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Abstract

Individual behavior under uncertainty is characterized using a new axiom, ordinal independence,
which is a weakened form of the von Neumann-Morgcnslern independence axiom. It states thai if two
distributions share a tail in common, then this tail can be modified vrithout altering the individual's
preference between these distributions. Preference is determined by the tail on which the distributions
differ This axiom implies an appealing and simple functional form for a numerical repre.se n tat ion of
preferences. It generalizes the form oi anticipated utility, and it explains some well-known forms of
behavior, such as the Friedman-Savage paradox, that anticipated utilit>' cannoL

Recent research in the theory of individual decision making under uncertainty has
developed in three directiotis. All of these are outgrowths of and reactions to the
empirical refutation of expected utility theory that is widely acknowledged.

First, there are attempts to describe the decision-making process by examining
aspects other than the probability distribution over the ultimate payoffs. Research
in this direction uses variations in the description ofthe temporal resolution ofthe
uncertainty or ofthe payoffs themselves as important ingredients that can affect
the individual's choice.'

Second, there are models that look only at the probability distribution of
payoffs, and impose normative axioms on choices between distributions.- The
present article falls in this category.

The final group of models also looks only at the probability of various conse-
quences. Here, however, an attempt is made to keep normative axioms to a
minimum and to see how much flexibility can be maintained while at the same
time explaining observed phenomena. The pioneering paper in this line of work is
Machina(1982).

This research was supported by National Science Foundation grant number IRI-85-07291. The authors
thank Mark Machina and Larry Epstein for helpful advice and comments. Jerry Green acknowledges
support from the John Simon Guggenheim Memorial Foundation. Bruno JuIIien gratefully ack-
nowledges financial support from the Sloan Foundation.
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This article introduces an axiom related to. but weaker than, the independence
axiom of expected utility theory. We substitute this weaker axiom and obtain a
numerical representation for preferences over distributions of payoffs. Naturally,
this family of functionals includes the linear functionals ofthe expected utility
family. It also includes the anticipated utility representation of Quiggin (1982).
Segal (1984). and Yaari (1987). It is disjoint from the quasilinear family of pref-
erences studied by Dekel (1986). Chew and MacCrimmon (1979), and Gul (1988)
except that both contain expected utility as a special case.

There are two reasons for being interested in this axiom and the resulting rep-
resentation. The first is that although anticipated utility can account for some of
the observed violations of expected utility theory, it cannot account for all of them.
In particular, the famous phenomenon of Friedman and Savage (1948). in which
an individual's risk preferences seemingly depend on his status quo level of
wealth, cannot be explained within the anticipated utility framework but can be
explained by ours.

Second, and perhaps more importantly, we find the axiom itself intuitively
appealing—more so than the necessarilystrongeranticipatedutilityaxiom.lt is of
interest to learn its implications. Part ofthe reason for the intuitive appeal of this
axiom is that it bears some resemblance to psychological concepts of editing. One
way in which the comparison between two deci.sion problems can be simplified is
to eliminate from consideration some values of payoffs on which the two payotT
distributions coincide, and to determine preferences over these distributions by
looking at the part ofthe payoff space on which the conditional distributions dif-
fer. Thus the common part ofthe space is et/Z/cJ our. We apply this logic when the
common part ofthe space is a half-line: I f f and G coincide either above or below
some point, then the preference between F and G is determined by their restriction
to the complementary half-line, on which they differ.

1. Ordinal independence

The basic axiom introduced in this article is called ordinal independence. It applies
to spaces of payoffs that are naturally ordered, such as the real numbers. For sim-
plicity, we assume that payoffs are in a bounded interval of real numbers. X =
[x,.x\. Let the space of probability distributions over-Y be denoted/). The elements
of D will be identified with their cumulative distribution functions and will be
denoted F,G,H,...

Preferences on D will be described by a binar>' relation >. We assume that > is
complete, transitive and continuous.

Complete weak order

The binary relation > on/) is a complete weak order: For all i^,G E /),eitherf >G
or G>F. And iff" > G and G > //. then F>H.
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Continuity

The binary relation is continuous in the weak topology on D.

Monotonicity

If F (first-order) stochastically dominates G, then F > G.
To these standard conditions we add the axiom of ordinal independence which

can be stated as follows:

Ordinal independence

UF>Gand F{x) = G(x) forx >^{rcsp.x <x) andF(x) = G(x) for;c>;e(resp.x <
x), then F> G.

This condition is a limited type of independence axiom. Let H and / / ' be dis-
tribufions with support bounded above by ;C and let F and G be distributions with
support bounded below by .X. Then, if the decision maker is indifferent between a F
+ (1 - a)//andaG + (1 - a)//, he is also indifferent between aF + (1 - a)// 'and
aG + (1 -a)H'.

These substitutions preserve indifference if, and in general only if, the support
of the conditional distribution being substituted lies entirely above or entirely
below the support ofthe distributions conditional on the complementary event.

2. Representation theorem

In this section we present the principal representation theorem for preferences
satisfying the assumptions discussed in section I. We will relate the conclusions of
this theorem to both anticipated utility and to expected utility, which are suc-
cessively special cases.

We begin by stating the theorem and its principal corollary. These state two
equivalent closed-form expressions for a numerical index of the preference
relation.

Theorem I

If > satisfies complete weak order, continuity, monotonicity, and ordinal inde-
pendence, then there exists a function 4): A" X [(),1| -*• R such that ^(0,/?) = 0, $ is
nondecreasing in x, and a measure ^ on [0,1] such that
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is a numerical representation of >, where

z(p) = infix G X\F{x) > p\.

Moreover. \i has a continuous distribution function and c> is continuous on its
domain.

Corollary

Under the hypotheses of theorem 1, an alternative representation is

V{F) = jh{x,F{x)) dv{x)

where/i(.x,l) = 0, and^isnonincreasingin/?. Moreover, v has continuous distribu-
tion function and h is continuous on its domain.

The meaning of the representafions can be seen as follows. We can think of
(i>(z{p),p) as itself being an integral of some function (this will be called \i^ in the
proof; see appendix), but let us here denote it by C^wp):

=
JQ

Thus the numerical utility indicator is an integral of Cix.p) over the epigraph' of
the distribution function as shown in figure 1. and with respect to a measure p
on [().l|.

In anticipated utility theory the funcfion C,{x,p) becomes multiplicatively separ-
able: C,(x,p) = î(-v)̂ 2(/')- And, if we incorporate C,i{p) into the measure \x. we obtain
an expression analogous to that of Segal (1984). Chew, Kami and Safra (1987), and
Yaari (1987):

= ju{x)d{gF{x)) = ju{2(p))dgip).

where

Expected ufility theory is the further special case in which ^̂  and p, when so com-
bined, produce a uniform distribution over [0,I|. Then, substituting/? = F{x), one
can obtain the usual formula.
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Fig. 1. The numerical utility indicator.

The idea in the proof is to show that ordinal independence implies separability
in the sense of Gorman (!968), reinterpreted in a certain fashion. The commodities
that are separable from each other are the levels of payoff at various percentiles of
the payoff distribution. Thus, a representation of preference will be an additively
separable function ofthe payoffs at these levels. The relative importance of con-
sumption at different percentiles of the payoff distribution is reflected in the
measure \i. Intuitively, we are allowing the percentile ofthe distribution at which
any given payoff A- occurs to have two effects. It can affect the value ofx, and in-
dependently various percentiles can be more or less important to preferences.

X Representation with differentiability

The representation given in section 2, although simple, becomes substantially sim-
pler under the following assumption.

Differentiability on Basic Di,stributions (DBD)

The certainty equivalent, c{F^^), ofthe distribution

Fa = a if AT < X,
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is an everywhere differentiable function of a £ [0,1], and of.v.
Underthiscondition,as we will now show, the measure |ion [0,11 can be shown

to be absolutely continuous with respect to Lebesgue measure, having density ni.
Hence, we can write the representation proven in theorem 1 as

V(F) = \

where

Before proving this assertion, let us consider the following examples in which,
because of the failure of DBD, the measure \i will not have a density.

Example 1

For any F, \tXA{F) = \{z,p) G ^ X [0,11|/J > F(z)|. Let V{F) be given by a measure
^(A{F)) as follows: The measure p will be a product measure with factors [x^idx]
and \i.{dp), where p; ca" be an arbitrary positive measure, absolutely continuous
with respect to Lebesgue measure, and p has a point mass at p.

The preference relation represented by V will fail to be continuous as one can
see by considering a sequence of distributions F^, where

FJ,x) = 0 A<x , ,

FJ^x) = a X\ <x < X,

FJ^x) = 1 x= X.

Clearly, if a -^ p. F^ -* F. But K{FJ will not converge to V{F). Thus the preferences
viill not be continuous.

Example 2

Modify example 1 so that |i is a continuous, but not absolutely continuous,
measure. For example, |i can be a probability measure concentrated on the Can-
tor ternary set (see Royden, 1%3, ch. 2, problem 42). Then Kand the preferences it
represents will be continuous. However, preferences will not be differentiable at

in the Cantor ternary set, since

dp
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which clearly does not exist.
Thus, to avoid problems with difTerentiability, it will be necessary to avoid

measures on X X [0,1] which are continuous but not absolutely continuous.

Theorem 2

Let > satisfy the hypothesis of section 2 and DBD. Then it can be represented
by

V{F)= \ (1)

Proof By theorem I, K(F) = /,', ̂ (z(p),p)dii(p).
Therefore it suffices to show that \i is absolutely continuous (with respect to

Lebesgue measure). By DBD, the derivative of V{F) at F,, will be i^{x,a)dn{a)/da,
which exists for all a only if \i is absolutely continuous. Q.E.D.

Throughout subsequent sections we use the representation (1).
It is useful at this point to relate the representation (1) to expected utility theory.

If > obeys the independence axiom, and hence can be represented by a linear
functional, ju{x)dF{x), then h takes the form

h(x,Fix)) = u'(x)(\ -F(.x)). (2)

Evaluating (1) by integrating (2) by parts, we have

rx r
h{x.F{x))dx = uix) + \ui.x)dF{x).

J\ J

Thus, we can take u{x) = 0 by normalization.
As we have pointed out, (f) takes the form

^{z{p).p) = U{z(p)).

It is also fruitful to look at the form of the functional for particular distributions.
Let usconsidcr first a discrete distribution with support (xi,... ,Xn) and/7^ = prob
(x,). Define the function:

. 1 f\\){x,q,p) = - <^{x,s)ds. a >p>Q,
I' Jq-p

Then we have
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^{F) = ^ \ | / (A, ,F(AJ , / ) , ) / ) ,

= Ei.\\f{x.F{x). prob (A)).

V{F) is the expectation of some utility index, where the utility of a given payoffx
depends on its probability of occurrence and the level of its cumulative.

Consider now a distribution F with a density function/. Then, using a simple
change of variable,

r r
F(F) = \^{z{p),p)dp = \(^{x.F{x))f(x)dx

J J
or

V(F) = Er<p(

Now the utility index depends solely on the level ofthe cumulative.
Notice that y(A,̂ ,O) = (I)(A,F(A)), SO that the interpretation given for discrete dis-

tributions extends to more general distributions.
Although none ofthe functional (I) will be Frechet differentiable, except for

those satisfying expected utility theory, the weaker hypothesis of Gateaux differen-
tiability (see Chew, Karni. and Safra, 1987) can hold and is equivalent to the exis-
tence of dh{x.F{x))/dF{x) = h^ix^Fix)).

A functional Kis said to be Gateaux difTerentiabJe if for each FG D there exists
a linear functional L{ • ,F) such that

L(F' -F,F) = l im-(K(eF' + (1 - t)F) - K(F)). (3)
E—o e

As Chew, Karni. and Safra have shown, the hypothesis of Frechet differentiability
used by Machina can be weakened to Gateaux difTerentiability, and properties of
the Gateaux derivative can usefully characterize global attitudes towards risk. In
this sense the Gateaux derivative is a local utility function.

The Gateaux derivative of f̂ at Fis the function (3) evaluated for each A £ A'at
the distribution F^ which is a point mass concentrated at A. Under the hypothesis
of theorem 2, and assuming Gateaux differentiability, the Gateaux derivative

o{ V at F is

and
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L{F' - F,F) = r U,{x)\dF\x) - dF{x)\.

We make extensive use of this formula in sections 6 and 7 below.

4. Risk aversion

Throughout the remaining part of this article, we will restrict ourselves to smooth
preferences and assume the following:

Smoothness condition

$1 = -/?2 is continuous and positive,

<t>\2 = ~^22 exists everywhere and is continuous.

One of the main results in Machina's (1982) original paper was that one could
use local utility functions to compare the degree of risk aversion of two in-
dividuals, extending the analysis of Arrow-PratL It is easily seen that the proof of
the relevant theorem (his theorem 4) uses integrals along lines and requires only
that the preference functional Vbe Gateaux differentiable (see for example Chew.
Karni, and Safra, 1987). It follows that the result applies to our preference
functional.

A first application is an easy characterization of risk aversion.

Theorem 3

An individual C*,/)) is risk-averse if and only if for all x,p

Proof: Take <t)*ix,p) = A, the risk-neutral preferences in theorem 4. An individual is
risk-averse if(J) is concave inx and/i convex in p. We can see how the (t>-fonn and
the /?-form are dual one to another. For any cumulative F we can interpret its in-
verse cumulative 2/r as a cumulative (normalizex toO and jt to I). If a cumulative G
is a mean-preserving spread of a cumulative F, thenz^ is a mean-preserving spread
of z .̂ Therefore the concavity of <t) in x (which corresponds to the concavity of the
utility function in expected utility theory) transforms into the convexity of/J inp.

The characterization of risk aversion is just a special case of a more general
result on comparative risk aversion.
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Definition

A distribution F is said to differ from a distribution G by a simple compensated
spread if K(F) = V{G) and if there existsx* such that F{x) > G(x) forx <A'* and
F(x) <G(x) forx >x*.

We will say that an individual A is more risk-averse than an individual B if,
whenever F differs from G by a simple compensated spread from the point of view
of B, then A prefers G to F.

Machina proves the equivalence between several definitions of increasing risk
aversion and the fact that for all F, the utility function oi' A at F is a concave
transform of the utility function of B at F. We will interprete this result directly
using the functions (J) and h.

Theorem 4

An individual {<t),A) is more risk averse than an individual ((])*,A*) if and only if for
all A,/>

Proof: See appendix.
The extended Arrow-Pratt measure of absolute risk aversion is now composed

of two points: -(^n/<^[ and -(I>i2/(t)|. It reduces to the usual measure when prefer-
ences are linear since then <i>]{x,p) = u'{x) and the measure is (-w"(x)/u'(x),O).

4.1. Interpretation in terms of risk premium

4.1.1. Tbe wealth premium. Consider an individual ((t>,/i) who is given the choice
between the lotteries over final levels of wealth:

X with probability Po

X,, — E with probability/?/2

Ao + e with probability/j/2

X with probability 1 — Po — p

.V with probability pt^

B — n with probability/)

with probability 1 - p -
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The level of n that makes the individual indifferent between the two lotteries is the
wealth premium that the individual is willing to pay to avoid the risk e. A
straightforward calculus shows that the limit fi ofthe premium n when p goes to
zero is given by

So n is the risk premium associated to the lottery (e.-e,'/2,V2) when the initial wealth
is A,, and the individual maximizes an expected utility with utility function <t>(.v,/)Q).
As is well known, it is approximated by

1

When;? is small, <]) is almost linear in/j around/7,, Therefore everything is similar
to the case of expected utility.

4.1.2. Tbe probability premium. Consider an individual (<t),/i) who is now given

the choice between the following lotteries:

with probability pQ — e

+ - with probability 2E

+ X with probability 1 - /̂ n - E

with probability/7o ~ q

+ X with probability 1 - po + q

The level of ̂  that makes the individual indifferent between the two lotteries is the
probability premium that the individual is willing to accept before giving up the
extra gamble e (notice that now, when q = 0,A is less risky than B). This example is
dual to the previous one. If we reinterpret the inverse cumulative functions as
cumulative functions, the two problems are the same except that now h replaces (p.
The limit q of the premium q when x goes to zero is given by

- e) + /t(xo,po -t- e) _
_ — rl\x^^,Ptt q).

So when e is small, q can be approximated by
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q ^

Notice that under expected utility, ̂  is exactly zero. When x is close to 0, the utility
functionisalmost linear and the agent is risk-neutral. With nonlinear preferences,
the marginal utility of wealth becomes almost constant in the relevant range, but
there is another dimension to risk aversion. Preferences can be represented by
Yaari's dual preferences.

5. The Allais paradox and the common-ratio effect

The Allais paradox and other related observations have been extensively ex-
amined in the existing literature. We refer the reader to Kahneman-Tversky (1979)
and MacCrimmon-Larsson (1979) for detailed exposition and discussion. We will
restrict most of our discussion to the case of three outcome distributions (x,,X2,
Xj,,Pi,p2,Pi) with A| < Xj < X3. There is a very convenient graphical representation of
such a distribution introduced by Machina: for given outcomes A, < X; < x,, we
can represent a distribution in the plane by using/?, and/?,, the probabilities of the
low and the large outcomes. Diagram 1 illustrates the common-ratio efTect.

The sure outcome C is preferred to the lottery D. A and B are obtained from C
and D by mixing the bad outcome with probability q. In many observations B is
preferred to .4, contradicting the prediction of expected utility theory. Notice that

P3

1

Diogram I. The common-ratio efFect.
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under expected utility the isopreference curves are parallel straight lines. Simi-
larly, diagram 2 illustrates the Allais paradox.

Now A and B are obtained from C and D by transferring a probability q from the
medium outcome Xj to the low outcome x,. As before, an expected utility max-
imizer who prefers C to D must prefer/I to B.

Machina (1982) proposes to generalize both paradoxes under the following
behaviorat assumption:

Generalized Common Ratio Effect (GCRE): Let F^, f̂ , F^-, F^ E £> be such that Fc
and FD respectively stochastically dominate F^ and Fg, and Fp — Fc = M.Fg - F^)
for some X > 0. Then, if f̂  differs from F^ by a simple compensated spread, V{Fo)
< V{Fc). Similarly, if F^, differs from Fc by a simple compensated spread, then

When the distributions have a support composed only of three outcomes^-, <X2
< Xi, the GCRE has the interpretation illustrated in diagram 3.

A distribution stochastically dominates another distribution if it lies above and
on the left. If we choose-4.6, Cas shown and A '̂  B, then C must be preferred to
any distribution on the segment \E.F]. By choosing B close to^, we see that it im-
plies that the slope of the isopreference curve at C be greater than the slope of the
isopreference curve at A. The slope ofthe isopreference curve at some point {p^pi)
is given by

Diagram 2. The Allais paradox.
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' I

Diagram 3. Three-outcome generalized common-ratio effect.

The GCRE implies that this ratio be nonincreasing with /), and nondecreasing
with Py

Theorem 5

An individual ((J),/J) verifies the GCRE if and only if she is an expected utility
maximizer.

Proof: Choose any Xj < X2 < x^ < X4, then ^
i?{x2,i - p)) is nondecreasing with p and <^{xy.p) -
Pi)) is nonincreasing with/7. This is only possible i
ent of p, or <pi{x,p) = u'{x).

— >i>(_Xi,pi)/((^X},\ - p)-
- /?,) - (1>(A-,,1 -

is independ-
Q.E.D.

The theorem generalizes the same result obtained by Segal (1984) for an-
ticipated utility; it shows that this is not linked to the multiplicative separability.
Segal then proposed a weaker behavioral assumption inspired by the Allais
paradox:

Generalized Allais Paradox (GAP): Let F^,FB,FC, Fp be such that Fc and Fo respec-
tively stochastically dominate F^ and fg, and/"^-Ft-= Fg-F^.Let F(FJ = V(Fg)
andx* be such that forx >J:*,F^4(A)>FB(.V) and forx <X*,F^(X)<FB(X). If forx >
X*, Fdx) = F,(x), then V{Fc) > K(Fo).

In this version C and D are obtained by shifting in the same amount prob-
abilities from low to medium outcomes, as in the Allais paradox. In the case of
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C A

Diagram 4. Isopreference curves for ^^i < 0.

three outcomes, it means that/1 and C are on the same horizontal line, and so are B
andZ).

Theorem 6

The preferences ((J>,A) verify the GAP if and only if for all x,p

Proof: See appendix.
The result is interesting because it shows that the type of behavior characteriz-

ing the Allais paradox is not only compatible with but is implied by risk aversion.**
It suggests that the best candidates to explain some risk-loving behavior while
staying consistent with experimental observations are preferences with h convex
in p but (f) tiot concave in x.

Remark: The GAP does not imply the common ratio effect. The reason is that if
4)i: < 0, the isopreference curves are concave so that the GAP does not prevent the
sitaution depicted in diagram 4.

However it is clear that they are not contradictory.

6. The Friedman-Savage hypothesis and the boundedness of preferences

In their seminal article, Friedman-Savage (1948) pointed out that many in-
dividuals were simultaneously purchasing lottery tickets and insurance. They pro-



370 GREEN AND JULLIEN

posed a von Neumann-Morgenstein utility futiction concave for low outcomes
(and hence risk-averse) atid convex for large outcomes (risk-loving). There were
several difficulties with this utility representation. First, the utility function was
unbounded, therefore inducing unbounded preferences and subject to the St.
Petersburg Paradox. In addition, the willingness to pay for l/k chance of winning
Ske was increasing with k. This led the authors to add a terminal concave part at
very large outcomes. Finally, the utility representation could not explain why peo-
ple purchase lottery tickets and insurance regardless of their initial wealth. These
points are discussed in great detail by Machina (1982). As was pointed out by
Machina, when the preference functional is nonlinear in the distributions, pref-
erences may be bounded even though the local utility functions are unbounded.
This could explain at the same time the observed gambling behaviors and their
relative invariance to the initial wealth since the inflection point of the local utility
function would depend on the initial wealth. Machina's analysis relies on Frechet
differentiability and therefore cannot be applied directly to our preference rela-
tion. The reason is that when Kis Frechet differentiable, the derivative of Kat some
point characterizes the local behavior of K in a precise sense; however, this is not
true if J îs Gateaux differentiable. In the lattercase, we cannot uniformly approx-
imate Kby its derivative in some neighborhood.

Let us first mention that the boundedness of preferences guarantees that the
agent v̂ all not purchase a lottery ticket with too high a prize.

Theorem 7

Suppose that Fis bounded; then for all w > 0 and e > 0, the sure outcome w is pre-
ferred to the lottery (w — e,w + {\ — p/p)e, 1 — p,p) (OTp small enough.

Proof: See appendix.
The theorem tells us that a decision maker will not purchase a fair gamble ofler-

ing ke with probability \/k if k is too large.
We now turn to the problem of the unbounded utility functions. It appears

quickly that the nonseparability of the function 0 and h is crucial.

Theorem 8

If (}) is separable, i.e. (p{x,p) = u{x)g{p), and '̂( •) is bounded, then the local utility
function at any distribution F is bounded.

Proof: Let GH- be the cumulative distribution of a point mass at W.

f= u(w) g{p)dp, SOM( •) is bounded;
•'0

= I u'{s)g{F{s))ds < sup ^ sup w. Q.E.D.
J O p .X
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When (^ is not separable, we can easily construct preferences that are bounded
with unbounded utility functions, using the following lemma.

Lemma (8.1)

If the function ;?£ ]0,l[-». sup^ is L', then V(-)is bounded.

Proof V(E) = jl, <^{z(p).p)dp < /: s u p , m p ) \ p
So to exhibit some bounded preference functional Fwith an unbounded local

utility function UF at all distribution F. we choose 0 verifying the condition of
lemma (8.1) and such that 0{xA) is unbounded. If we choose (^(x.O) to be concave
and <p{xA) to be convex, the utility functions will have the desired concave-convex
shape (see figures 2 and 3).

Note that at the same time we solve the problem of the relative invariance of
gambling behavior to initial wealth, since the inflection point (or region) of the
utility function will change with the initial distribution. An appealing property is
that for a nonrandom wealth w. the infiection point is exactly at H'.

As we pointed out above, the derivative of V at F does not characterize com-
pletely the local behavior of V. When talking about lottery or insurance, we do not
consider unidirectional pertubations of the initial wealth, so that a decision maker
may not want to purchase a lottery ticket or an insurance contract even though the
local utility function has the right shape. The strategy we adopted is to characterize
the conditions under which he or she would purchase a lottery involving a fixed
gain or an insurance against a fixed loss if the probability of the event considered
is small enough, in the spirit of the local analysis.

Fig. 2, Concave-convex utility function when «J>(j:-O) is concave and (|)(.r.l) is convex.
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U

Fig. 3. Concave-convex utility function solving the problem of the relative invariance of gambling
behavior to initial wealth.

Lemma (8.2)

Ati individual with initial distribution F will accept the lottery (e. {-p/\ -
1 - p) when p is small if

(4)

and only if the weak inequality holds.

Proof: See appendix.
For the case of insurance, the initial distribution must include the loss but the

result is similar.

Lemma (8.3)

An individual with an initial distribution G{x) = pF{x + e) + (1 - p)F{x). i.e..
wealth w with distribution F{w) plus an additional p chance of losing e independ-
ently oiw. will insure against the loss e when;? is small enough if

(5)

and only if the weak inequality holds.
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The conditions when V is Frechet differentiable are the same except that
\li<^\iz{p),p)dp is to be replaced hy EfU'f{x). If we assume that (t>,;(;*:.;7) < 0. then
J>i(2(/j),/?)(//7 > \lf^Sx,F{x)) dF{x) = EpU'fix), so that the conditions (4) and (5) are
stronger. However, when the distribution F has no point-mass. jl,(i?i{zip),p)dp =
jl(\>^ix,F{x)) dF(x). Therefore it is natural to impose as a first requirement that the
local utility function at a smooth distribution have a concave-convex shape. If we
want preferences to be bounded, this rules out separable forms (^{x,p) = u{x)g{p).

There is a more fundamental reason to exclude separable forms. As was done by
Friedman and Savage, a separable form could be reconciled with bounded pref-
erences by adding a terminal concave section to the utility functions. But a separ-
able form cannot explain the invariance of gambling behavior to initial wealth.
The local utility function for a fixed initial wealth H' when <^(x,p) = u{x)g{p) is
given by

Ocjx) = u{x)g{0) ifx<w,

= u(x)g(,\) - w(H')t^(l) -^(0)1 ifx > w.

We see that the shape of the utility function at some level x is independent of u'. It is
impossible that the utility be concave-convex with an inflexion point close to H- for
all G^., since the inflexion point must be independent of w.

Remark: If (|)|,(H',;J) < 0 and (p{xS)) is concave, when the initial distribution is G^.,
(5) is verified for all e<w, while (4) is not verified for e small. This is consistent
with the existence of lotteries with substantial prizes only.

Using lemmas (8.1) and (8.2). we see that to build an example of bounded pref-
erences compatible with the simultaneous purchase of lottery tickets and in-
surance, one can do the construction illustrated in figures 2 and 3 and choose
(J)(x,l) such that lim^,+^ <P\(x,\) = +cc. Then the individual will purchase a lottery
(e.p) when e is large and p is small enough. This does not contradict theorem 7
because the probability/J has lo be chosen after e. In theorem 7 we fix the premium
and increase the prize, while now we fix the prize and decrease the premium. The
next section will give specific examples.

7. Integrated solutions

We want now to determine whether the theory enables us to reconcile the
behaviors discussed in section 5 and 6 with the same preference functional. More
precisely, can we find <^ and h such that preferences are bounded, the GAP is
verified, and. at least for all G«,, the relations (4) and (5) are verified for some e > 0?
It turns out that if we do not restrict the levels of wealth considered, the search is
hopeless. We show below that the GAP and the purchase of some lottery tickets at
all levels of wealth (as we defined it) are incompatible with bounded preferences.
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Theorem 9

Suppose that for all X./A (t)|2(A-,/?) < 0 and that for all distributionsG^ there exists E
> 0 such that relation (4) is verified; then preferences are unbounded.

Proof: See appendix.
The intuition behind the results is that if <])|;(.x./j) < 0, the slope of 0(..;?) de-

creases with/j so that when (|)(..l) is unbounded, so will be (JK ../')• But if(I)(.,p) is un-
bounded for all /), preferences must be unbounded.

The result is not so disturbing because wishing to reconcile everything at all
levels of wealth appears a little excessive. After all, we are talking about the initial
wealth of the individual, and initial wealth is bounded. We will show in the follow-
ing examples that we can still go very far in the search for an integrated solution.
The problem comes from the behavior when the initial wealth is very large. If we
assume that either the GAP or relation (4) is verified only for bounded levels of ini-
tial wealth, the other requirements can be verified for all level of wealth.

Example 1

Suppose that <^x,p) = x + {\ - 2y/p) x/{] + x). Then

.,p) is concave for/> < Vi. convex for/? > Vi (see figure 4).
For f = G,,

while

UaAw + e) -

e E L 1 + w 1 + w

- 8) - UGJW) , , 1 r W W-

e L 1 + H- \ + w -1
- eJ

Therefore relation (4) is verified for E > (1 + H')2. while relation (5) is verified for all
E < iv. One appealing aspect is that the purchase of insurance appears to be more
general than the purchase of lottery tickets. However, preferences are unbounded:
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Fig. 4. Example 1.

Example 2 (see Figure 5)

Choose k large enough:

i +.V

. x-k
' \ +x-k

Now the preferences are bounded, since

< + < ^ +

1 H-

3 I + + 00
+ CO.

\ + k

is defined everywhere and continuous:

+ 1 +
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1
" ' " " " ^ (1 + x - ^ :

is defined everywhere and

, . 1

1

Fig. 5. Example 2.

ifx > A:.

<0:

+x-ky

ifx < k,

ifx>k.

So the GAP is verified. Provided that w < Vi{k - 2). an individual with initial
wealth w will purchase some lottery tickets and insure all small risks (relation (4) is
verified for some e and relation (5) for all e < w).

Example 3 (see figure 6)

Definex{p) = k/y/p{\ -p). k large.

i fx

= Hxip).p) + ^̂1 ̂ >x{p).
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Fig. 6. Example 3.

As in example 2, (t)| is defined, continuous and positive everywhere. As long asx
< x(p). (>i;;(x./>) is defined and negative so that the GAP is verified at least for dis-
tributions with upper bound less than 2k.

For a fixed wealth w, the utility is

= x

= X —

1 +x

+ 2 w

1 +x I + w

ifx < tv,

ifx > w.

The utility function at Ĝ . is the same as in example 1 (only (])(.,0) and (I)(.,l) mat-
ter). Notice that** <I)I(X./J) < 1 + (1 - 2v ;̂7)/(l +x). Therefore, the results of example
1 hold, and an individual with initial wealth w will purchase some lottery tickets
and insure all small risks.

Notes

1. Kahneman and Tversky (1979. 1984), Loomes and Sugden (1982), Segal (1987).
2. Chew and MacCrimmon (1979). Chew (1983), Sega! (1984). Dekel (1986). and others.
3. The idea of using a measure on the epigraph off as a representation of preferences is due to Segal

(1984). See also Chew and Epstein (1987).
4. In the case of a multiplicatively separable form 0i(jf,/j) = «'(jc)/'(l - p), the condition reduces to /

convex as found by Segal (1984).
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5. For all a £ l - l . l | . x > ^ . 1 + ^ > I I +

Appendix

Proof of Theorem I

We begin by considering the set of all distributions with equally unlikely out-
comes. Z)'̂ . and, for each n. the subset D^ C D^ with n outcomes each of which has a
probability that is a multiple of \/n.

For F E D^. let us list the mass-points of Fin nondecreasing order as xf . . . . ,x^.
By The axioms of ordering and continuity on Df,, we can represent preferences by a
numerical indicator K^(F) = f/,,(Xi xj. The domain of t/n is the n-fold Carte-
sian product of A", subject to the constraints that x, < . . . < Xn. Let us denote
this spaced". The subsets of components |/|1 </ <j\ and }/[/ </<«} are separable
in Gorman's sense, by virtue of the ordinal independence assumption.

Lemma

If > satisfies ordering, continuity, and ordinal independence on D^, then there
exist u", i = 1 . n. such that

twiix!) (A.I)
. =1

is a numerical representationofX Moreover, M" is continuous and nondecreasing.

Proof of lemma: int X" can be written as the union of open rectangles jS(,},,,i
where

and where, for any k, S^ n (U*:l 5̂  )#(().
Apply Gorman's theorem to 5[, obtaining a representation

where M, are continuous and nondecreasing, by virtue of the continuity and mon-
otonicity axioms.

Now apply Gorman's theorem to 5",, obtaining
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n

TJ (v X \ '^ / JJ (Y \ v ^ ^
( -1 ' ' '

The functions u, are unique up to common afTine transformations. Therefore there
will be a unique set of functions w, that agree with the u, on their common domain
5| n Sj. With only a slight abuse of notation we can use u, to denote these functions
throughout the domain 5, U 5,. Continuing this procedure, and extending con-
tinuously to the boundary o{X\ we obtain (A.I). Q.E.D.

Define

v|/";^x|o,-,- l l -^R
\ nn I

by

<(x.^) = I<(x) (A.2)

and

y''(x.O) = 0.

Since

we have

which also represents > on Z)f.
Note that if m = jn for some integer^, then

Therefore, applying the above definition for all n, we obtain a function

where Q is the set of all rational numbers in |0,I].
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Define

Lemma

U'FE D^ has mass points with rational probabilities, then F(F) = S^l, vC^̂ f.̂ ,)
\I/(xf,9,_,) represents >, where q^ is the cumulative atxf.

Proof of lemma: Let F E /)^ have mass points at x̂ " x^, in increasing order.

However, the last summation is invariant to (^, qj and hence to F. because it
represents the utility of a unit point mass atx. Thus the left-hand side of (A.3) is
also a representation of >.

Lemma

v|/ is continuous.

Proof of lemma

Let F be the distribution: x, with probability q and x with probability 1 - q
(denoted (Xi,x,g.l - q)) where q is rational. We have

K(F) = i i ^ < i )

which equals

V{F) = \

or

y(x,.^) is continuous inxi from the confinuity of the u'^'s.
Suppose now that a sequence of rational numbers q^ converges to q and that

y(X|.^t) does not converge to \i/(X|,̂ ), say it converges to \ir(x^,q) - a, where a > 0.
There exists some e > 0 such that
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For k large enough, the distribution (x, - e..v.̂ .l - q) is strictly preferred to the
distribution (Xi.x.^^.l - ^J . which contradicts the continuity assumption. Q.E.D.

Since V{E) is continuous on the distributions with rational probabilities, it has a
continuous extension V(F) on D.

Since y is confinuous, it has a unique continuous extension to Xx [0.11.
denoted y. Moreover. V{E) = Z';._Mx,^Pi) - v(-^nA-i)| where F is the distribution
with support {x,,... ,xj and cumulative /?, at x,.

The function y induces a confinuous measure on the Borel sets o(XX [0,1] as
follows: Consider the function fj induced on rectangles [x^x,] X [puPi] by

M([X|.X.] X [p^.pi]) = V(X2.P2) - ^(Xi-Pi) - ^(Xi.p2) + V(X|./7|).

and let [I b^ its Lebesgue extension to all Borel sets in A" X [O.!).
Now as \|/ is continuous, j] will be confinuous. in the sense that it has no point-

mass.
By construction of the Lebesgue extension, the measure is set-continuous: that

is. if ̂ ^ - • A then \i{A,,) — ii{A) where A„~^'A means lim sup A,, = lim inf .4,, = A.
Let us define now A,. = \{x.p)\p > F(x)\. It is easy to construct, for each distribu-

tion F. a sequence of simple distributions such xhatA^ -*'Af{A„ and/4 are the upper
set), and^,, C/i^., and/T, QA„. Fora simple distribution.

= I

- t

so for any F. \iiAy) = f(F) ~ v(O,l).

We can take f^iA^) as representation of the preference.
Now decompose \i(dp,cix) as a marginal measure ii{dp) and a conditional dis-

tribution d

where the integral is taken over (p,x) E

Write
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}x \{p,x)

define

Then

\eA,\ =

Jo

[OMp)h

MpMx).

The corollary is obtained by decomposing the measure into the marginal measure
v(dx) and the conditional measure V2{p.dx).

Proof of Theorem 4: {<^M) is more risk-averse than ((1)*./J*) if and only if the function
X -*, \\p^{s.F{s))ds is a concave transform of the function x -* /o(J>f(.?.F(5))(/.v. for
allF.

From Pratt's characterizafion of concave transforms, this is equivalent to

VF, VXi,X2,X3, Xi < X; < Xj.

/K I t P I c i i /TC

• . (A.4)

Taking the limit when Xj — x, and the limit when x; - • Xj, we find, when F is
confinuous.

so that [(t)|(x.F(x))/(t>f(x.F(x))l is no nine re a sing, which is equivalent to our state-
ment. Suppose now that [0|(x.F(x))/<|)r(x,F(x))] is nonincreasing. Then

\y{s,F{s))ds

^ Q.E.D.
rx2 <^*{.X2,F{x.)) rxi

(^f{s,F{s))ds ^t{s,F(s))ds
J,. 'JO



ORDINAL INDEPENDENCE IN NONLINEAR UTILITY THEORY 383

Proof of Theorem 6:
Necessity:

dpt *(x,.l - /J,) - (t)(x..l - Pi)

must be nonincreasing with/?,, which implies ^i2{x,p) < 0.

Sufficiency:

\ <^,{x,p)dp dx= \ \ i^i(x,p)dp dx.
•'FBix) Jx Jf^ix)

\ \ <^iix.p)dp - f
x {JFcix) J

W <^i{x,p)dp - (t>dx,
Jx<x'' iJFcix) JF0{X)

r r rF^^x) ^ F^4{XHFB(X)-F^[X)

]\ <t^Ax.p)dp - it>,{x,
Jx<x* l-lFclx) •'F(ixHFBix)-F^lx)

\^^{x,p) - <t),(x./. + Ffl(x) - F,{x))\dp dx > 0.
-'I<A:' JFri-x)

As forx <x* . F^Cxrf) <F^(x) andFB(x) - F^(x) > 0. this is true if(I),(x,/j) is nonin-
creasing with p or tt>i2(x,/7) < 0. Q.E.D.

Proof of Theorem 7:

We call Fp the distribution (u- - e. w + (1 - p/p)e, 1 - p.p).

= f (t>(H',5)(/5,
Jo

lim sup K(Fp) = I 0(H ' — e,s)ds + lim sup (J)! w -(- ^ E,,S 1^5.

Suppose that p;rii^rr^ 0 and (̂ (G>̂ ) < V{Fp ) .
Then there exists a > 0, such that for all n,

(f) w + ^ £.5 jds > la. (A.5)
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Now choose the sequence q, by: q^ = px, q,+x = /?„ such that

r'"'''+i / t — /I \
(J) w + ^- e,5 \ds > a.

J]-q, \ q, I

Given that q, = p^ for some n, the inequality (A.5) insures that we can find
Choose a distribution F as follows:

z{p) = w + — e if/Jel I — ^,, 1 •

Then

^ 1 - ?r = +00.

So the preferences are unbounded. Q.E.D.

Proof of Lemma (8.2):

Define Fp(x) = (1 - /?)F(x + \p/l - p]e) + pF(x - e).

r rFix,

^{fn) - y{F) = <tii{x,s)ds
' Jx JFpix)

erf Fix") r F{x)

Jf(x) " J{\-P)f\x*{pl\-P)f^\

a) The second line has derivative 0 at/7 = 0.

Va > 0, 33 > 0/\s - F(x)[ < 3 =*|<J),(x,5) - (t),(x,F(x))[ < a.

Define

F\x+{pn-pH]r ( rii-p)F{x)+pfix-e) r Fl
G{p) = \ \\ i^,{x,s)ds+

Jx \,JF[X) Jil-p)F\x+{p/l-p)e]+pFix-e)

2a jiF{x) - Fix - e))dx
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> ^^^^ > J (J),(x,F(x))( F( X + j ^ ^ e I - F(x) Irfx - 2a

- F(x - e))dx.

Using the right continuity of F. we find

Va 2a (F(x) — F(x — e))dx > lim | —^^ | or lim —^^ = 0.
Jx r-o P p-o P

b) The first term of the first line is K((l - p)F + pF^) - V{F), where F̂  is the dis-
tribution FJix) = F(x — E). By definition of Up, its derivative is

I Ufix)\dFix - E) - dF\ = Ep\Up{x + e) - UAx)]
Jx

The second term can be written

LL
Its derivative at/7 = 0 is —e/,

So the overall derivative is

Ep\V,{x + e) - UAx)\ - e f <Sfs{z{s\s)ds.
J s

Lemma (8.2) follows directly.

Proof of Lemma (8.3):

Define F (̂x) = F(x + pe) the distribution of the agent if he insures the risk.

J. i.pFlx+e)+i\-p)F(x)

= <t>^(x,s)ds
•>X JF{x+pe)

, .pFlx+e)n\-pmx) . .FU)

<>l{X,s)ds+ 0,(X,5)(^5.
Jx JF(X) JX JFlx+pe)

The first term is just V{F) - V{{\ - p)F + /?FJ where F,(x) = F(x + e); its deriva-
tive is

- dF(x
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The second term is /,{—<J)(z(5),j) + (^z(s) — pe,s)\ ds; its derivative is —ej,<pi{z{s),s)ds.
So the total derivative is

Ep{Ufix) - Uf{x - e)) - 8 ^i{z(s).s)ds.

Proof of Theorem 9:

For F = G^. the relation (4) reduces to

(A.6)

Since 0I2(M',/7) < 0, jo 't>ii'^^P)dp > 0I(H^''U- Choose w arbitrarily; relation (A.6) im-
plies that we can find 6] > 0. such that

<t)(H' + e,,l) - 0(wj) > e, <i>i{w.p)dp > E | 0 , ( W , 1 ) ,
Jo

<Di(w + e i . l ) > ( t ) , ( w , l ) .

Recursively, define ê  by

(|)(H' + e , . . . + e„^) - (t)(w + e , . . . + e«_ | . l ) > e, <t>i{w + . . . + E„-x)dp,
Jo

4 ) , ( 1 + e , . . . + £ „ , ! ) > 4 ) , ( w + . . . + e _ , , l ) . ( A . 7 )

T h e n

Suppose that (I)(x,l) is bounded; then H' + E, . . . + Ê  must converge to some w.
But then

< I ) , ( H ' + E l . . . + E « - i , / 7 ) ( / / 7 ; r r ; ^
Jfi JQ

while

So we find (t)i(iv.l) > Jo <i?ii^,p)dp which contradicts 0i2(x./7) < 0. Therefore <l)(x.l) is
unbounded. Since <|)(x./7) = j^<pi{s,p)ds > JQ4),(5.1)̂ ^5 = (I)(x,l),<l)(x,/7) is unbounded
for all/7. Q.E.D.
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