidate 
solutions, frequent evaluation of overall solutions vis a vis one another; 

Outcome (Performance) Pattern: fast generation and elimination of many local optima, 
lower probability of settling on any one local optimum, slow(er) convergence to a global 
optimum. 

 

Relaxation to Linear 
Optimization 

(Strategic Solution) Process: smoothing of integer or lumpy constraints, followed by global 
search of smoothed solution search space; 

Outcome (Performance) Pattern: very low probability of finding or settling in local optima, 
very fast convergence to (sometimes sub-optimal) ‘almost-global’ optimum. 

 

Table 2: Illustrating How Strategic Solution Search Procedures Adaptive to Difficult 
Problems  
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Branch and Bound (BB) techniques rely on a partitioning of the solution search space 
via a tree whose nodes represent decisions among different elements of a solution, 
calculating bounds on the performance of a solution that arises from different branches of 
the tree, and deleting from the search space branches likely to result in a sub-optimal 
solution. The key feature of a good tree structure for BB methods is that it is ‘prunable’: 
estimates of performance bounds for different branches are calculated in advance, to lower 
the chances that an optimum be ‘missed’ by the resulting search. A search tree for solutions 
to a 4-variable MAX SAT problem is shown in Figure 7a. If the MAX SAT problem is the 
same as that in the Appendix II, wherein F=(X1^~X2^X4)&( X1^~X2^~X3), then, the BB 
meta-algorithm will classify the various paths through the search tree and save by searching 
only part of  the entire search space (Figure 7b). 
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Figure 7a: Branch and Bound-Ready Decomposition of  Four Variable Search Space 
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for SAT Problem (X1^~X2^X3)&(X1^~X2^~X4). 

 

For the six-city TSP problem of Figure 14, a BB-suitable tree search can be built on 
the basis of whether or not a path contains a particular segment connecting two cities. The first node of 
the tree creates two ‘buckets’ of possible routes: one containing routes containing AB and 
one containing routes that do not. Subsequent nodes of the tree (there will be N(N-1)/2 
nodes for an N city tree in total) provide finer-grained partitioning of the space of possible 
paths. The key to reducing the time complexity of the search is a tight characterization of the 
best case performance that one can expect from any given sub-tree: Each bifurcation of the tree 
cuts the number of total search operations required by 50 per cent. Therefore, there is a 
premium on making estimates that trade off optimally between tightness and precocity of 
choice.  

 BB methods can be used to quickly narrow the search space in problems of strategy 
choice that have runaway computational complexity. In a simultaneous move oligopolistic 
competition game with 4 competitors, each of whom has 6 strategies at her disposal, the 
search space for combinations of strategies has 1296 distinct outcomes (64). A BB method 
can quickly narrow this space by 50% by eliminating combinations of strategies that include 
a ‘low cost’ product or service offering on the basis of examining the worst case scenario (a 
price war) that is likely to be triggered by this choice. Each step of eliminating combinations 
of strategies that contain an undesired component will trigger a similar contraction of the 
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search space. BB is thus a form of ‘elimination by aspects’ of undesirable alternatives 
[Tversky, 1972] which relies on a structured partitioning of the search space, and quick 
calculation of the extremal values of the payoff landscape along different branches (i.e. based 
on a ‘quick look-forward’ by the problem solver). 

How it differs from blind random search. A complexity-aware strategic management team 
using BB to sequentially narrow the space of possible solutions  - ‘options’, ‘strategies’ - will 
produce periodic  estimates of the merits of the various branches of the tree and iteratively 
eliminate the dominated branches. Its processes will differ from those used by a team that 
guesses blindly by (1) the structuration of the search space as a tree of mutually exclusive, 
collectively exhaustive (MECE) components of the possible solutions, and (b) the quick 
evaluation of families of solutions corresponding to certain roots of the tree, and (c) the 
quick elimination of dominated families of solutions. The performance of BB methods 
against many intractable problems suggests that BB approaches to strategic search should 
correlate with results that dominate blind, random guessing by producing a lower number of 
local optima (‘competency traps’) and a higher rate of convergence to the globally optimal 
solution.   

Divide and Conquer (DC) methods relate to (a) partitioning the problem search space 
into smaller search spaces (‘sub-problems’) that can be more easily searched, and (b) piecing 
together the separate solutions to the smaller problems to form (possibly sub-optimal, but 
still superior) solutions to the larger, intractable, problem. For instance: he set of all possible 
subsets of a set of features of a product can be divided up into subsets-of-subsets of features 
that can be searched independently by several different individuals or teams working in 
parallel.  DC methods offer no guarantee that the concatenation of solutions to smaller sub-
problems will in general be an optimal or even feasible solution to the bigger problem: the 
concatenation of the minimal paths connecting two sets of N/2 cities will not be the 
minimal path connecting the full set of N cities. Organizations tackling problems that have 
the algorithmic structure of TSP will generally not benefit from parallelization and 
decentralization of the search effort to the same degree that organizations which tackle 
problems which can be so decomposed - such as subset-search problems like COVER. 

DC can be used to achieve both parallelization (DC-P) and/or  randomization (DC-
R) of the search process. DC-P can be used by a top management team to assign different 
sub-problems to different individuals or groups, based on their expertise, marginal 
incentives, such that individual team members or sub-groups can function as individual 
problem solvers in a way that enhances the functioning of the team as a whole as a group 
problem solver. DC-R can be used as an intelligent random search procedure, wherein the 
time complexity saving in the overall problem will be commensurate with the tightness of 
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the estimate of the optimal performance solution that can be expected from each sub-group, 
but will also allow for the possibility that some bounds are either not tight or not correct.  

How it differs from blind random search.  Unlike a strategic team that guesses blindly, a 
complexity-aware strategic management team using DC search methods will engage in early 
partitioning of the solution search space and the parallelization of the solution search effort. 
It will also maintain tight coordination (and synchronization) between the parallel sub-space 
search efforts so as to minimize the probability of unnecessary search.  

The outcomes of a DC-based search process will likely outperform blind guessing-
based search by decreasing the probability of adopting local optima, because only entire 
solutions are considered as viable, and entire solutions can only be the result of 
concatenating all or most of the partial solutions produced by the parallel search groups. The 
decreased probability of adopting a locally optimal solution therefore arises from the fact 
that DC  methods generate fewer local optimum ‘trial solutions’ than do alternative solution 
search methods. 

Local  Neighborhood Search (LNS). The dramatic reduction in the time complexity of 
TSP highlighted in Figure 12  above was accomplished by a procedure for searching the N!- 
size  search space of the TSP using a local search meta-algorithm named after its inventors, 
Lin and Kernighan [Lin and Kernighan, 1973]. The procedure consists of selecting an 
‘almost-complete’ tour of the cities, or a ‘delta path’, which includes all of the cities exactly 
once, except for the last one (e.g.: 1-3-2-5-6-3 for the six city TSP of Figure 6, for instance: 
‘almost complete’ because the last link (return to 1) is missing, and is replaced by a return to 
3), measuring the total distance of the delta-path that had been generated, selectively making 
switches among the edges included in the delta path and edges that are ‘available’ but not 
included, comparing the total distance of the modified circuit with its last version, and 
maintaining the more efficient path. One key to the (exponential) speed-up achieved by this 
heuristic is the strategy by which edges are exchanged, which is (usually) 2 (specifically: 1-
3&3-2 replaced with 1-2&2-3) at a time (entailing a local search space of N(N-3)/2. The 
algorithm allows for the exclusion ‘by inspection’ of many possible combinations of routes: 
for instance, in the 4663 city TSP (Figure 12), one can exclude combinations such as (Toronto 
(Central Canada)-Kelowna (Western Canada)-London (Central Canada) without ‘evaluation’. The 
speedup produced by LS is related to the replacement of the N! search space by a tightly 
coordinated sequence of moves along a trajectory of O(N2)  search problems, and is typical 
of both the architecture and the performance of well-designed local search strategies 
generally.  
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How LNS differs from blind random search. One would expect strategic managers 
engaging in LNS to (a) use intuition and experience to guide the starting point(s) of the 
search to a plausible ‘complete’ solution (a full contingent plan found in  ‘scenario planning’), 
(b) generate small deviations from the initial solution by altering individual components 
thereof, and (c) tightly coordinate the process by which they evaluate the performance of the 
set of ‘perturbed’ solutions to keep track of iterative improvements over the initial solution. 
Other than the exclusion of dominated  solutions, search moves within the local 
neighborhood of a local solution are ‘random’.  A strategic management team, for instance, 
may ‘search’ in the neighborhood of a capacity expansion strategy in an undifferentiated 
oligopoly by looking for combinations of product features and marketing and distribution 
tactics that will sustain margins in the eventuality of a possible p[rice war its expansion will 
trigger. LNS can provide an algorithmically sound explanation for states of ‘frenetic local 
search’ within a strategic management team, which, although seemingly ‘unintelligent’ and 
‘prematurely anchored’ on an initial guess can in fact produce dramatic  reductions in the 
costs of producing solutions to NP hard problems. LNS methods will likely generate local 
optima that are more tightly clustered around a point on the firm’s fitness landscape 
corresponding to the starting point of the search, and a higher rate and probability of 
convergence to the global optimum of the strategic solution search space. 

Randomization Methods (RM): Stochastic Hill Climbing. Randomized algorithms 
[Hromkovic, 2003] have achieved great levels of sophistication and success in the field of 
algorithmics, with good reason: NP stands for Non-Deterministic Polynomial Time (rather 
than Non-Polynomial Time). It points to the fact that intractable problems are solvable by 
non-deterministic algorithms (or, ‘Turing Machines’) in polynomial time. It is not, then, 
surprising that intelligent randomization yields significant improvements in complex 
problem solving performance. A randomized algorithm (as opposed to a  process of ‘blindly 
guessing’)  is a structured and  informed guessing strategy, aimed at maximizing the probability of 
arriving at a good enough solution in a given number of steps. The difficulty of searching the 
solution spaces of most ‘hard problems’ is the vast number of ‘local minima’ that 
incremental procedures (‘local hill climbing’, or incremental improvement strategies) can get 
trapped into [Rivkin, 2000; Levinthal and Ghemawat, 1999]. Stochastic hill climbing 
methods (SHC) [Michalewicz and Fogel, 2004] ease limited search processes from the 
constraints of local optima by probabilistically causing the searcher to ‘jump’ to different 
regions of the search space and thus to perform large numbers of bounded local searches. 
Simulated annealing algorithms generalize stochastic hill climbing methods by specifying various 
temperature level gradients of the search process: temperature denotes ‘mean kinetic energy’ of a 
state of particles assembled in a macro-state (e.g. liquid), and the temperature of a search process 
increases with the probability that the process will jump away from the local search it is 
currently performing within a certain time window. Strategic managers using stochastic hill 
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climbing-type solution procedures can ‘heat’ or ‘cool’ their adaptive search process 
depending on the problem solver’s estimate of the number of local optima entailed by the 
problem statement or, adaptively, as a function of the results of the ongoing set of local 
searches. Adaptive search procedures of this sort will exhibit jumps from one region of the 
search space to another whose frequency and probability of occurrence depends on the 
results that immediately precedent sub-space searches have produced.  

Intelligent randomization provides one explanation of how organizations solve 
problems that map into technically intractable canonical problem statements by arriving at 
good enough solutions in a number of steps that does not overwhelm the ability of the 
organization to calculate and execute. A well known model of organizational structure, 
dynamics and performance represents the organization as a set of  N elementary activities 
that are in either ‘on’ (1) or ‘off’ (0) states. The performance of the organization (its ‘fitness 
function’) is a real valued function of all of the possible sets of activities that the organization 
jointly engages in. Subsets of activities are more or less tightly coupled, and the degree of 
inter-dependence of these activities is represented by a natural number k, representing the 
number of activities to which each activity is coupled. The resulting NK model has been 
used repeatedly [Levinthal and Warglien, 1997;  McKelvey, 1999; Rivkin, 2000; Lenox, 
Rockart and Lewin, 2006] to examine the dependence of a firm’s performance on the 
structure and topology of its activity sets. To a firm that aims to strategically choose the set 
of activities that it pursues, the problem of choosing the set of activities that optimizes its 
performance (the real valued fitness function) has been shown [Weinberger, 1991] to be 
computationally equivalent to the well-known intractable (NP-complete) kSAT problem for 
k>1. That problem takes as an input a set of N variables and a set of M Boolean expressions 
containing up to k variables AND, OR, and NOT, and asks for an assignment of the N 
variables to the M  expressions that will make these expressions true (i.e. will ‘satisfy’ them, 
hence the name of the problem. The Nk strategic decision problem (‘Is there a fitness 
function of the N activities, each mutually coupled to k others with value greater than V?’) 
maps into the kSAT  problem (‘Is there a set of variables whose aggregate satisfiability score 
is at least N when plugged into a set of M k-variable formulas?’) trivially for M=N, and with 
padding of the search space for M>N and M<N [Weinberger, 1996]. Based on this result, 
Rivkin [2000] argued that the intractability of the Nk decision problem (derived from the 
intractability of the kSAT problem for k>1) can make complex strategies (characterized by 
the patterning of many, densely linked activities) difficult to imitate.  

However, the complexity of solving the kSAT problem  yields to searches of the 
solution space that are based on randomly permuting both the sets of initial variables and the 
assignment of truth values to variables within a formula [Schoening, 2002; Brueggermann 
and Kern, 2004; Ghosh and Misra, 2009]. These approaches achieve a worst-case complexity 
of solving the 3SAT problem of (1.d)N (where d is a natural number following the decimal 
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point) instead of 2N, which, even for very large values of N can produce a massive decrease 
in the complexity of the 3SAT problem. See Table 3: a factor of 1020 reduction in the 
complexity of solving the 3SAT problem for N=100 is achieved by a random walk based 
algorithm, transforming a problem that it unsolvable on any computational device or 
combination thereof to one that is trivially solvable on most computational devices today, 
and suggesting that a realistic Nk problem (with N=100, k=3) can be solved by an 
organization (or a strategic manager) that pursues a structured randomization strategy.  

N 
Exhaustive Search Complexity 
2N, Total Number of Operations. 

Random Walk Based Search 
Complexity 1.334N, Total Number of 
Operations. 

1 2 1.3334 

2 4 1.7796 

3 8 2.3707 

4 16 3.1611 

10 1,048 17.7666 

20  1,048,576 315.6523 

100 1.27 x 1030 3.16 x 109 

 

Table 3: Comparison of Computational Complexity of Solving 3SAT Problem Using 
Deterministic Exhaustive Search (Column 2) Versus a Set of Rapid Random Walks 
(Column 3) As a Function of the Number of Variables (Column 1). 

 

 How SHC differs from blind random search. SHC-guided search for strategic solutions 
embodies one of the key advantages that intelligent, complexity-aware randomization has 
over blind randomization: it forces the solver to abandon local optima as part of the search 
protocol. Processes guided by SHC will likely exhibit the quick and possibly parallel 
exploration of multiple candidate solutions, and rapid jumps of the problem solving process 
from one candidate solution to another. The search protocol is less likely to converge to a 
dominated local optimum than an alternative based on blind guessing because it embodies 
stopping rules for searching around local optima; and will exhibit higher probabilities of 
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converging to a global optimum, because of the lesser likelihood of getting trapped in local 
optima, and the greater coverage of the full solution search space. 

Genetic (or, evolutionary) algorithms (GA) combine the insight that randomization can 
induce (probabilistically speaking) speedup of search with a structured approach to the 
solution generation process inspired from evolutionary biology [Baeck, 1996]. Primitive, 
random candidate solutions or ‘partial solutions’ (which could, for instance, be delta paths in 
a Lin Kernighan representation of TSP) are perturbed (‘mutation’) and combined (‘sexual 
reproduction’) to produce new candidate solutions that are then selected on the basis of the 
quality of the solution that they encode [Fogel, 1995]. Mutation rate, selection pressure and 
recombination intensity are all parameters under the control of the problem solver. 
Exponential speedup of convergence to the shortest route has been reported for the TSP 
[Wang, Zhang and Li, 2007], which arises both from the parallelization of the randomization 
operator across members of a population of candidate solutions (‘mutation’, 
‘recombination’) and from the iterative application of the selection operator which operates 
at the level of the entire population. 

How GA differs from Blind Random Search. Strategic solution processes patterned by GA 
type procedures will differ from blind random search with regard to the process by which 
candidate solutions are generated: fast generation of many bits and pieces of a solution 
(‘chromosomes’) followed by recombination of the candidate solutions and the 
concatenation of the randomly generated and recombined solution segments into candidate 
solutions will be followed by the rapid elimination of clearly inferior solutions. At the level 
of outcomes, GA methods provide fast coverage of the solution search space, and, 
accordingly, lower probability of choosing a dominated solution (a local optimum); along 
with faster convergence to the overall global optimum. Unlike the case of SHC, however, 
where local optima are filtered away because the search process is more likely to escape from 
them, or the case of LNS, where local optima are filtered out because the search process is 
less likely to generate them, in the case of GA, the reduction of incidences of falling into 
local optima is due to the fact that local optima are less likely to be chosen as candidate 
solution, because of the inherent competition among local optima that the approach 
generates. 

Relaxation to Linear Optimization. (RLO) Informed guessing (and updating of the 
solution search space accordingly) is not the only approach that organizations can take to 
solving the problems arising from an N-k model of their own activity sets. They can also re-
frame the decision problem into an optimization problem that is approximable by algorithms 
that have well behaved complexity bounds. In other words, given a problem they cannot 
solve, they can re-formulate as a closely related problem that they can solve. A strategic 
manager can re-frame the Nk decision problem from that of deciding whether or not the 
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configuration of activities the firm is or could be pursuing is maximal, to that of maximizing 
the total ‘fitness score’ of the set of activities it is or could be pursuing. The resulting 
problem maps into the well known MAX SAT optimization problem: ‘given a set of k-
variable clauses and a set of N variables that figure into these clauses, maximize the number 
of satisfies clauses over all of the possible ways of assigning variables to clauses.’ Asano and 
Williamson [2002] show that an approximation algorithm which takes as an input a linear-
programming equivalent of the integer  programming problem MAX 3SAT can achieve 
performance guarantees of close to 0.85 of the global maximum in polynomial-time (i.e. in 
the ‘tractable’ regime). Mapping back to our N-k optimization problem: if the organization 
(a) re-frames the N-k decision problem into an N-k optimization problem (finding the 
optimal configuration of activities, as opposed to determining whether or not there exists an 
activity set that will generate a pre-determined utopia point – which may in any case be more 
realistic), (b) approximates the problem statement by an associated linear programming 
problem (allowing for performance figures of clauses to take on values between 0 and 1, and 
not just ether 0 or 1), (c) solves the resulting (tractable) problem and then (d) adjusts the 
resulting solution to reflect the constraints imposed by its real activity sets, then it can 
achieve – by only solving a tractable problem – performance results that are guaranteed to be 
within 15 per cent (1-0.85) of the global optimum. Randomization and approximation can 
render intractable problems into practically solvable ones, provided that (a) randomization is 
pursued intelligently and in a way that informed by the structure of the problem, and (b) that 
the organization can adjust its goals from achieving the global maximum with no margin for 
error to achieving a global maximum within some tolerance. This is not an argument that 
complexity cannot inhibit imitation or function as a source of competitive advantage, but 
rather that it need not do so, and a computationally savvy imitator can break through the 
intractability barrier of optimizing its activity sets to match or exceed the performance of a 
competitor. It also suggests that there may exist a special set of ‘imitative capabilities’ – 
grounded in randomization and approximation procedures – that allow perennial ‘second 
movers’ to become competent imitators. 

The Knapsack Problem (KSP) [Karp, 1972] (P: “Find the set of utensils of known 
value and volume that can be packed into a knapsack of fixed volume such that the total use 
value of the utensils in the knapsack is maximized”) can be used to model a large number of 
problems of product, solution or service design (P: “find the maximum value set of features 
of known value and  cost that are embodied in a product or service such that the total cost 
does not exceed C”) or the problem of the optimal design of a value-linked activity set 
(P=”find the maximum net value combination of value-linked activities of known value and  
cost”). The difficulty of KSP is known to lie in the fact that it is an integer programming (IP) 
problem, which arises from the lumpiness of the objects in the problem statement: no utensil 
can be sub-divided for inclusion in the knapsack, and any utensil must either be taken or left 
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behind. Were utensils (product features) sub-divisible or only probabilistically inclusible in 
the knapsack, then the IP problem would ‘relax’ to a linear programming (LP) problem of 
maximization of N variables (under 1 constraint: volume), a problem of polynomial time 
complexity. A simplification procedure for KSP, accordingly, comprises (a) relaxing the 
constraint that all numbers of utensils might be integers, (b) solving the associated LP 
problem, (c) rounding the resulting solution to the nearest set of integers, (d) verifying that the 
solution is feasible and (e) repeating (c) (with a different rounding criterion) and (d) until a 
solution is found. RL is applicable to a large number of intractable problems, and 
Hromkovic [2003] gives LP relaxations of other NP hard problems. Strategic managers and 
strategic management teams can implement RL by cutting corners on an associated IP problem: 
By loosening the ‘lumpy’ constraints that are ‘written into’ the problem statement via the “‘0 
or 1’ rule” by either negotiating or cheating strategies. Negotiating (with large clients, for 
instance) the precise definition of technical terms such as ‘99.999 per cent reliability’ (a common 
requirement in telecommunications firms) can turn a hard requirement into a soft one (one 
that can be satisfied with a system that is “99.999 per cent reliable in these conditions). 
Alternatively, one can engage in a form of cheating (by ‘marke-tecting’ rather than 
‘architecting’ a product, service or platform) in a way that promises satisfaction of all 
requirements and constraints but does not deliver on promises that are ex ante believed to be 
difficult to audit by the market. Distortive maneuvers undertaken by firms faced with IP (NP 
hard) problems can, in this case, be seen as adaptive relaxations of the NP hard problem of 
product, platform or activity set design to a P-hard LP problem of constrained linear 
optimization with variables ranging over the real numbers. 

How RLP differs from blind random search. RLP spells out a set of approximation rather 
than randomization search methods. As such, the problem solving process patterned by 
RLP-type algorithms will likely exhibit a significant focus on the precise definition of the 
problem, aimed at iteratively and adaptively relaxing the constraints that render the problem 
intractable (integer constraints, for instance). The quality of the performance outcome will 
depend on the degree to which the global optima to the relaxed problem statement track 
those of the intractable problem. ‘Better’ relaxations of the constraints of integer 
programming problems will provide tighter approximations of the global optima of the 
original problem statement. Because the resulting optimization problem is tractable, the 
probability of getting trapped into local optima is lower, and the rate of convergence to the 
global optimum will be significantly higher than those achieved by alternative methods. 

 

Implications for the Definition and Measurement of Strategic Problem Solving Capabilities. The 
range of intractable problem solving techniques introduced allow us to refine our 
understanding of strategic problem solving by incorporating the dependence of ‘complexity’ 
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and ‘decomposability’ on the structure of a problem and the properties of the solution 
search method:  

Separability and Decomposability Are Contingent on Both Problem Statements and Solution 
Procedures. The use of Branch and Bound methods to solve the TSP suggests that separability 
(or, decomposability [Simon, 1996]) of a problem depends both on structural elements of the 
problem itself (in this case the TSP) and on the approximation method used (in this case, 
Branch and Bound). While the TSP is not decomposable using ‘divide and conquer’ methods 
(the shortest path connecting N cities will in general not be the concatenation of the shortest 
paths connecting k disjoint subsets of N/k cities), it is  decomposable via Branch and Bound 
(or, for that matter, via genetic algorithms that operate on orthogonal sets of cities).  

There Are Many Ways to Decompose a Problem Into Sub-Problems. Solving large scale 
optimization problems by fractionation into sub-problems bring up the well-known credit 
assignment problem [Minsky, 1961; Denrell, Fang and Levinthal, 2004] which requires the 
problem solver to assign ‘partial credit’ to the outcomes of the individual steps (or, sub-
problem solutions) of a many-step sequence of goal-directed actions after learning the 
outcome of the entire process. Denrell et al [2007] posit that the local mental models of the 
problem solver will influence credit assignment by constraining the local optimization 
problem that each agent solves at each step of the process. Through the algorithmic 
perspective, a global model for an intractable problem will comprise both the problem 
statement and the procedure for breaking up the problem into sub-problems, which is supplied 
by the search heuristic used (Divide and Conquer, Branch and Bound, Stochastic Hill 
Climbing, Local Neighborhood Search, Genetic Algorithms), which will then supply 
different local models for the sub-problems to be solved. An LNS based search of the TSP 
search space will produce a very different set of sub-problems (and local mental models) 
than will a BB-based partitioning of the TSP search space. In the first case, the initial guess 
supplies a very large number of hard constraints on the local search. In the latter case, the 
initial partitioning supplies a low number of constraints of (a much simpler) local search.     

5.  Implications for the Definition of Adaptive Advantage and Dynamic search Capabilities. 

 The family of algorithmic and quasi-algorithmic procedures for strategic problem 
solving introduced here allow us to characterize the advantage relating to the firm’s ability to 
adapt in real time to changes in the landscape of its strategic payoffs. It is a form of 
exploratory advantage [March, 1991] that accrues to a firm in virtue of its dynamic search 
capabilities – its ability to deploy its problem solving techniques, routines and procedures to 
solve the problem of optimally mapping organizational actions to predicted payoffs. These 
can be understood as a specific set of dynamic capabilities [Teece and Pisano, 1994; 
Eisenhardt and Martin, 2000] that allow the firm to search the solution spaces of its strategic 
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problems more effectively, efficiently and reliably.  The algorithmic framework allows us to 
operationalize dynamic search capabilities as the strategic ingenuity of a firm by considering 
the net benefit of using a problem solving procedure (an algorithm A, which may be 
deterministic or probabilistic) to a problem (tractable or intractable) to generate a solution 
SA. The time complexity of the algorithm gives us an estimate of the total cost of using it to 
generate SA, i.e. C(A)= c(m) K(SA), where c(m) is the marginal cost of an operation and K(SA) 
is the time complexity (number of operations) of producing the solution using A. The value 
of the solution SA generated by algorithm A,  V(SA), will be different for different kinds of 
algorithms, as follows: 

Deterministic algorithms, exact solutions. V(SA)=V(S) if the algorithm has converged (i.e. 
if m=K(SA)), and 0 otherwise. Since the solution generated by the algorithm is the solution to 
the problem, the value of the solution generated by the algorithm at any step m is the value 
of having solved the problem exactly. Examples include small competitive games (small 
numbers of players and strategies) and low-dimensional induction, abduction or deduction 
tasks; 

Deterministic algorithms, approximate solutions. V(SA)=Fm(||S-SA||), where dF/d()<0: the 
value of the solution generated by the algorithm at any step m will be a decreasing function 
of the distance between the solution produced by the algorithm (the approximation) on the 
mth iteration and the exact solution to the problem. Examples include approximate solutions 
to IP problems using LP relaxation methods; 

Randomized algorithms, exact solutions. V(SA)=G(Prm(S=SA)): the value of SA is 
proportional to the probability that the solution generated on the mth operation of the 
algorithm is the solution to the problem. Examples include stochastic hill climbing 
algorithms and genetic algorithms; 

    Randomized algorithms, approximate solutions. V(SA)=G(Prm(||S=SA||<€),  where 
dG/d()>0: the value of the solution produced by the algorithm at step m will be an increasing 
function of the probability that the solution produced at step m is within a small enough 
distance of the solution to the problem. Examples include stochastic hill climbing, genetic 
algorithms as well as randomized versions of Branch and Bound and Divide and Conquer 
meta-algorithms. 

We can now articulate a measure of the adaptive advantage of a firm over another that is 
general enough to encompass all firm and industry level predicaments of interest (via the 
canonical representation of ‘problems’); specific enough to make predictions of relative 
performance in individual cases; and adaptive to the time constraints that firms constantly 
face when they solve problems. If firms taken in their entirety produce solutions to business 
problems and if their strategy making processes can be understood as the application of the 
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collection of problem solving tools and methodologies at their disposal, then their strategic 
search advantage should track the quality of the solutions they provide.  

To define the quality of a solution-generating process, we focus on three dimensions (the 
accuracy, reliability and efficiency of the problem solving process), and accordingly on the 
following trade-offs: between the accuracy of a solution and the speed with which it can be 
attained (which will depend on the time complexity of the problem solving procedure and 
the marginal cost of individual operations), between the accuracy of a solution and the 
probability of attaining it in a given time window (which measures the reliability of the 
algorithm or meta-algorithm used), and between the reliability of a solution and the speed 
with which it is generated (Figure 8). These frontiers can be pieced together in a three-
dimensional measure of time-bounded competitive advantage (Figure 9), which induces a 
simple ‘ordering’ among firms relative to a particular problem (or, collection of problems): 
“Firm A has a strategic search (adaptive) advantage over Firm B at solving problem PROB  
iff it can produce a more accurate solution to P more quickly and more reliably than can firm 
B.” 
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Figure 8: Illustrating the Concept of “Adaptive Advantage of Firm A over Firm B” 
via Trade-off Frontier Between Accuracy (Validity, Goodness of Fit) and 
Convergence (Speed of Solutions Offered by the Two Firms), and the Concept of 
“Competitive Advantage of Firm A over Firm B” via Trade-off Frontier Between 
Accuracy and Reliability of Solutions. 

 



 

Page | 36  
 

a=Accuracy of solution

B
(a,s,p)

A
(a,s,p)

P=Probability of Convergence

S = Speed of convergence
Competitive Advantage:                  ≥            , ∀a,s,pA

(a,s,p) 
B

(a,s,p)

 

Figure 9: Three-Dimensional Measure of  ‘Adaptive Advantage’. 

 

Functional and Structural Adaptive Advantage Defined. The adaptive search advantage of a firm 
can take both functional (the procedures it uses) and structural (the organizational 
architecture it uses) forms. Strategic managers may choose both among different solution 
procedures for a complex problem, and among different organizational structures for 
implementing the search process [Rivkin and Siggelkow, 2003].  The computational 
approach to strategic problem solving offers a way of parsing the types of strategic search 
advantage that a firm enjoys in distinct categories, relating to both structural and functional 
forms of adaptation: 

Off-line versus on-line problem solving. Strategic managers can attempt to solve strategic 
problems ‘off-line’ – in their minds, or in sessions of strategic deliberation and planning that 
are uncoupled from the operations of the firm. But, a firm as a whole  can be modeled as 
searching the solution space of the problem it is trying to solve, thus engaging in ‘on line’ 
problem solving, and this embodied search process does not require the conscious 
representation of a problem, its search space, or the search of optimal procedures for solving 
it.  A large logistics and distribution business, for instance, is, as a whole, ‘looking for’ the 
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optimum (minimal cost) configuration of flows of goods from one location to another over 
a network of possible (cost-weighted) paths, which can be mapped into an optimal network 
flow problem that is NP-hard [Hromkovic, 2003]. The owner of a small shoe shop may have 
no conception of linear programming (LP), and still less of using LP methods to optimize 
her inventory subject to estimated local demand for shoes, but the shop may nevertheless 
produce inventory numbers that correspond to the outputs of an LP procedure. Strategic 
managers in a mining firm may have no clue about randomized search procedures for very 
large spaces, but the mining firm as a whole may embody a set of randomized search 
procedures for the optimal drilling plans in a region suspected of harboring a deep gold vein 
[Moldoveanu and Martin, 2009]. That intelligence does not require representation [Brooks, 
1991] is a point made in the artificial intelligence literature more than 20 years ago, and is 
relevant here as well. The intelligent search for solutions and design of search procedures 
may be something that individuals in firms engaged in solving intractable problems do 
without knowing (in the sense of being able to articulate) that they do and how they do it.  

Structural versus functional adaptations. The literature examining the links between 
complexity and the range of complexity-adaptive strategic actions [Siggelkow and Levinthal, 
2005; Rivkin and Siggelkow, 2003] usually take the topology of the firm’s value-linked 
activity system and the assignment of tasks to individuals as fixed or to a large extent 
determined by the production function of the firm. However, as we have seen in the 
previous discussion of the design of search procedures for the solution to complex 
problems, different algorithms and heuristics can make use of parallelization, randomization 
and brute force methods, each of which entail different assignments of tasks, decision rights 
and incentives to groups and individuals. The computational framework allows us to 
distinguish between structural adaptations – relating to the assignment of incentives and 
decision rights to individuals and teams, and functional adaptations – relating to the design of 
the specific tasks carried out by different individuals’ minds and bodies. Structural and 
functional adaptations can shape both online and off-line problem solving, as follows: 

Offline, functional. This is the classical image of strategic problem solving taking place 
in the minds of strategic managers, or within the top management team: problem statements 
are formulated, and optimal solution search procedures are designed and simulated. 
Adaptive advantage accrues to the strategic managers and teams that design procedures that 
yield the most accurate and reliable results over the shortest period of time. 

Online, structural. This is a less familiar image of the organization as a whole engaging 
in a problem solving process and searching the solution space through a large sequence of 
adjustments in decision rights, expertise/talent and incentives. Like a colony of ants working 
together seamlessly to build a raft that transports the colonies’ offspring across a rivulet after 
a flood, there is no complete representation of the problem or the solution search space in 
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the mind of any individual within the organization. Strategic search advantage derives from 
the speed with which the organization as a whole can explore a rugged payoff landscape and 
avoid traps arising from local optima and catastrophes arising from coordination failure, 
which in turn arises from the fit between the solution space search procedure the 
organization is executing and the type and complexity of problem it is solving; 

Offline, structural.  These are adaptations of the ‘offline’ processes of planning, 
deliberation and strategic problem solving of a strategic management team to the nature of 
the problem being solved. These processes remain offline because they are not yet 
implemented by the organization, but the problem-solving culture of the management team 
– the set of communication, coordination and search heuristics that the team uses, and the 
fit between these procedures and the complexity and type of problems being solved – all 
shape the speed, reliability and accuracy with which solutions or optimal solution search 
procedures are actualized; 

Online, functional. These are adaptations of the tasks of individuals and groups within 
the firm to the specific search problem the organization is solving. Different solution search 
procedures for canonically hard problems – like DC, BB, SHC, LNS – entail different sets of 
tasks (narrow exploration around local optima or in the neighborhood of a plausible best 
first guess, wide jumps among exploratory regimes, etc) which can be implemented by the 
same individuals or teams. Mapping tasks to teams and groups is constrained but not 
determined by the expertise, decision rights and incentives that have been provisioned 
throughout the organization. Therefore, a further degree of freedom for the design of 
optimal strategic search processes relates to the adaptive assignment and reassignment of 
tasks to people (or, machines) in order to maximize the firm’s ability to synthesize more 
reliable and more accurate solutions in a shorter period of time. 

6. Implications of the algorithmic approach for the empirical study of strategic process, outcome and 
performance. The computational approach to strategic problems has significant implications 
for the empirical study of the ‘strategic management of complexity’. Some researchers have 
focused on the fit between firm architecture (centralized/decentralized; sparsely/densely 
connected) and environmental complexity (uncertainty, ambiguity, rate of change of relevant 
variables) [Siggelkow and Rivkin, 2005; Davis, Eisenhardt and Bingham, 2008]. In parallel, 
others have focused on the ‘dynamic capabilities’ [Teece and Pisano, 1994; Arend and 
Bromiley, 2011] that may explain why some firms succeed in quickly-changing environments 
when others fail. The computational view of strategic problems and their on line and off line 
solution procedures clarifies the interplay between problem structure and complexity, 
organizational heuristics and procedures and outcome and the importance of the problems 
firms solve and solution search procedures that they search with in shaping the fit between 
the architecture of the firm and the structure of the environment. 
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Firms develop core capabilities for solving particular kinds of problems and claiming 
value from the resulting solutions. A large systems integrator like Cisco or Alcatel Lucent 
will develop specialized algorithms and meta-algorithms for solving large scale logical 
compatibility problems like COVER, that a logistics company like CEVA or Kuehne and 
Nagel will evolve specialized routines and sub-routines for quickly solving TSP-type 
problems; and that a software solutions company like SAP, Inc. will evolve better, faster, 
more reliable heuristics and meta-algorithms for solving multi-feature product design 
problems captured by kSAT and COVER. The structure and complexity of these problems, 
along with the solution procedures and organizational architectures used to implement them 
and the metrics used to gauge the quality of a solution, together determine firm level 
outcomes. The computational approach offers a contingent mapping among different strategic 
problems, solution procedures and the organizational structures by which solutions are 
generated, selected and implemented. With such a mapping, we can examine the relationship 
between changes in environmental conditions, changes in the complexity class and structure 
of strategic problems, and changes in problem solving procedures and organizational 
outcomes. We can also use the approach to figure out whether Kuehne and Nagel’s logistical 
optimization procedures are optimized to its core problems, or, rather, there is significant 
room for improvement - potentially by an ingenious innovator. The computational and 
algorithmic study of strategic problem solving outlined here implies a three-fold contingency in 
the factors that influence outcomes and performance, which can be summarized in terms of 
fit (Figure 10):  

Figure 
10: Four Fold Contingency of  Outcome and Performance From an Algorithmic 
Perspective 
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Between the complexity class of the strategic problem and the strategic solution search procedures (‘algorithms’) 
of the firm. At the level of the canonical problems and solution search procedures, outcome 
depends on the degree to which the solution algorithm is adapted to the complexity and the 
computational structure of the problem. An exhaustive search of all the possible solutions to 
an NP-hard problem with a large number of input variables, for instance, is likely to exhaust 
the time and resources of the firm before a good enough solution is found. On the other 
hand, the discipline of exhaustive search through all alternative solution for a P-hard 
problem will provide highly reliable method by which the optimal set of actions is attained. 
Not only the computational complexity class and the number of variables matter to the 
selection of the best solution search procedure. Some approximation procedures – like 
divide-and-conquer – are well suited to some intractable problems – like the Knapsack 
Problem – but very poorly suited to other problems – like the Traveling Salesman Problem, 
which is amenable to a Local Neighborhood Search procedure. The first level of 
contingency of outcome on strategic problem solving process, then, has to do with the 
degree to which the solution algorithm matches the complexity class and the computational 
structure of a strategic problem. Adaptive rationality in this case acquires the meaning of the 
ability to change the solution procedure in response to the nature of the problem. 

Between the strategic search procedures of the firm and its organizational structure and architecture. 
A second level of contingency arises at the level of fit between the problem solving 
procedure and the organizational structure or architecture that implements the solution 
process. A randomization procedure like stochastic hill climbing or an approximate search 
procedure like divide and conquer are optimally implemented on distributed organizational 
architectures that can work in parallel while at the same time keeping each other abreast of 
progress made along the various paths and branches associated with the smaller sub-
problems. Exhaustive search, by contrast, can benefit from a fast, serial implementation of 
the problem solving procedure, which allows for instantaneous pooling of the solutions 
generated and evaluated along the way. Equally important to the organizational architecture 
of a problem solving process is the communication protocol associated with a distributed 
problem solving task. Distributed problem solving may require more or less synchronous 
sharing of valid and relevant information regarding the solution search space, depending on 
the kind of procedure used: while branch and bound approaches may be implemented using 
asynchronous communication protocols once the division rule for various parts of the 
solution space has been agreed to, stochastic hill climbing and genetic algorithm-based 
approaches will proceed far more quickly on the basis of a synchronous information sharing 
protocol, which keeps the various problem solving teams abreast of each others’ progress. 
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Between solution search procedures of the firm and the metrics used to gauge the quality of the 
intermediate and final solutions. A third level of contingency arises at the level of the fit between 
the solution search procedures used by a firm and the metrics and thresholds for gauging the 
quality of the solution before, during and after the problem solving process. Ex ante, the 
specification of thresholds for adequate or good enough solutions will impact the usability of 
some algorithms as problem solving procedures. Genetic algorithms, for instance, may 
generate large numbers of inferior or dominated solutions before arriving at a global 
optimum. But, if these dominated solutions are excluded by the problem solving team 
because of the inadequate performance, then the algorithm will not converge to the 
optimum, precisely because the requisite diversity among partial solutions required for the 
performance of the procedure as a whole will have been curtailed. On the other hand, using 
clear metrics ex ante for the elimination of inferior solutions helps distributed problem 
solving teams with the use of branch-and-bound type methods, which rely for their success 
on the quick elimination of inferior solutions. ‘Strategic patience’ in problem solving, 
therefore, yields different payoffs for different procedures. Similarly, along-the way measures 
of the quality of solutions that emerge during the problem solving process can be more or 
less suitable to the procedures used. If a strategic management team expects linear or 
monotonic convergence of the problem solving process to an optimal solution – wherein 
each new iteration yields a better solution than the last – then this measure will essentially 
preclude the use of some non-linear or non-monotonic procedures like genetic algorithms 
and stochastic hill climbing, but even local neighborhood search that can generate multiple 
inferior or dominated solutions ‘on the way to’ the optimum solution.  

Implications for the Imitability, Replicability and Transferability of Adaptive Advantage in On-
line and Off-line Strategic Problem Solving.  Understanding firm-level strategic outcome as the 
result of a three-fold fit among complexity class and structure of problems, the stock of 
solution procedures and the organizational structures and architectures used to implement 
solutions allows us to investigate the relationship between complexity, imitability and 
replicability [Rivkin, 2000; 2001; Szulansky and Winter, 2001] in a new and more precise way.  
The imitability of a focal firm’s solutions is limited by the complexity of the problems 
provided that (a) the firm has access to a stock of solution procedures which produce more 
reliable and accurate solutions more quickly than its would-be imitators and/or (b) that the 
firm has achieved a fit between these solution procedures and its organizational architecture 
that is costly to imitate. Replication has traditionally been held to be an ‘easy’ problem 
relative to imitation, because the firm owns a ‘template’ for its own past success [Nelson and 
Winter, 1982; Rivkin, 2001].  

However, replication of one business strategy in a new context varies in difficulty, 
according to how novel the new context is. At one end of the spectrum, a firm can replicate 
an algorithmically simple set of strategies in a market that has not changed much from its 
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state at the time of the firm’s previous success (same product feature set, same customers, 
same technology, same development constraints, same competitive landscape)  - which 
would also make the strategy easier to imitate. At the other end of the spectrum, the firm can 
aim to replicate its strategy in a market in which (a) the computational structure and 
complexity of the problem has changed (because of technology changes, novel network 
effects at the level of competitors or customers, or a new set of competitors), or (b) the 
number of relevant variables has increased (more competitors, more relevant predictive 
variables in demand function, more technological options) even as the computational 
structure has remained constant (turning the problem into an intractable one), which likely 
entails that (c)  the firm’s stock of solution procedures needs to be modified to optimally 
adapt to the new problem structure and (d) that the firm’s structure and architecture may 
also need to change to track the new solution procedures. The problem of replication, 
therefore, may be more usefully thought of as a problem of transfer of the firm’s problem 
solving procedures and architectures to new domains of activity, which may be similar to the 
domains of the firm’s original success (the domain of what is now called replication), or 
different in various degrees and aspects (new problem, new optimal algorithm, new optimal 
structure) therefrom. The ‘new-ness’ of the firm’s strategic problem is, a function of a set of 
variables (complexity of problems, set of search procedures and adaptive organizational 
architectures) which the new modeling language allows us to explicitly model and 
parametrize.    

Firms can and do survive shifts in their core market focus, which often bring 
significant shifts in the specific problems these firms have to solve. IBM morphed from a 
manufacturer of application specific integrated circuits, printed circuit boards and personal 
computers and laptops, into a data analytics, informatics and consulting business over ten 
years. At the same time, Nortel, Inc. could not replicate its success in the digital phone 
exchange and optical communications business in the fourth generation fixed wireless and 
telecommunications base station market. Circuit City applied its stock of problem solving 
routines and structures to the market for used cars – via CarMax – while at the same time 
Enron attempted an ultimately fatal diversification strategy based on ‘loose associations and 
metaphors’ [Rivkin, 2001]. A  ‘strategic problem solving advantage’ can play an explanatory 
role in the outcome of such focal shifts by an incumbent company on the basis of a 
conception of the transferability of the complex problem solving advantage from one domain 
to another. 
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Table 4: Summarizing the Implications for Imitability and Transferability of 
Functional and Structural Adaptations to Complexity Used for On-Line and Off-Line 
Strategic Problem Solving. 

 

 

 Functional Adaptation to Complexity Structural Adaptation to Complexity 

On-Line Problem 
Solving 

Barriers to imitability (creating first mover 
advantage): imitator’s limited ability to design 
organizational routines (including communication 
and coordination techniques and technologies) that 
embody adaptive complex problem solving 
algorithms of focal firm; 

 

Barriers to transferability (limiting adaptation 
advantage): own limited ability to design 
organizational routines (including communication 
and coordination techniques and technologies) that 
embody new adaptive complex problem solving 
algorithms; 

 

Barriers to imitability (creating first mover advantage):  

imitator’s limited ability to implement organizational routines 

 (including communication and coordination techniques and 

 technologies) that embody adaptive complex problem  

solving algorithms of focal firm; 

 

Barriers to transferability (limiting adaptation advantage): own  

limited ability to implement organizational routines (including  

communication and coordination techniques and technologies) that  

embody new adaptive complex problem solving algorithms; 

 

Off-Line Problem 
Solving 

Barriers to imitability (creating first mover 
advantage): imitator’s understanding of the 
computational structure of strategic problems by 
imitator; switching costs for sticky problem solving 
routines and interaction blueprint (executive strategy 
sessions, etc); 

 

Barriers to Transferability (limiting adaptation 
advantage): own understanding of the 
computational structure of strategic problems by 
imitator; switching costs for sticky problem solving 
routines and interaction blueprint (executive strategy 
sessions, etc); 

  

Barriers to imitability (creating first mover advantage): 

 imitator’s switching costs arising from re-allocation of incentives and  

decision rights to individuals and teams (‘structural changes’) 

 

 

 

Barriers to transferability: own switching costs arising from  

re-allocation of incentives and decision rights to individuals and teams  

(‘structural changes’) 
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Table 4 summarizes barriers to imitability and transferability to the strategic search 
advantage derived from both functional and structural adaptations of both online and offline 
problem solving activities. Assume a ‘high complexity environment’ – one in which 
achieving globally optimal outcomes through strategic action requires the solution of an 
intractable problem. Then, the incumbent’s advantage over a putative imitator is directly 
related to the imitator’s ability to conceptualize and design (off line) and to implement (on-
line) solution search procedures that can match or better the incumbent’s own strategic 
search capabilities. The incumbent’s transferability of its strategic solution search advantage 
to another market or to a new set of industry conditions relates to its ability to conceptualize 
and design (off line) and to implement and execute (on line) a set of strategic solution search 
procedures that are optimally matched to the new set of problems corresponding to the 
changed environment. Assuming that strategic search capabilities are sticky (resulting from 
inertia operating at both cognitive and behavioral levels, and from high switching costs 
associated with changing the allocation of decision rights and incentives in a firm, we can see 
our way to a set of predictions regarding the ability of an incumbent to transfer its strategic 
ingenuity, on the basis of the similarity between the problems the incumbent is currently 
solving and the problems it would have to solve in order to succeed in the new industry or 
changed environment. For instance, the canonical set of problems characterizing the 
informatics and ‘big data’ business  – IBM’s new focus –  are sufficiently close to the kinds 
of hardware and software/firmware design problems the company had been previously 
solving. They can be represented by COVER and SET COVER problems (Appendix II) 
with large numbers of independent variables, representing logical consistency checks 
performed over the constraint sets of a VLSI design problem, or over the combinations of 
hypotheses that optimally explain a large data set.  The computational perspective on firms 
predicts that this computational isomorphism of the problem domains should make for a 
smooth adaptation of IBM’s dynamic search capabilities to the new problem domain: they 
are in the same complexity class (NP), have similar computational structures (COVER), have 
similar numbers of variables (>100) and should therefore respond in similar ways to the 
same set of approximation and randomization procedures for simplifying the search process. 

 If the complexity of problems represents a true hierarchy – as complexity grows in 
the number of independent variables of a problem statement and is discontinuous across the 
P-NP frontier, then we can further create horizons of transferability of strategic solution 
search capabilities: firms are less likely to be able to transfer such capabilities upwards in 
complexity (i.e. from NP-hard problems with fewer variables to NP hard problems with 
more variables; and from P hard problems to NP hard problems) than upward ; and they are 
more likely to be able to transfer such skills to new industries and environments presenting 
problems that yield to procedures that are within the firm’s repertoire of dynamical search 



 

Page | 45  
 

capabilities than to new industries presenting problems that which yield to solution 
procedures that are not. 

7. Concluding Comments. The algorithmic language introduced here for the study of strategic 
problem solving yields a family of models of firm level problem solving at several levels: 
individual strategic managers, top management teams and organizations taken as a whole – 
which highlights the importance of adaptations to complexity as a source of adaptive 
advantage, and adds precision and resolving power to existing models of managerial 
rationality, adaptivity and dynamic search capability.  

 The complexity lens sheds light on fundamental questions such as: ‘Why do firms as 
the specific pooled allocations of tasks to humans exist in the form they do?’ and “What is 
the strategic value of organizational culture?’ Novak and Wernerfelt, [2012] argue that firms 
constitute high-fixed, low-variable cost structural solutions to the problem of optimally 
assigning tasks to units of production in ways that minimize overall coordination costs by 
grouping together tasks requiring more frequent coordination into firms. Even in the 
absence of incentive mis-alignments, coordination games present coordinating agents with a 
multiplicity of equilibria whose selection or refinement is costly [Ganslandt, 2002]. The high 
fixed cost of firms as units of productive coordination correspond to the drawing of 
boundaries around the range of admissible coordinative equilibria, and therefore as a 
complexity driven adaptation of the value chain. More interestingly, perhaps, the methods 
for solving hard problems by approximate, local or stochastic methods considered in this 
paper involve tight coordination among the activities of several agents or teams: Intelligent 
randomization involves keeping track of the evolution of the search space and of dominated 
and ‘promising’ solutions in real time, and the constant exchange of information about the 
results of the local sub-searches. Local search involves keeping several ‘almost good enough’ 
alternatives on hand for quick re-insertion in the search process. Branch and bound methods 
involve a rough and iterative partitioning of the search space and the use of consistent 
heuristics for searching certain regions of that space rather than others. David Kreps’ 
[Kreps, 1990] model of organizational culture as a set of focal points of repeated coordination 
games that have become common knowledge through repeated usage and are useful as 
methods for simplifying the problem of coordinative equilibrium selection because of their 
known-ness becomes directly relevant here, as adaptive solution procedures for NP hard 
problems require ongoing and fine-grained coordination among the activities of multiple 
problem solvers, and common knowledge of coordination rules and heuristics will make the 
difference between an efficient and an inefficient meta-algorithmic approach to solving an 
intractable problem. The computational perspective on organizational adaptation suggests 
that the clustering of tasks into firms will also vary with the computational complexity of the 
tasks and the degree of coordination required by the implementation of intelligently 
randomized or approximate implementations thereof. 
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The problem solving lens on strategy making and strategic process design suggests a 
path to a generic toolkit’ for solving strategy problems and for the doing of strategy. 
Strategic competence, expertise and ingenuity exist should be treated separately from specific 
expertise in the technology, market and operational details of each firm: Problem solving 
‘prowess’ should be transferrable between domains of practical expertise that confront a 
firm with problems of similar complexity and with similar time and resource constraints. Strategy 
making can be conceptualized as a ‘hard-problem -solving activity’, and the expertise of the 
strategist as an understanding of the abstract structure of strategic problems and the ability to 
conceive and deploy reliable and efficient procedures for the search of the solution space of 
such problems. Teaching strategy, on this view, should illuminate the algorithmic structure 
and computational complexity of strategic problems that are common across firms and 
industries. Leading strategy consulting firms (McKinsey & Co, The Boston Consulting 
Group Ltd., Booz, Allen and Hamilton Ltd., Bain&Co., Monitor Co.) fulfill a valuable 
function insofar as they function as generalized problem solvers that are able to abstract 
useful heuristics, representations and algorithms from across varied areas of practice and 
transfer them across firms and industries. A canonical language for describing strategy 
problems creates a ‘problem solving skill transfer bridge’ across firms engaged in apparently 
very different concrete problems of design, production, coordination, and competition that 
are computationally isomorphic: from banking to telecommunications, from software to 
semiconductors, from healthcare to transportation, from pharmaceuticals to petroleum 
refining. 

I end with a qualification meant to assure those who fear that the modeling language 
herein makes the work of strategic managers, consultants and academics purely ‘algorithmic’. 
While running a rule bound, step by step computational process is algorithmic (and therefore 
automatable), the problem of designing algorithms, meta-algorithms and heuristics for hard 
and intractable problems is not: Software design is not a task for which much successful 
software is currently written. This is for good reason: Designing meta-algorithms involves 
the matching of the solution space search heuristic to the structure of the overall problem 
and this matching process is not, in most cases, rule bound. Even if the view of strategies as 
algorithmically produced solutions to the problems the business faces over certain time 
scales is accepted, the role of the strategist as the (non-algorithmic) designer of these 
algorithms seems safe - at least for now. 
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Appendix I: P-Hard Problems, ‘Easy’ and ‘Hard’.  I take a ‘short cut’ to the exposition of 
problems with polynomial time solution algorithms (P hard problems), illustrated in Figure 
11. The short cut consists of considering problems that are known to be solvable in 
polynomial time and showing how large classes of problems and sub-problems encountered 
in strategic problem solving can be understood as being algorithmically equivalent to them.  
This approach allows one to build a large scale, ‘tree-structured’ classifier for the problems 
of strategic management, which can then be applied to the task of classifying problems with 
respect to their expected time complexity and resulting solution costs. 

 

Constant complexity
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T = complexity of solution algorithm; N= number of variables in problem statement
A,B,C are arbitrary constants. 

 

Figure 11: Complexity Regimes: I. The P-Class. 

 

 There are a few problems that make up ‘the core’ of strategy problem solving, and 
that have time complexity that is at most quadratic in the number of problem variables, i.e. 
C(N)=O(N2). Constant complexity problems are invariant to the size of the input. Although it 
sounds like no solution algorithm can be blind to the size of its input, the process of ‘making 
strategy happen’ presents frequent examples, in the forms of mental automatisms. A 
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strategic manager can automatically discard market information that comes from a distrusted 
source, or, alternatively, automatically take advice that comes from a trusted source, even if 
the data that backs up the advice is present. If the problem is that of selecting the greatest 
total addressable market attainable from a given technological platform, then, either 
discarding the data altogether or taking the recommendation of the source data without 
parsing it oneself will obviously be ‘blind’ to the data set. 

 Linear complexity problems have solution algorithms with the property that C(N) = 
O(AN), where A is some positive constant. They include ‘frugal heuristics’ [Gigerenzer et al, 
1999] like the recognition heuristic: One can estimate the size of the largest rural suburban 
telecom services market in India, for instance, by picking the first (from a list of N) cities 
that one recognizes (or, to make the algorithm complete, picking at random if one 
recognizes no name). One can rationalize the use of this rule on the assumption that one is 
most likely to recognize the largest rural region. Using this heuristic to pick the best option 
from a list entails a worst case time complexity of C(N) = N, i.e., in the worst case, one has 
to read the entire list before getting to a city that one recognizes. The basic insight can be 
extended to ‘chose the best’ algorithms for lists under multiple criteria, in which case the 
number of M of criteria becomes a multiplier of the time complexity of the problem, i.e. 
C(M,N) = MN. 

 More sophisticated algorithms for efficiently processing random lists ordering to 
answer questions like ‘Which is the best element under criterions c?’ can be devised, ranging from 
the tree searches that we encountered in the previous section (C(M,N) = N log2(M)) to 
multicriteria choice models that require re-visiting the list several times, and ordering 
according to each new criterion. ‘Biases’ [Tversky and Kahneman, 1986] in decision making 
under uncertainty appear, in this approach, as computational shortcuts for multi-criterion 
judgment formation, which may, in some cases, be ecologically adaptive.   

 Computing the correlation between two vectors or arrays is a good model for analogical 
reasoning, or for the kind of automatic processing involved in pattern recognition in low level 
or high level vision [Marr, 1982]. The time complexity of correlating two vectors of lengths 
N and M is given by: C(Corr(X,Y))=2MN-1 and is hence linear in the length of the vectors. A 
‘pattern’ of behavior (a demand fluctuation, a competitor’s response) can be encoded as an 
MxM sample array of samples, and the complexity of correlating such a pattern with a 
‘known’ pattern stored in working memory will be proportional to M2N2. A good working 
measure of the complexity of simple pattern recognition (comparing an observed pattern of 
industry behavior with one of K patterns stored in memory) is thus C(“Pattern 
recognition”)=Kx M2N2 x log2(K , comprised of the M2N2 required for computing correlation 
coefficients and the Klog2(K) operations required to classify the pattern as ‘most like’ one of 
the patterns stored in memory. 
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Linear programming (LP) problems can be used to model n-variable linear 
optimization problems under L constraints, such as those arising from optimal price or 
quantity selection in either a monopoly or a perfectly competitive market, or profit-
maximizing inventory planning under size and storage cost constraints. [Karmarkar, 1984] 
showed that the complexity of such problems is super-quadratic in the number of 
optimization variables, and linear in the length (in bits) of the total input, i.e. C(n, L) = 
O(n3.5L). LP problems have become a staple of both managerial practice and of training in 
managerial economics, and algorithms for solving LP problems have been ‘automated’ by 
numerous commercially available software packages and sub-routines. 
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Appendix II: NP Hard and NP-Complete Problems: The Intractable. I shall take a short cut 
to the exposition of intractable problems that mirrors the approach taken in the theory of 
computational complexity over the past 39 years [Cook, 1971;  Karp, 1972; Garey and 
Johnson, 1979; Papadimitriou, 1994; Hromkovic, 2003]. Whereas P-hard problems are 
solvable by a deterministic algorithm in a number of operations (C(N)) that is at most a 
polynomial function of the number of the problem variables, (C(N)≤Pk(N)), non-
deterministic polynomial-time problems (NP for short) can only be solved by a deterministic 
algorithm in a number of steps that is a super-polynomial function of the number of 
problem variables, i.e. C(N)> Pk(N)), and, typically,  an exponential or super-exponential 
function of the number of variables: C(N)≥eN; or, by a non-deterministic algorithm (hence 
the name) in a number of steps that is a polynomial function of the number of variables. The 
short cut I shall take represents NP-hard problems in terms of a hierarchy (Figure 12) of 
problems that are reducible by polynomial-time transformations to a problem proven [Cook, 
1971] to be NP-hard, the k-satisfiability (kSAT, with k>2) problem, discussed below. 
Subsequent proofs of NP-hardness [Garey and Johnson, 1979; Fortnow, 2009] take the 
reductive form of transformations of any problem onto either a kSAT problem or onto a 
problem that is polynomial time reducible to a kSAT problem. 
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NP hard/complete problems can be used to model and transform large classes of 
problems arising in business strategy and distinguish between problems that can be 
straightforwardly ‘encoded’ in the language of generalized or canonical problems and 
problems that can be ‘transformed’ into such problems by methods that have characterized 
the progress of the field of computational complexity theory to date, as follows: 

K-SAT and MAX-SAT. The KSAT problem is a decision problem. It asks for an assignment of 
truth values to a set of elementary propositions that satisfies a k-variable formula or clause, 
expressed as a Boolean function of the elementary propositions. For example, the problem 
may be to find the set of truth assignments to the elementary propositions X1, X2, X3,X4 
(where ‘0’ denotes ‘false’ and ‘1’ denotes ‘True’)  that satisfy the formula F=(X1^~X2^X4)&( 
X1^~X2^~X3)= 1 (‘True’), where ‘^’, ‘&’ and ‘~’ are the standard operators ‘or’, ‘and’ and 
‘not’ of Boolean logic. The intuition behind the problem being hard in the intuitive sense is 
that all possible truth assignments of X1, X2, X3, X4 must be checked against F in order to 
determine whether or not they satisfy it; and the problem is the first to be proven to be NP 
complete [Cook, 1971]. Thus for a deterministic search process of a KSAT solution, we 
have, C(k)≈eK. The associated maximization problem, MAXSAT, is that of finding a truth 
assignment to X1, X2, X3,X4  that maximizes the number of satisfied clauses (F has 2, each 
with 3 variables), and is NP-hard. K SAT can be used directly to encode the problem of the 
design of strategic contracts or relationships, where the individual variables encode possible 
states of the world that are relevant to the contract, the logical clauses encode contractual 
clauses and formulas encode the consequences of contingent agreements among firms 
(Figure 13). Truth assignments to individual variables represent eventualities, clauses then 
encode possible consequences to the firm, and the problem of contract design refers to the 
problem of determining conjunctions of states of the world that will lead to particular 
payoffs or consequences.  
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Figure 13: The NP Hard Problem K-SAT and the Business Problems It Encodes 
 

Cook [1971] uses KSAT to encode ‘theorem-proving procedures’. This entails that 
the problem can be used to model deductive reasoning more generally, which can be encoded 
as the problem of figuring out whether or not a formula (a ‘theorem’) is logically compatible 
with a set of assumptions (the ‘axioms’). Cooper [1990] uses the problem to model the 
problem of causal inference using probabilistic networks [Pearl, 1990], which asks whether 
or not a set of causal hypotheses (which play the role of the axioms) provide a causal 
explanation for a set of data points (or, evidence statements). The modeling ‘maneuver’ that 
Cooper makes is to model conjunctions of causal hypotheses and single data points as 
Boolean formulas, wherein the problem of finding the set of hypotheses that provide a 
minimally acceptable ‘inference network’ becomes that of finding a truth assignment to the 
variables of KSAT that satisfy the resulting formulas.   

Thus, KSAT can be used to encode not only ‘deterministic’ problems of deductive 
construction, but also problems that incorporate incomplete information and uncertainty, 
and which admit of multiple possible causal inferences. It can therefore be used to model the 
‘root cause analysis’ that top management teams and consulting firms perform when trying 
to understand the most plausible set of causes for strategically important events (sudden 
downturn in demand for the firm’s products) that can plausibly have been ‘caused’ by 
multiple causal factors (change in clients’ tastes, introduction of a competitive product, 
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introduction of a substitute, ‘random’ seasonal fluctuation) which may or may not interact 
with one another. 

Rivkin [2000] showed that the problem of predicting the evolution of a Boolean 
network of N nodes (each of which can take on the value of 0 or 1 depending on its prior 
state and the current state of other nodes with which it has primary links) with K>2 links to 
other nodes maps into the KSAT problem and is therefore NP complete in its decision 
problem version (‘Is future state S compatible with system model and initial conditions?’). If 
such a network is used to model the value-linked activity set of a business (with K denoting 
the number of activities whose states matter to the value added by any one activity), then the 
problem of purposive strategic change is NP-complete and therefore strategic design is 
‘intractable’. The conclusion depends on the validity of the representation of a set of the 
firm as a net of value-linked activities [Porter, 1996], and as one which behaves like a 
Boolean network (i.e. the links model deterministic relationships). Even in such a case, 
however, it will be seen below that the problem of strategic change, even though 
theoretically intractable, may not be practically intractable, as there are classes of meta-
algorithms and heuristics that he been developed specifically for the purpose of providing 
‘good enough’ solutions to the KSAT and other NP-hard problems.  

KSAT problems (3SAT in particular) also model abductive reasoning, defined, since 
Charles Sanders Peirce [1998(1903)] as “inference to the best explanation”. An abduction 
problem takes as input a set of data, D, to be explained, and set of hypotheses, {H}, and a 
mapping e({hi,}, {dj}) from subsets of H to subsets of D. The problem asks for an explanation 
in the form of the minimal subset of H that completely explains D. [Bylander et al, 1991] 
reduce the problem of determining whether or not an explanation exists (i.e. a subset of H 
that explains all of D) to 3SAT,  by assigning a variable in the 3SAT problem and its 
negation to an incompatible set of hypotheses, and each Boolean expression (a function of 
the variables corresponding to the hypotheses) to a datum to be explained; in which case a 
complete explanation exists only if the Boolean expression is satisfiable by the assignment of 
truth values to the set of hypotheses. Abductive reasoning has been used to model 
managerial thinking ‘in practice’ [Martin, 2007; Moldoveanu and Martin, 2008], as it 
represents a pragmatic combination of the salient features of deductive and inductive 
reasoning as it emphasizes both ‘validity’ (in the form of explanatory coverage, or 
‘completeness’) and reliability (in the form of generalizability, proxied for by parsimony). 
The reduction  of the ‘completeness’ problem of abduction to KSAT suggests that seeking 
valid explanations alone can function as a source of explosive growth in time complexity of 
the managerial problem, as the number of causal hypotheses and data points  increases. We 
will see below that satisfying the parsimony condition in abductive reasoning gives rise to an 
NP hard problem.  
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TSP. The Traveling Salesman Problem (TSP) (Figure 14) typically represents the problem faced 
by a salesman who must find the minimum-distance (or minimum time) circuit that takes 
him to each of N cities, given that he knows the distance (time) which separates any pair of 
cities. The problem is polynomial-time reducible to the HAMILTONIAN CIRCUIT 
problem [Karp, 1972] which in turn is polynomial-time reducible to the KSAT problem, and 
hence it is NP hard. The intuition behind its complexity measure is that the number of paths 
that need to be searched is proportional to N!, which entails, by Stirling’s formula, that 
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= >Pk(N), and the reduction to a known NP-hard problem assures that 

there is no polynomial time short cut to a polynomial time solution. The TSP can be used to 
encode (Figure 15) a number of strategically important logistical or operational problems, 
such as minimizing the temporal or spatial length of the paths of work-pieces on a factory 
floor, or maximizing the efficiency of a traveling sales force or of a distribution system.  
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Figure 14: The Traveling Salesman Problem with N=6 Cities.  The Goal Is to Find 
the Minimum Total Distance Path Connecting All of  the Six Cities. 
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Figure 15: The NP Hard Problem TSP and Business Problems It Encodes 

 

It can also be used to encode problems that are directly relevant to organizational 
design or the optimization of the operation of a top management team. Mapping, for 
instance, individuals onto ‘cities’ and the affective distance among individuals (the inverse of 
the influence of individual i on individual j) onto spatial or temporal distances (the edges of 
the network) the TSP maps into an ‘optimal influence strategy’ problem, where the goal is to 
find the optimal ‘persuasion path’ through a senior management team. This problem in turn 
can represent both the ‘CEO problem’ (‘how to persuade the members of my executive 
team or board of directors of a new strategic path?’) and the problem of ‘strategic selling’ 
(‘how to persuade the key decision makers and influential agents of a strategic customer of 
making a large scale commitment to my product, service or solution?’) Alternatively, if we 
map the nodes onto individuals and edges onto information exchanges among individuals, 
whose length is measured by the inverse of the probability of truthful or trustful information 
transfer between two managers (the ‘integrity’ of the informational link between them), the 
TSP maps into an ‘optimal information strategy design problem’, whose solution helps 
strategic managers promulgate news and rumors most efficiently. In this case, the 
promulgator of the rumor would want to be both the start and the end point of the 
informational path of the rumor through the network so that he or she can ‘verify’ (or, 
authenticate) the fidelity with which the rumor has been transmitted through the network. 
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KNAPSACK. The KNAPSACK Problem (KSP) [Karp, 1972; Martello and Toth, 1990] 
represents the problem of optimally packing a knapsack of known total volume V with a set 
of k utensils out of N possible options so as to maximize the total utility of the set of 
utensils included, subject to all utensils fitting in V, given knowledge of the volume and the 
value of each utensil. Under the constraints are that no fraction of a utensil can be taken 
along (“0 or 1”) and that each utensil can be included only once, KSP presents a search 
space that comprises 2N possible options (the number of subsets of N), providing an upper 
bound C(N)=2N, which the reduction of KSP to a problem known to be polynomial-time 
reducible to KSAT (namely, PARTITION) also confirms as a lower bound on the 
complexity of an exact solution using a deterministic algorithm.  

KSP is known to be a highly versatile modeling tool, having been used in the design 
public key cryptosystems (where it appears as the SUBSET SUM problem [Martello and 
Toth, 1990]), and it lives up to its versatility in encoding strategy problems. It can be used to 
represent the problem of strategic product design [Chapman, Rosenblitt and Bahill, 2001] 
under lumpy constraints that arise from existing platforms and developing technical 
standards (which map into the ‘utensils’), the problem of the optimization of the cost 
structure of a manufacturing business by choosing over non-divisible activity sets with 
known costs and benefits and the problem of mapping technological platform features into 
the features of strategic products, under total cost-of-goods-sold constraints, among others. 
It can also be used (in its cryptographic form via the SUBSET SUM problem) to model the 
problem of decoding the jargon used by experts that seek to hijack the position power of top 
managers with their knowledge power by the use of professional codes as a form of public 
key cryptosystem, and the problem of ‘infiltrating’ technical standards proceedings that use 
jargon as a barrier to entry. 

VERTEX COVER. The VERTEX COVER (VC) problem is a decision problem that relates 
to finding a subset v of at most K of the N vertices V of a graph G(E,V), where E denotes 
the set of connecting edges, such that v will include the vertices that together touch all of the 
edges E of G. The VC problem was proven to be NP-complete by reduction to 
PARTITION [Karp, 1972] and a brute force algorithm will find the solution in 
C(N,K)≈2KN. The associated NP-hard optimization problem is that of finding the minimum 
vertex cover of G, i.e. that of finding the minimal K. The VC problem straightforwardly 
encodes problems relating to the firm’s ‘network strategy’. It is well documented that a firm’s 
position within its industry network matters to its strategic performance, which raises the 
problem of ‘managing’ the firm’s ‘networking strategy’ [Moldoveanu, 2009] by seeking the 
network ties that maximize the firm’s ‘network strategic advantage’. What underlies the 
solution to most such problems is recognizing the ‘core’ of well-connected firms within the 
industry, i.e. the network’s ‘vertex cover’. The VC problem thus construed encodes the 
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problem of ‘strategic network sensing’ – of mapping the firms within a network that 
together ‘span’ the entire network.  

 The VC problem also encodes problems related to understanding and manipulating 
the ‘epistemic networks’ [Moldoveanu and Baum, 2008] that arise within executive teams 
and are causally relevant to the ability of the team to coordinate or co-mobilize. An 
epistemic network is a network defined by a set of individuals I, a set of propositional beliefs 
P and a set of links among individuals and beliefs that denote the ‘knows’ or ‘believes’ 
operator. Individuals A, B, C and proposition R are linked by an epistemic path if A believes 
B believes C believes P, for instance. The problem of figuring out the set of central beliefs in a 
top management team maps onto the problem of figuring out the minimal set of 
propositions that together ‘span’ the set of individual members of the team – which is the 
minimal vertex cover of the epistemic network of beliefs of the top management team. 
These beliefs are important because they function as focal points in coordination games and 
scenarios and in mobilization scenarios [Moldoveanu and Baum, 2008], and thus finding and 
controlling them is important for narrowing down the set of equilibria of the coordination 
and mobilization games that the top management team plays. Relatedly, the problem of 
figuring out which top manager(s) are most ‘in the know’ (who knows most and who knows 
most about what others know) becomes the problem of figuring out the minimal vertex 
cover of the network of agents of the top management team. 

CLIQUE is a decision problem (CP) that asks whether or not a graph G(V,E) of N vertices 
and E edges has a clique of size k (defined by a fully connected sub-network SG of G). The 
associated optimization problem asks for the minimal/maximal clique that graph G 
possesses [Garey and Johnson, 1979]. The intuitive time complexity of a brute force 
approach to CP is C(N,k)=Nkk2,  and the reduction of CP to VC [Karp, 1972] attests to the 
tightness of the time complexity bound.  CP  is also a versatile strategic problem modeling 
tool (Figure 16): it has been used [Gilboa and Zemel, 1989] in its decision form to model a 
problem considered ‘prototypical’ for strategic choice processes - that of finding a particular 
Nash equilibrium (NE) set of strategies that give a payoff of at least P in a competitive game 
(which includes: a Nash Equilibrium in which a player makes a certain minimum payoff, a 
Nash equilibrium whose support contains a certain strategy, and a Nash Equilibrium in 
which the aggregate payoff of the players exceeds a certain number). The problem of finding 
a NE is one that can in some cases be modeled by LP (as will be demonstrated below for  a 
specific 2 player game). Subsequent work [Chen and Deng, 2006; Daskalakis, Goldberg and 
Papadimitriou, 2006] showed that the problem of finding the Nash Equilibrium of a game 
cannot, in general, be solved in polynomial time, as it is a member of a subclass of  TFNP 
(‘Total Function Non-deterministic Polynomial Time’) - the function-theoretic equivalent of 
NP-complete decision problems and NP-hard optimization problems.  
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SET COVER. There are two versions of this problem: EXACT COVER and (simply) 
COVER. EXACT COVER (EC) asks for whether or not there exists a collection of pairwise 
disjoint subsets of a given, finite set S whose union is equal to S. [Aragones et al. 2003] show 
that EC can be used to represent the problem of linear regression, i.e. of finding the set of 
predictors {X1, …, XK} for a set of observations {Yj} that contains at most k elements 
subject to the correlation coefficient between the predictors and the predicted variable being 
at least r. The time complexity of a brute force solution to EC is intuitively given by the 
complexity all possible subsets of S, i.e. C(EC(S))=2|S|-1, and the reduction of EC to KSAT 
[Karp, 1972] assures us that the problem is indeed in NP.  

The problem of induction, on the other hand, i.e. of finding the minimal set of rules 
or generalizations that are consistent with a set of data, is transformable to the COVER 
problem, which asks whether or not there exists a set of n subsets of S whose union is equal 
to S [Aragones et al, 2003]. If the data are encoded as a matrix whose (i,j) entries represent 
the degree to which sample i  has attribute j, then a rule is one that states that no sample with 
property l will fail to exhibit property k, for instance. The minimal set of rules, then, will be 
the smallest set of subsets of the data set that exactly correspond to a set of rules. COVER 
and EXACT COVER are versatile enough to encode other problems of strategic interest, 
such as the optimal design of teams comprising individuals with potentially overlapping skill 
sets (the set S is the set of skills needed for a task, the subsets of S are the skills 
corresponding to each individual) or conflicting personality characteristics for the optimal 
pursuit of tasks requiring certain sets of skills (software design) or personality types (sales).  

Finally, the problem of parsimonious abduction – of figuring out the minimal set of 
hypotheses that together explain a data set – maps into a version of the COVER problem 
[Bylander et al, 1991], that asks for the minimum set of subsets of a set whose union is the 
set itself (‘collectively exhaustive’). If we let the set in question encode Hmin the set of 
explanatory hypotheses of at least minimal plausibility, then the problem of parsimonious 
abduction maps into the optimization version of the COVER problem. If we further specify 
that allowable explanations must consist of ‘mutually exclusive’ hypotheses, then the 
parsimonious abduction problem maps into the optimization version of the EXACT 
COVER problem. 

 

 

 


