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Abstract

What does it mean to say that a quantity is identifiable from the data? Statisticians seem to agree

on a definition in the context of parametric statistical models — roughly, a parameter θ in a model

P = {Pθ : θ ∈ Θ} is identifiable if the mapping θ 7→ Pθ is injective. This definition raises important

questions: Are parameters the only quantities that can be identified? Is the concept of identification

meaningful outside of parametric statistics? Does it even require the notion of a statistical model? Partial

and idiosyncratic answers to these questions have been discussed in econometrics, biological modeling, and

in some subfields of statistics like causal inference. This paper proposes a unifying theory of identification

that incorporates existing definitions for parametric and nonparametric models and formalizes the process

of identification analysis. The applicability of this framework is illustrated through a series of examples

and two extended case studies.

1 Introduction

Statistical inference teaches us “how” to learn from data, whereas identification analysis explains “what”

we can learn from it. Although “what” logically precedes “how,” the concept of identification has received

relatively less attention in the statistics community. In contrast, economists have been aware of the identifi-

cation problem since at least the 30’s (Frisch, 1934, Chapter 9) and have pioneered most of the research on

the topic. Koopmans (1949) coined the term “identifiability” and emphasized a “clear separation between

problems of statistical inference arising from the variability of finite samples, and problems of identification

in which [the statistician] explore[s] the limits to which inference even from an infinite number of observations

is subject.”
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Hurwicz (1950) and Koopmans and Reiersol (1950) formalized the intutive idea of identification and

developed a general theory for statistical models. The literature then fractures, with specialized definitions

of identifiability arising in different fields, including biological systems modelling (Jacquez and Perry, 1990);

parametric models (Rothenberg, 1971; Hsiao, 1983; Paulino and de Bragança Pereira, 1994); ecological regres-

sion (Goodman, 1959; Cross & Manski, 2002); nonparametric models (Matzkin, 2007); causal models (Pearl,

2009; Shpitser, 2008); and nonparametric finite population models (Manski, 1989, 2009). This divergence

and lack of coherent unifying theory has obfuscated some central ideas and slowed down the development of

the field.

This paper proposes a general framework for studying identifiability that encompasses existing definitions

as special cases. We make three main contributions. First, we study the common structure of the specialized

definitions and extract a single general — and mathematically rigorous — definition of identifiability. Ab-

stracting away the specifics of each domain allows us to recognize the commonalities and make the concepts

more transparent as well as easier to extend to new settings. Second, we use our definition to develop a set

of results and a systematic approach for determining whether a quantity is identifiable and, if not, what is its

identification region (i.e., the set of values of the quantity that are coherent with the data and assumptions).

This process of identification analysis, formalizes ideas introduced in the literature on partial identification

(Manski, 2003, 2009; Tamer, 2010). Third, we provide concrete examples of how to apply our definition in

different settings and include two in-depth case studies of identification analysis.

The paper proceeeds as follows. Section 2 introduces our general theory, starting with some backgound

on binary relations (Section 2.1), which are the key mathematical objects underpinning our definition of

identification (Section 2.2). We illustrate the flexibility and broad applicability of our definition in Section 3

and discuss identification analysis in Section 4. Finally, we provide two case studies in Section 5.

2 General theory of identification

2.1 Background on binary relations

Let Θ and Λ be two sets. A binary relation R from Θ to Λ is a subset of the cartesian product Θ× Λ. For

ϑ ∈ Θ and ` ∈ Λ, we say that ϑ is R-related to ` if (ϑ, `) ∈ R. Following convention (Halmos, 2017), we

use the notation ϑR` as an abbreviation for (ϑ, `) ∈ R. Below, we define four important properties that a

binary relation may have (Freedman, 2015); see Lehman et al. (2010) for an in-depth discussion.

Definition 1. A binary relation R from Θ to Λ is said to be:
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• injective if

∀ϑ, ϑ′ ∈ Θ,∀` ∈ Λ, ϑR` and ϑ′R` ⇒ ϑ = ϑ′

• surjective if

∀` ∈ Λ,∃ϑ ∈ Θ : ϑR`

• functional if

∀ϑ ∈ Θ, ∀`, `′ ∈ Λ, ϑR` and ϑR`′ ⇒ ` = `′

• left-total if

∀ϑ ∈ Θ, ∃` ∈ Λ : ϑR`

A binary relation that is both functional and left-total is called a function.

Example 1. Let Θ be the set of prime numbers, Λ be the set of integers, and R the “divides” relation such

that ϑR` if ϑ divides ` (e.g., 3R3, 3R6, but 3 is not in relation with 2). In this case, R is surjective and

left-total, but not injective nor functional.

Example 2. Let Θ = R, Λ = R, and R be the “square” relation defined by ϑR` if ϑ2 = `. In this case, R

is left-total and functional, but it is not surjective (e.g., there is no ϑ ∈ Θ such that ϑR(−4)) nor injective

(e.g., 2R4 and −2R4). If we instead consider Λ = R≥0, the set of all positive real numbers and 0, then R is

both surjective and injective.

Example 2, shows that the properties described in Definition 1 depend on both the binary relation and

the sets Λ and Θ. Throughout this paper, whenever we refer to properties of binary relations, the dependence

on Λ and Θ will always be implied.

2.2 Identification in sets and functions

We start by defining identifiability for a binary relation. The definition forms the basis of our unifying

framework as all the other definitions of identifiability are obtainable by specifying appropriate Λ, Θ, and

R.

Definition 2 (Identifiability). Let Θ and Λ be two sets, and R a surjective and left-total binary relation

from Θ to Λ. Then,

• Θ is R-identifiable at `0 ∈ Λ if there exists a unique ϑ0 ∈ Θ such that ϑ0R`0;
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Figure 1: Diagram of the main objects.

• Θ is everywhere R-identifiable in Λ if it is R-identifiable at `0 for all `0 ∈ Λ. In this case, we usually

say that Θ is R-identifiable.

The distinction between R-identifiable at `0 and everywhere has important practical implications. For

example, when handling missing data, the missing at random assumption aims to obtain identification at

the observed missing data pattern (i.e., at `0); whereas, the stronger missing always at random aims to be

everywhere identifiable (Mealli and Rubin, 2015; Bojinov et al., 2020).

Formally, identifiability everywhere is equivalent to the binary relation being injective.

Proposition 1. Let Θ and Λ two sets, and R a surjective and left-total binary relation from Θ to Λ. Θ is

R-identifiable if and only if R is injective.

Proof. This is a restatement of the definition.

In most practical applications, we can derive a natural specification of the problem by working with an

induced binary relation. Intuitively, an induced binary relation connects “what we know” to “what we are

trying to learn” through a “statistical universe” in which we operate.

Definition 3 (Induced binary relation). Let S be a set and G(S) be the set of all functions with domain S.

Let λ, θ ∈ G(S), and Θ = Img(θ) and Λ = Img(λ) their respective images. The binary relation from Θ to Λ

defined as Rθ,λ = {(θ(S), λ(S)), S ∈ S} is called the induced binary relation associated with (θ, λ).

The examples in Section 3 show how S, λ and θ map to real problems. In broad terms, the statistical

universe S contains all the objects relevant to a given problem; the observation mapping λ maps S to “what

we know”; and the estimand mapping θ maps S to “what we are trying to learn”. Figure 1, illustrates how

these concepts are connected.
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The following proposition follows immediately from the definition of an induced binary relation.

Proposition 2. Let S be a set, and θ, λ ∈ G(S). The induced binary relation Rθ,λ is surjective and left-total.

Applying Definition 3 to the induced binary relation allows us to extend the notion of identification from

sets to functions.

Definition 4 (Identifiability of a function). Consider S and θ, λ ∈ G(S), and let Θ = Img(θ) and Λ =

Img(λ).

• The function θ is said to be identifiable at `0 ∈ Λ if Θ is Rθ,λ-identifiable at `0. That is, for `0 ∈ Λ

let S0 = {S ∈ S : λ(S) = `0} then Rθ,λ is identifiable at `0 iff there exists ϑ0 ∈ Θ, such that, for all

S ∈ S0, we have that θ(S) = ϑ0.

• The function θ is said to be identifiable everywhere from λ if Θ is Rθ,λ-identifiable everywhere in Λ.

We will usually simply say that θ is identifiable.

Definition 4 is the workhorse allowing us to unify the notions of identifiability used in the literature for

parametric and nonparametric models, as well as for finite populations.

Remark 1. Both Definitions 2 and 4 use the adjective “identifiable” to qualify a set Θ or a mapping θ. The

terminology arises naturally from the interpretation of θ and λ; indeed, we write that the estimand mapping

θ is identifiable from the observation mapping λ. Proposition 1, however, makes it clear that identifiability

is fundamentally a property of the binary relation R, whether we apply the adjective identifiable to θ, λ, or

the whole model is mostly a matter of semantics.

3 Identification in statistical models and finite populations

There are two significant benefits of using our framework to tackle identification in statistical models. First,

the flexibility of our general formulation allows us to work directly with both parametric and nonparametric

models, without having to introduce separate definitions. Second, relying on binary relations instead of

functions enriches the class of questions that can be addressed through the lens of identification.

In this section, we make extensive use of examples to illustrate the broad applicability of our framework.

All examples follow a common structure: first we explain the context; second, we ask an informal identifi-

cation question; third, we show how to formalize the question in our framework by specifying S, λ, and θ

appropriately. The process of answering these questions, which we call identification analysis is described in

Section 4 and illustrated in Section 5.
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3.1 Parametric models

Consider a parametric model Λ = {Pϑ, ϑ ∈ Θ}, where Θ is a finite dimensional parameter space and Pϑ is

a distribution indexed by ϑ ∈ Θ. The standard definition of parametric identification centers around the

injectivity of the parametrization (e.g., Definition 11.2.2 of Casella and Berger (2002) and Definition 5.2 of

Lehmann and Casella (2006)).

Definition 5 (Parametric identification). The parameter ϑ of statistical model Λ = {Pϑ, ϑ ∈ Θ} is said to

be identifiable if the function ϑ→ Pϑ is injective.

For parametric statistical models, Definition 5 is equivalent to Definition 4 with appropriately chosen

statistical universe S, observation mapping λ, and estimand mapping θ.

Theorem 1. For a parameter set Θ, define the statistical universe to be S = {(Pϑ, ϑ), ϑ ∈ Θ}. Let the

inference and estimand mappings λ, θ ∈ G(S) be λ(S) = Pϑ and θ(S) = ϑ, respectively. In this setting,

Definition 4 is equivalent to Definition 5.

Proof. By construction, the induced binary relation Rθ,λ is functional and left-total; therefore, Rθ,λ is a

function mapping ϑ to Pϑ. The conclusion follows from Proposition 1

One of the classic textbook examples is the identification of the parameters in a linear regression.

Example 3 (Linear regression). Consider a p-dimensional random vector X ∼ P (X) for some distribution

PX such that E[XtX] has rank r < p, where E denotes the expectation with respect to the law of X. Let

P (Y | X;β, σ2) = N (Xtβ, σ2), where N (µ, σ2) is the normal distribution with mean µ and variance σ2, and

let Pβ,σ2(X,Y ) = P (Y | X;β, σ2)P (X).

Question: Are the regression parameters β and σ2 identifiable?

Our framework: We can establish the identifiability of the parameter ϑ = (β, σ2) from the joint distribution

Pϑ(X,Y ) by letting S = {(Pϑ, ϑ), ϑ ∈ Θ}, where Θ = R× R+, λ(S) = Pϑ, and θ(S) = ϑ.

Even in the simple parametric setting, the benefits of the added flexibility of our general formulation

become apparent when we ask more subtle questions about identifiability. For instance, using the set up

of Example 3, suppose we are only interested in identifying β = φ(ϑ), rather than the pair ϑ = (β, σ2).

The standard Definition 5 does not apply here, since β → Pϑ is not a function; that is, each value of β is

associated with an infinite number of distributions Pϑ, with different values of the parameter σ2. Indeed, the

key limitation with existing definitions is that they focuse on the injectivity of a function. In contrast, our
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framework studies the injectivity of binary relations, which need not be functional. Therefore, Definition 4 is

directly applicable to studying the identifiability of β by replacing θ(S) = (β, σ2) by θ(S) = β; generally, it

allows us to consider any parameter of the model or combinations of parameters without having to introduce

new definitions.

Example 4 (Mixtures). Let Y1 ∼ N (µ1, 1), let Y2 ∼ N (µ2, 1), and B ∼ Bernoulli(π).

Question: Which of the distributional parameters of Y = BY1 + (1−B)Y2 are identifiable?

Our framework: For ϑ = (µ1, µ2, π), let Pϑ be the normal distribution with mean πµ1 + (1 − π)µ2 and

variance π2 + (1 − π)2. Let S = {(Pϑ, ϑ), ϑ ∈ Θ} where Θ = R × R × [0, 1]. The observation mapping is

defined as λ(S) = Pϑ and the estimand mappings are θπ(S) = π, θµ1
(S) = µ1, θµ2

(S) = µ2.The question of

the identifiability of the parameters can be resolved by studying the injectivity of the binary relations Rθµ1 ,λ,

Rθµ2 ,λ, and Rθπ,λ as in Definition 4.

Clearly, the three induced binary relation Rθµ1 ,λ, Rθµ2 ,λ, and Rθπ,λ are not functional, making Defini-

tion 5 nonapplicable. Traditionally, authors have tackled this problem by proposing a separate definition for

identifying a function of ϑ (e.g., Paulino and de Bragança Pereira (1994)[Definition 2.4]); Basu (2006) refers

to this as partial identifiability. Our definition of identification for functions of the parameter agrees with

both Paulino and de Bragança Pereira (1994) and Basu (2006), with the added benefit of working directly

for both parameters and functions of parameters without requiring additional formulation.

3.2 Nonparametric models

Many authors have recognized the limitations of traditional definitions for parametric identifiability (Defi-

nition 5) when working with nonparametric models, and have proposed specialiazed frameworks (Hurwicz,

1950; Matzkin, 2007, 2013; Pearl, 2009). Consider, for instance, the framework described by Matzkin (2007)

to define identifiability. Let S be the set of all functions and distributions that satisfy the restriction imposed

by some model M, and assume that any S ∈ S defines a distribution of the observable variables P (.;S).

Similar to our general set up, Matzkin (2007)[Section 3.1] considers a function θ : S → Θ which defines a

feature of S we would like to learn about. Matzkin (2007) then proposes the following definition.

Definition 6. For ϑ0 ∈ θ(S), let

Γ(ϑ0,S) = {P (.;S)|S ∈ S and θ(S) = ϑ0)},

be the set of all probability distributions that satisfy the constraints of model M, and are consistent with ϑ0
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and S. Then ϑ1 ∈ Θ is identifiable if for any ϑ0 ∈ Θ such that ϑ0 6= ϑ1

Γ(ϑ0,S) ∩ Γ(ϑ1,S) = ∅

This definition of nonparametric identifiability can be obtained as a special case of our general definition:

Theorem 2. Let S be the set of all functions and distributions that satisfy the restriction imposed by some

model M. Define λ(S) = P (.;S), then Definition 4 is equivalent to Definition 6.

Proof. In our notation, we can write Definition 6 as:

∀ϑ0, ϑ1 ∈ Θ, ϑ0 6= ϑ1 ⇒ Γ(ϑ0,S) ∩ Γ(ϑ1,S) = ∅, (1)

which is equivalent to

(1) ⇐⇒ ¬
(

Γ(ϑ0,S) ∩ Γ(ϑ1,S) = ∅
)

⇒ ¬
(
ϑ0 6= ϑ1

)
⇐⇒ Γ(ϑ0,S) ∩ Γ(ϑ1,S) 6= ∅ ⇒ ϑ0 = ϑ1

⇐⇒ ∃` ∈ Λ : ϑ0Rθ,λ` and ϑ1Rθ,λ` ⇒ ϑ0 = ϑ1

which is the definition of injectivity (see Definition 1). The conclusion follows from Proposition 1.

Theorem 2 shows that Matzkin’s nonparametric identification definition is a special case of our more

general framework, with a specific choice of statistical universe S and observation mapping λ. We now

provide three examples that cannot be addressed with Definition 6 and require the additional flexibity

afforded by Definition 4.

Example 5 (Fixed margins problem). Consider two distributions PX(X) and PY (Y ), and denote by

PXY (X,Y ) their joint distribution. The fixed margin problem (Fréchet, 1951) asks what information the

marginal distributions PX and PY contain about the joint distribution PXY .

Question: Is PXY identifiable from PX and PY ?

Our framework: Let S be a family of joint distributions for X and Y . Let λ(S) = (PX , PY ) and let

θ(S) = PXY . The question of the identifiability of PXY from PX and PY can be answered by studying the

injectivity of the induced mapping Rθ,λ as in Definition 4 (see Section 5.1 for a detailed treatment).

In the first example, Definition 6 falls short by not allowing observation mappings of the form λ(S) =
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(PX , PY ) – a problem transparently addressed by our definition. The following example describes another

setting in which the same issue arises.

Example 6 (Missing data). If Y is a random variable representing a response of interest, let Z be a missing

data indicator that is equal to 1 if the response Y is observed, and 0 otherwise. The observed outcome of

interest is then drawn from P (Y | Z = 1).

Question: Is the distribution of the missing outcomes P (Y | Z = 0) identifiable from that of the observed

outcomes P (Y | Z = 1)?

Our framework: Let S be a family of joint distributions for Z and Y , and define λ(S) = (P (Y | Z =

1), P (Z)), and θ(S) = P (Y | Z = 0). The question can be answered by studying the injectivity of the induced

mapping Rθ,λ as in Definition 4.

Example 6 shows that θ need not be the identity function: here for instance, we are interested in the

conditional distribution θ(S) = P (Y | Z = 0). In fact, θ(S) does not even need to be a distribution: in the

following example, it is a conditional expectation.

Example 7 (Ecological regression). Ecological inference is concerned with extracting individual-level infor-

mation from aggregate data (King, 2013). An instance of the ecological inference problem is the ecological

regression problem (Cross & Manski, 2002) which can be summarized as follows: suppose we know the dis-

tributions P (Y | X) and P (Z | X). What information does this give us about the expectation E[Y | X,Z]?

Question: Is E[Y | X,Z] identifiable from P (Y | X) and P (Z | X).

Our framework: Let S be a family of joint distributions for Y , X, and Z. Define λ(S) = (P (Y | X), P (Z |

X)) and θ(S) = E[Y | X,Z]. The question can be answered by studying the injectivity of the induced mapping

Rθ,λ as in Definition 4.

3.3 Identification in finite populations

The examples presented so far asked questions about identifiability in the context of statistical models: the

statistical universe, estimand mappings and observation mappings involved entire distributions (or summaries

of distributions). Implicitly, this corresponds to the “infinite observations” perspective of Koopmans (1949)

quoted in introduction. The missing data problem of Example 6, for instance, asks about the identifiability

of P (Y | Z = 0) from P (Y | Z = 1). Consider instead a finite population of N units and denote by Yi an

outcome of interest for unit i = 1, . . . , N . Suppose we only observe Yi if Zi = 1 and that the outcome is

missing when Zi = 0; formally, we observe {Y ∗i , Zi}Ni=1, where
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Y ∗i =


Yi if Zi = 1

∗ otherwise.

This is the finite population analog to Example 6. A natural identification question would be: can we identify

τ = Y =
∑N
i=1 Yi from {Y ∗i , Zi}? Neither Definition 5 nor Definition 6 apply in this setting, since there are

no statistical models (parametric or nonparametric) involved — and yet the identifiability question makes

intuitive sense.

Manski (2009) addresses the problem by introducing a sampling model and applying concepts of identi-

fication from nonparametric statistical models. Specifically, let I ∼ Unif({1, . . . , N}) be a random variable

selecting a unit uniformly at random in the population. The population average τ can be rewritten as EI [YI ],

where EI is the expectation with respect to the distribution of YI induced by P (I). Manski’s approach al-

lows us to work with PI(Y
∗
I , ZI) instead of {Y ∗i , Zi}i∈I , and to rephrase the problem as whether EI [YI ] is

identifiable from PI(Y
∗
I , ZI) — the results of Section 3.2 are now directly applicable. A downside of this

approach, however, is that it changes the objective somewhat. Indeed, while τ and EI [YI ] refer to the same

quantity, PI(Y
∗
I , ZI) contains strictly less information than {Y ∗I , ZI}, making it impossible to formulate some

seemingly simple identification questions; such as, whether Y1 can be identified from {Y ∗i , Zi}.

By contrast, our general definition accomodates this setting by simply specifying appropriate S, θ, and

λ. Let SY be a set of possible outcome vectors, SZ be a set of possible assignment vectors, and define

S = SY × SZ . An element S ∈ S is then a pair ({Yi}Ni=1, {Zi}Ni=1). Finally, define the observation mapping

λ(S) = {Y ∗i , Zi}Ni=1 and the estimand mapping as, for instance, θ(S) = Y or θ(S) = Y1. The following

example illustrates our framework in a slightly more involved finite-population setting.

Example 8 (Population identification of causal effects). With N units, let each unit be assigned to one of

two treatment interventions, Zi = 1 for treatment and Zi = 0 for control. Under the stable unit treatment

value assumption (Rubin, 1980) each unit i has two potential outcomes Yi(1) and Yi(0), corresponding to

the outcome of unit i under treatment and control, respectively. For each unit i, the observed outcome is

Y ∗i = Yi(Z) = Yi(1)Zi +Yi(0)(1−Zi). Let Y (1) = {Y1(1), . . . , YN (1)} and Y (0) = {Y1(0), . . . , YN (0)} be the

vectors of potential outcomes and Y = (Y (1), Y (0)).

Question: Is τ(Y ) = Y (1)− Y (0) identifiable from the observed data (Y ∗, Z).

Our framework: Let SY = RN ×RN be the set of all possible values for Y , SZ = {0, 1}N and S = SY ×SZ .

Take θ(S) = τ(Y ) and λ(S) = (Y ∗, Z) as the estimand and observation mapping, respectively. The question
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is then answerable by studying the injectivity of the induced binary relation Rθ,λ as in Definition 4.

4 Identification analysis

So far, we have shown how a variety of identification questions can be formulated in our framework, but we

have said nothing about how they can answered. Identification analysis is a three-steps process for answering

such questions. The first step is to establish whether θ is identifiable or not (Section 4.1). For not idenfiable

θ, the second step is to determine its identification region (Section 4.2). The third step is to incorporate

different assumptions and assessing their impact on the structure of the identification region (Section 4.3).

4.1 Determining if θ is identifiable

The most direct—but usually challenging—approach to determine if θ is Rθ,λ-identifiable is to use Defini-

tion 4. A simpler alternative is to instead show that θ(S) is a function of λ(S) for all S ∈ S; ensuring that

each λ(S) is in relation with a single θ(S).

Proposition 3. If there exists a funtion f : Λ → Θ such that θ(S) = f(λ(S)) for all S ∈ S, then θ is

Rθ,λ-identifiable.

Proof. Fix `0 ∈ Λ, let ϑ0 = f(`0) and consider S0 = {S ∈ S : λ(S) = `0}. For any S ∈ S0 we have

that θ(S) = f(λ(S)) = f(`0) = ϑ0; therefore, θ is identifiable at `0. Since this holds for any `0 ∈ Λ, θ is

Rθ,λ-identifiable.

To illustrate the concepts in this section, we draw on an extended treatment of Example 6, which discusses

identification in missing data. It is, for instance, easy to show that the marginal probability θ1(S) = P (Z = 1)

is identifiable by noticing that it can be written as a function of λ(S) = (P (Y |Z = 1), P (Z = 1)) and applying

Proposition 3.

In many applications Proposition 3 is still difficult to apply directly either because θ(S) is a complicated

function of λ(S), or because it is not even a function of λ(S). Either way, it is often better to first break up

the estimand mapping θ(S) into simpler pieces, establish identifiability for each of them, and then leverage

the fact that a function of identifiable quantities is itself identifiable.

Proposition 4. Let θ, θ1, θ2 ∈ G(S), and f a function such that:

∀S ∈ S, θ(S) = f(θ1(S), θ2(S)).
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If θ1 is Rθ1,λ-identifiable and θ2 is Rθ2,λ-identifiable, then θ is Rθ,λ-identifiable. This trivially generalizes to

θ1, . . . , θT ∈ G(S).

Proof. Fix `0 ∈ Λ and let S0 = {S ∈ S : λ(S) = `0}. Since θ1 is Rθ1,λ-identifiable and θ2 is Rθ2,λ-identifiable,

then by Definition 4, there exists ϑ1 ∈ Img(θ1) and ϑ2 ∈ Img(θ2) such that:

∀S ∈ S0, θ1(S) = ϑ1 and θ2(S) = ϑ2

and so:

∀S ∈ S0, θ(S) = f(θ1(S), θ2(S)) = f(ϑ1, ϑ2) ≡ ϑ0 ∈ Img(θ).

In our missing data example, the quantity of interest is the average response θ(S) = E[Y ]. Applying the

strategy described above, we can write it as a function of simpler quantities:

E[Y ]︸ ︷︷ ︸
θ(S)

= E[Y | Z = 1]P (Z = 1)︸ ︷︷ ︸
θa(S)

+E[Y | Z = 0]P (Z = 0)︸ ︷︷ ︸
θb(S)

.

Starting with the first term θa,

θa(S) = E[Y | Z = 1]︸ ︷︷ ︸
θ2(S)

P (Z = 1)︸ ︷︷ ︸
θ1(S)

,

we have already shown that θ1 is identifiable. Another application of Proposition 3 establishes the identifia-

bility of θ2(S) = E[Y | Z = 1] and Proposition 4 stitches these results together to establish the identifiability

of θa. The second term θb, which also decomposes into two parts

θb(S) = E[Y | Z = 0]︸ ︷︷ ︸
θ3(S)

P (Z = 0)︸ ︷︷ ︸
1−θ1(S)

,

is not identifiable because: although 1− θ1(S) is identifiable (by Proposition 3), θ3 generally is not. To see

this, consider the following simple counter-example. Suppose Y is binary, the elements of S are then of the

form S = {P (Y = 1 | Z = 1) = α, P (Y = 1 | Z = 0) = β, P (Z = 1) = γ}. Recall the observation mapping

λ(S) = (P (Y = 1 | Z = 1) = α, P (Z = 1) = γ). Fix `0 = (α0, γ0) ∈ Λ and define S1 = (α0, β1 = 0, γ0) and

S2 = (α0, β2 = 1, γ0). By construction, θ3(S1) = 0 6= 1 = θ3(S2) while λ(S1) = λ(S2); applying Definition 4

shows that θ3 is not identifiable. The counter-example illustrates that θb is generally not identifiable which
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implies that θ is not identifiable (except when there is no missing data θ1(S) = 1).

4.2 Finding θ’s identification region

By Definition 4, we know that if an estimand mapping θ is not identifiable at `0, then there exists at least

two values ϑ1, ϑ2 ∈ Θ such that ϑ1Rθ,λ`0 and ϑ2Rθ,λ`0. The second step in identification analysis is to

determine the set of all ϑ ∈ Θ such that ϑRθ,λ`0. This set is generally called the identification region of θ at

`0 (Manski, 1990; Imbens and Manski, 2004; Romano and Shaikh, 2008).

Definition 7. Consider S and θ, λ ∈ G(S). We define the identification region of θ at `0 ∈ Λ as:

H{θ; `0} ≡ R−1θ,λ(`0) ⊆ Θ

where:

R−1θ,λ(`0) ≡ {ϑ ∈ Θ : ϑRθ,λ`0} = {θ(S) : S ∈ S, λ(S) = `0}

is the pre-image of `0 in Θ.

Informally, the identification region is the set of all values of the estimand that are equally compatible

with the observation `0. If an estimand mapping θ is identifiable at `0, then a single estimand is compatible

with `0 and the identification region reduces to a singleton.

Proposition 5. For θ, λ ∈ G(S), we have that

• θ is Rθ,λ-identifiable at `0 ∈ Λ if and only if H{θ; `0} = {ϑ0} for some ϑ0 ∈ Θ,

• θ is Rθ,λ-identifiable everywhere if and only if H{θ; `0} is a singleton for every `0 ∈ Λ.

Proof. We only need to prove the first element, since the second follows by definition. Fix `0 ∈ Λ and define

S0 = {S ∈ S : λ(S) = `0}. Suppose that θ is Rθ,λ-identifiable at `0. By Definition 4, there exits ϑ0 such

that θ(S) = ϑ0 for all S ∈ S0. The identification region is then

H{θ; `0} = {θ(S) : S ∈ S, λ(S) = `0}

= {θ(S) : S ∈ S}

= {ϑ0}.
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This completes the first part of the proof. Now suppose that θ is such that H{θ; `0} = {ϑ0} for some ϑ0 ∈ Θ.

Then, by Definition 7, θ(S) = ϑ for all S ∈ S such that λ(S) = `0 which is the definition of identifiability

(Definition 4).

To illustrate the concept of an identification region, consider Example 6, with the additional information

that Y ∈ R (making Θ = R), and P (Z = 1) 6= 1. Fixing `0 = (P (0)(Y | Z = 1), P (0)(Z = 1)) ∈ Λ we need

to check for every ϑ ∈ Θ whether it belongs to the identification region of `0. The previous section showed

that both θ1 = E[Y |Z = 1] and θ2 = P (Z = 1) are identifiable so let ϑ1 and ϑ2 be the unique elements

of Θ such that ϑ1Rθ1,λ`0 and ϑ2Rθ2,λ`0. Now take P (Y | Z = 0) to be any distribution with expectation

E[Y | Z = 0] = (ϑ− ϑ2ϑ1)/(1− ϑ1). By construction, S = (P (0)(Y | Z = 1), P (Y | Z = 0), P (0)(Z = 1)) is

such that λ(S) = `0 and θ(S) = ϑ, therefore ϑ ∈ H{θ; `0}. Since this is true for all ϑ ∈ R, we conclude that

H{θ; `0} = R.

Generally, we interpret Θ as the values of the estimand a priori possible, and H{θ; `0} as the values

of the estimands compatible with the observation `0. If H{θ; `0} = Θ then, not only is θ not identifiable,

but `0 carries no information about the range of plausible values for θ. We call such a quantity strongly

non-identifiable.

Definition 8 (Strong non-identifiability). A mapping θ ∈ G(S) is said to be strongly non-identifiable if

∀` ∈ Λ, H{θ; `} = Θ

We will usually write H{θ; `} = H{θ}.

When discussing how to establish identifiability, we argued that it was often helpful to break the quantity

of interest into simpler pieces and work separately on each piece before re-combining them — the same

strategy applies to the identification region. The following proposition gives simple rules for combining

identification regions.

Proposition 6. Let λ, θ1, θ2 ∈ G(S). Let θ ∈ G(S), and consider a function f such that:

∀S ∈ S, θ(S) = f(θ1(S), θ2(S))

Then if θ1 is Rθ1,λ-identifiable, the identification region of θ at `0 ∈ Λ is

H{θ; `0} = {f(ϑ0, ϑ) : ϑ ∈ H{θ2; `0}},
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where H{θ2; `0} is the identification region of θ2 with respect to Rθ2,λ, at `0, and {ϑ0} = R−1θ1,λ(`0).

Proof. By Definition 7,

H{θ; `0} = {f(θ1(S), θ2(S)) : S ∈ S, λ(S) = `0}

Since θ1 is Rθ1,λ-identifiable, by Definition 4, there exists ϑ0 ∈ Θ such that θ1(S) = ϑ0 for all S ∈ S such

that λ(S) = `0. The identification region is then,

H{θ; `0} = {f(ϑ0, θ2(S)) : S ∈ S, λ(S) = `0}.

Now notice that H{θ2(S), `0} = {θ2(S) : S ∈ S, λ(S) = `0} by definition, and so:

H{θ; `0} = {f(ϑ0, ϑ) : ϑ ∈ {θ2(S) : S ∈ S, λ(S) = `0}}

= {f(ϑ0, ϑ) : ϑ ∈ H{θ2; `0}}

When we proved that H{θ; `0} = R earlier in this section, we relied implicitly on this result. In fact, the

decomposition

E[Y ]︸ ︷︷ ︸
θ(S)

= E[Y | Z = 1]︸ ︷︷ ︸
θ2(S)

P (Z = 1)︸ ︷︷ ︸
θ1(S)

−E[Y | Z = 0]︸ ︷︷ ︸
θ3(S)

P (Z = 0)︸ ︷︷ ︸
θ4(S)

(2)

has an additional property of interest: the terms θ1, θ2 and θ4 are identifiable while θ3 is strongly non-

identifiable. Intuitively, this factorization isolates the non-identifiable part of θ in a single term. We call this

factorization a reduced form.

Proposition 7. Fix S, λ, and θ such that we can factorize as θ(S) = f({θk(S)}Kk=1, θ∗(S)) for some f and

{θk}Kk ∈ G(S). If

1. θk is Rθk,λ-identifiable at `0 for k = 1, . . . ,K, and

2. θ∗ is strongly non-Rθ∗,λ-identifiable at `0.

then the reduced form of H{θ; `0} is

H{θ; `0} =

{
f({ϑk}Kk=1, ϑ), ϑ ∈ H{θ∗}

}
,

where ϑk is the unique element of Θ such that ϑkRθk,λ`0, for k = 1, . . . ,K.
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Proof. The proof follows the same lines as that of Proposition 6, the difference being that since θ∗ is strongly-

non identifiable, we have H{θ∗, `0} = H{θ∗}.

In our running example, both θ1(S) = P (Z = 1) and θ2(S) = E[Y |Z = 1] are identifiable, whereas

θ3(S) = E[Y |Z = 0] is strongly non-identifiable. The reduced form of the identification region for θ = E[Y ]

at `0 ∈ Λ is then

H{θ; `0} = {(ϑ2ϑ1 + ϑ(1− ϑ1)), ϑ ∈ H{θ3}},

where ϑ1 and ϑ2 are the unique elements of Θ such that ϑ1Rθ1,λ`0 and ϑ2Rθ2,λ`0, respectively. Since θ3 is

strongly non-identifiable H{θ3; `0} = R and, therefore, H{θ; `0} = R, when P (Z = 1) 6= 1.

4.3 Incorporating assumptions

In the derivation of the identification region of H{θ; `0} = R, we made no assumption about the outcomes

Y (only requiring them to be real numbers). Suppose that we assume Y ∈ [0, 1], how does this affect the

identification region of θ at `0? That is the type of question that the third step of identification analysis seeks

to answer. In our framework, we formalize assumptions as functions inducing restrictions on the statsistical

universe S.

Definition 9 (Assumption). An assumption is a function A : S → R. The set A = {S ∈ S : A(S) = 0} is

called the subset of S satisfying assumption A.

To incorporate assumptions in our framework, we augment our notation with a superscript A; defining,

for instance, RAθ,λ to be the restriction of Rθ,λ to the set A. In general, the purpose of an assumption is to

make RAθ,λ “closer” to injective (Figure 4.3, provides an intuitive visualization). The restricted identification

region is then a subset of the full identification region,

HA{θ; `0} = {θ(S) : S ∈ A, λ(S) = `0} ⊆ H{θ; `0}.

In particular, an assumption makes θ identifiable when HA{θ; `0} is a singleton. For instance, continuing

with our missing data example, let A(S) = δ(P (Y,Z), P (Y )P (Z)) where δ is the total variation distance.

This specification is equivalent to assuming that Y and Z are independent1. Under this assumption, it is easy

to verify that θ(S) = E[Y ] is identifiable. Following Manski (2009) we distinguish two types of assumptions.

1Mealli and Rubin (2015) call this assumption missing always completely at random.
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Figure 2: Illustration of an assumption. On the left, Rθ,λ is not injective. On the right, RAθ,λ is injective
making θ identifiable.

Definition 10. Define ImgA(λ) = {λ(S) : S ∈ A}. If ImgA(λ) = Img(λ), then assumption A is said to be

a priori irrefutable. Otherwise, it is called a priori refutable.

We use the term a priori to stress that we can determine if an assumption is refutable before observing

any data. Once we observe λ(S) = `0 an a priori refutable assumption is either refuted, or it is not,

depending on whether `0 ∈ ImgA(λ); in other words, an assumption may be a priori refutable and yet not

be refuted by a given `0.

In the context of our running example, the assumption that Y ∈ [0, 1] is a priori refutable — observing

data points outside of this interval would refute the assumption. Under this assumption, it is easy to verify

that HA{E[Y |Z = 0]; `0} = [0, 1] and, therefore, the reduced form of the identification region of θ(S) = E[Y ]

at `0 is:

HA{θ; `0} = {(ϑ2ϑ1 + ϑ(1− ϑ1)), ϑ ∈ [0, 1]},

which provides a natural bound for E[Y ].
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5 Case studies

5.1 Fixed margin problem

Continuing with the setup of Example 5 with the added simplifying assumption that all the probabilities

are continuous, let FX , FY and FXY be the cumulative density functions (CDFs) of PX , PY , and PXY

respectively. Recall that S = PXY and S is the set of all continuous joint probability distributions. The

observation mapping is λ(S) = (FX , FY ) and the estimand mappings are θX(S) = FX , θY (S) = FY and

θ(S) = FXY .

We begin by establishing that θ is not everywhere Rθ,λ-identifiable. Let C be the set of all copulas and

let `0 = (F
(0)
X , F

(0)
Y ). By Sklaar’s theorem, for all C ∈ C, the function

F
(0,C)
XY : (x, y) 7→ C(F

(0)
X (x), F

(0)
Y (y))

is a valid joint CDF with margins F
(0)
X and F

(0)
Y . In particular, let C1 6= C2 ∈ C and S1 = F

(0,C1)
XY ∈ S,

S2 = F
(0,C2)
XY ∈ S. Then λ(S1) = λ(S2) = (F

(0)
X , F

(0)
Y ) = `0 by construction, but θ(S1) 6= θ(S2) since

C1 6= C2. That is, θ is not Rθ,λ-identifiable at `0.

Next, we will derive the identification region of θ at `0—the set of all CDFs of continuous joint distribu-

tions with margins F
(0)
X and F

(0)
Y —in its reduced form. By Sklaar’s theorem, for any joint CDF FXY with

margins FX and FY , there exists a unique (since we focus on continuous probabilities) copula C ∈ C such

that:

FXY (x, y) = C(FX(x), FY (y)), ∀x, y.

Denote by θ∗ ∈ G(S) the function that maps each S = PXY to its unique associated copula, and let f be the

function that maps ({FX , FY }, C) to the valid joint CDF FXY (x, y) = C(FX(x), FY (y)). In our notation,

we have:

θ(S) = f({θX(S), θY (S)}, θ∗(S)).

Since θX and θY are identifiable, we can write:

H{θ; `0} =

{
f({ϑ(0)X , ϑ

(0)
Y }, ϑ), ϑ ∈ H{θ∗; `0}

}
(3)

But it is easy to verify that H{θ∗; `0} = H{θ∗} = C. Indeed, reasoning by contradiction, suppose that

∃C0 ∈ C\H{θ∗; `0}. Let F
(0)
XY = C0(F

(0)
X , F

(0)
Y ). By Sklaar’s theorem, F

(0)
XY ∈ S0. But then by definition
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C0 = θ∗(F
(0)
XY ) ∈ H{θ∗; `0} which is a contradiction. Therefore C = H{θ∗; `0} That is, θ∗ is strongly

nonidentifiable. So Equation 3 is the reduced form representation of the identification region of θ. From

Theorem 2.2.3 of Nelsen (1999), we have that

W (x, y) ≤ C(x, y) ≤M(x, y)

with W (x, y) = max(x+ y − 1, 0) and M(x, y) = min(x, y). Since W and M are both copulas, we have:

W (FX(x), FY (y)) = min
ϑ∈H{θ;`0}

ϑ(x, y) ≤ ϑ(x, y) ≤ max
ϑ∈H{θ;`0}

ϑ(x, y) = M(FX(x), FY (y))

for all ϑ ∈ H{θ; `0}. This corresponds exactly to the Hoeffding-Fréchet bounds.

We now assume that the joint distribution is a non-degenerate bivariate normal. Formally, we define the

function A(S) = 0 iff S = PXY is bivariate normal and A(S) = 1 otherwise. In this case, copulas are of the

form Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)) where Φ is the standard normal CDF and Φρ is the CDF of a bivariate

normal with mean zero, unit variance, and correlation ρ. Now let `0 = (F
(0)
X , F

(0)
Y ) a pair of univariate normal

distributions with parameters (µ
(0)
X , σ

(0)
X ) and (µ

(0)
Y , σ

(0)
Y ) respectively, and define τ = (µ

(0)
X , σ

(0)
X , µ

(0)
Y , σ

(0)
Y ).

In this setting, we can show by the same reasoning as above that the parameter τ is identifiable while the

parameter ρ is strongly non-identifiable. The reduced form of the identification region of θ is

HA{θ; `0} = {Φτ,ρ, ρ ∈ [−1, 1]}.

where Φτ,ρ is the CDF of the bivariate normal distribution with parameters τ and correlation ρ.

If we further assume that the joint distribution is a non-degenerate bivariate normal with correlation ρ0

(corresponding to assumption A0) then the identification region reduces to HA0{θ; `0} = {Φτ,ρ0}; that is, θ

is identifiable.

Remark 2. The assumption A is an example of a priori refutable assumption. Indeed, assumption A implies

that the marginal distributions FX and FY are themselves normal, so observing non-gaussian marginals would

refute the assumption.

5.2 Causal inference

For an infinite population of experimental units, we are interested in studying the relative effectiveness of

a treatment, denoted by Z = 1, relative to a control, denoted by Z = 0, on an outcome of interest. Under
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the potential outcomes framework, each unit has two outcomes2 corresponding to what would happen if the

unit receives treatment, Y (1) ∈ R, or control, Y (0) ∈ R. Since each unit only receives one treatment and, in

turn, only has one observed outcome, causal inference is essentially an identification problem.

Under the nonparametric setup, the statistical universe S is the space of all possible joint distribution

on (Z, Y (1), Y (0)), the observation mapping is λ(S) = (P (Y ∗|Z), P (Z)), where Y ∗ = ZY (1) + (1− Z)Y (0)

is the observed outcome, and the estimand mapping θ(S) = E[Y (1)− Y (0)] is the average causal effect.

The estimand mapping naturally splits into two parts,

θ(S) = E[Y (1)|Z = 1]P (Z = 1)− E[Y (0)|Z = 0]P (Z = 0)︸ ︷︷ ︸
θa

+E[Y (1)|Z = 0]P (Z = 0)− E[Y (0)|Z = 1]P (Z = 1)︸ ︷︷ ︸
θb

.

To determine the identifiability of the first term, write

θa(S) = E[Y (1)|Z = 1]︸ ︷︷ ︸
θ2(S)

P (Z = 1)︸ ︷︷ ︸
θ1(S)

−E[Y (0)|Z = 0]︸ ︷︷ ︸
θ3(S)

P (Z = 0)︸ ︷︷ ︸
1−θ1(S)

.

By Proposition 3, both θ1(S) and 1 − θ1(S) are identifiable as they are a simple function of λ(S). To see

that θ2(S) is identifiable, notice that

θ2(S) = E[Y (1)|Z = 1] = E[ZY (1) + (1− Z)Y (0)|Z = 1] = E[Y ∗|Z = 1]

is a function of λ(S), Proposition 3 establishes the result. Similarly, θ3(S) is identifiable. Applying Propo-

sition 4 stitches the results showing that θa is identifiable.

The second term,

θb(S) = E[Y (1)|Z = 0]︸ ︷︷ ︸
θ4(S)

P (Z = 0)︸ ︷︷ ︸
1−θ1(S)

−E[Y (0)|Z = 1]︸ ︷︷ ︸
θ5(S)

P (Z = 1)︸ ︷︷ ︸
θ1(S)

,

is not identifiable because both θ4(S) and θ5(S) are generally not. To show θ4(S) is not identifiable, assume

the outcomes are binary and consider

S1 = (P (Y (1), Y (0)) = (1, 0)|Z = 1) = 1, P ((Y (1), Y (0)) = (0, 0)|Z = 0) = 1, P (Z = 1) =
1

2
) and

S2 = (P (Y (1), Y (0)) = (1, 0)|Z = 1) = 1, P ((Y (1), Y (0)) = (1, 0)|Z = 0) = 1, P (Z = 1) =
1

2
).

2We implicitly assume the stable unit treatment value assumption Rubin (1980).
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Clearly, λ(S1) = λ(S2) while θ4(S1) = 0 6= 1 = θ4(S2), applying Definition 4 shows that θ4 is not identifiable.

A similarly approach shows that θ5(S) is not identifiable.

To derive the reduced form for the identification region it remains to show that θb is strongly non-

identifiable. Fix `0 = (P (0)(Y ∗|Z)P (0)(Z)), and let ϑ1, ϑ2, and ϑ3 be the unique values in Θ corresponding to

ϑ1Rθ1,λ`0, ϑ2Rθ2,λ`0, and ϑ3Rθ3,λ`0, respectively. Let Y m = Y (1)(1−Z)+Y (0)Z by the unobserved potential

outcome. Notice that we can generally write elements of S as S = (P (Y m|Y ∗, Z)P (Y ∗|Z)P (Z)). For α ∈ R,

let Sα = (P (α)(Y m|Y ∗, Z)P (0)(Y ∗|Z)P (0)(Z)), where P (α)(Y m|Y ∗, Z) is a distribution independent of Y ∗

with mean α. For all values of α, λ(Sα) = `0 and θb(Sα) = α; giving us that H{θb, `0} = R, which shows

that θb is strongly non-identifiable. The reduced form is then,

H{θ, `0} = {(ϑ2ϑ1 − ϑ3(1− ϑ1)− ϑ), ϑ ∈ H{θb}} = R.

We now consider how the reduced form is impacted by different assumptions. Assume the data will be

collected from a Bernoulli randomized experiment, that is Z is independent of (Y (1), Y (0)) or, using the

notation from the previouse section, A1(S) = δ(P (Y (1), Y (0), Z), P (Y (1), Y (0))P (Z)). This assumption is

a priori irrefutable as ImgA1
(λ) = Img(λ).

Assumption A1 makes θ4(S) point identifiable as θ4(S) = E[Y (1)|Z = 0] = E[Y (1)|Z = 1] = θ2(S) —

which we already showed is identifiable. Similarly θ5(S) = θ3(S), and is also identifiable. Some basic algebra

shows that the reduced form for `0 ∈ Λ is the singleton,

H{θ, `0} = {ϑ2 − ϑ3} .

Now consider the alternative assumption asserting that Y (1), Y (0) ∈ [0, 1]. This assumption is a priori

refutable as ImgA2(λ) 6= Img(λ), that is, we have changed the image of the observation mapping. In this

setting, it is useful to rewrite the estimand mapping as,

θ(S) =E[Y (1)|Z = 1]P (Z = 1) + E[Y (1)|Z = 0]P (Z = 0)− E[Y (0)|Z = 1]P (Z = 1)− E[Y (0)|Z = 0]P (Z = 0)

=E[Y ∗|Z = 1]P (Z = 1)− E[Y ∗|Z = 0](1− P (Z = 1))

+

(
E[Y (1)|Z = 0]− E[Y (0)|Z = 1]

P (Z = 1)

1− P (Z = 1)

)
(1− P (Z = 1))
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The identification region for θ is,

HA2{θ, `0} =

{(
ϑ2ϑ1 − ϑ3(1− ϑ1) +

[
ϑ− ϑ′ϑ1

1− ϑ1

]
(1− ϑ1)

)
, ϑ ∈ HA2{θ4}, ϑ′ ∈ HA2{θ5}

}

Since both θ4 and θ5 are strongly non-identifiable, the Img(θ4) = Img(θ5) = [0, 1]. We can then rewrite the

identification region as

HA2{θ, `0} = {[ϑ2ϑ1 − ϑ3(1− ϑ1) + (1− ϑ1)]− ϑ, ϑ ∈ [0, 1]}

= {[ϑ2ϑ1 − ϑ3(1− ϑ1)]− ϑ, ϑ ∈ [−ϑ1, 1− ϑ1]} .

If we further restricted the treatment assignment probabilities to be between 0.4 and 0.6, the reduced

form would become

HA2{θ, `0} = {[ϑ2ϑ1 − ϑ3(1− ϑ1)]− ϑ, ϑ ∈ [−0.6, 0.6]} .

The reduced form naturally provides nonparametric bounds for the causal effects. Adding further assump-

tions can tighten the bound until we are left with a single point, as was the case when we assumed the data

were collected from a Bernoulli randomized experiment.

6 Discussion

In this paper, we propose a unifying perspective on identification. Our theory centers around the idea that

identifiability can be defined in terms of the injectivity of a certain binary relation. Examining the literature

through this lens, we show that existing ad-hoc definitions are special cases of our general framework. One

benefit of our flexible formulation is that it brings a new level of transparency and transferability to the

concept of identification, allowing us to apply it in settings in which traditional definitions can not be

used (Examples 5, 6, 7). In addition to providing a flexible — and completely general — definition of

identifiability, we formalize a three-step process, called identification analysis, for studying identification

problems.Identification logically precedes estimation: this paper has focused exclusively on the former. A

challenge, when thinking about these concepts, is that identification deals with the idealized “infinite number

of observations” setting, while estimation happens in finite samples. A quantity can, therefore, be identifiable,

but difficult to estimate precisely in practice. Nevertheless, thinking about identification first is a critical

step, and we hope that our framework will help in that regard.
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