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Abstract

We present a method for evaluating the welfare of a decision maker,
based on observed choice data. Unlike the standard economic theory
of revealed preference, our method can be used whether or not the ob-
served choices are rational. Paralleling the standard theory we present
a model for choice such that the observations arise "as if" they were
the result of a specific decision making process. However, in place of
the usual preference relation whose maximization induces the obser-
vations, we explain choice as arising from a compromise among a set
of simultaneously-held, conflicting preference relations. As in revealed
preference theory, these simultaneously held preferences are inferred
from the choice data and we use them as the basis to discuss the de-
cision maker’s welfare. In general our method does not yield a unique
set of explanatory preferences and therefore we characterize all the
explanatory sets of preferences. We use this set to compute bounds
on welfare changes. We show that some standard results of ratio-
nal choice theory can be extended to irrational decision makers. The
theory can be used to explore a number of context-dependent choice
patterns found in psychological experiments.
JEL Classification: D01, D11, D60
Keywords: welfare economics, behavioral economics, psychology and
economics, voting
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1 Introduction

The use of observed choice behavior to make inferences about welfare is
one of the basic methods of economics. This classical "revealed preference"
method is based on the assumption that choice is rational. Our objective is to
extend this method to choice functions that are not rational, while following
its fundamental logic and objectives as closely as possible.

The standard economic procedure consists of three steps. First there is
given a set of choice problems, each of which is a subset of the set of all pos-
sible alternatives, and an observed choice made by a decision maker for each
problem. These problems and observations constitute the data. The data
may or may not be complete, as some possible choice problems may not be
included. It is assumed that the data contain no contradictions of rationality
— no switches between observed choices when both remain available, and no
possibility for indirectly inferring that choice is self-contradictory, such as the
observation of cycles. The second step in the revealed preference methodol-
ogy is where the key theorem lies. Provided that the set of choice problems
is "rich enough", the theory tells us that a preference relation can be con-
structed with the property that the decision maker is behaving "as if" he or
she were optimizing it. When the data are not sufficient to define a unique
consistent preference relation, there is still a set of preferences relations that
can explain them.! In all cases, revealed preference theory imagines that
the data is generated as if some preference relation were being optimized.
The third step uses this preference relation both to predict behavior "out of
sample" and to measure welfare.? For choice problems outside the original
set one can calculate the choice that would be made and one can evaluate
whether or not this problem represents an improvement over any other choice
problem. If the preference relation is given a cardinal representation, this nu-
merical function can be used as a quantitative welfare measure and for the
purpose of computing interpersonal compensations.

The assumption of rationality is, however, not valid for many if not most
data sets that have been encountered. Tests of rationality on ordinary de-

! Afriat’s procedure finds one of them (Afriat (1967)). Mas-Colell (1978) gives an ap-
proximation result: The more data the smaller the set of preferences that remain consistent
with them.

2If there are multiple preference relations consistent with the data one should make
predictions based on each of them, and measure welfare using each of them. This procedure
is not followed in practice, however.



mand data fail not because of large error terms but because the hypothesis
is demonstrably false.®> Choice data in psychological experiments or in field-
based observations also contain internal inconsistencies and contradictions.
It is frequently the case that choice varies systematically with the context
in which it is made, refuting any internal consistency axiom that might be
applied.* Revealed preference theory cannot be used as a basis for welfare
analysis because rationality cannot reasonably be assumed. There simply is
no single preference relation that generates the data, and thus there is no
preference relation that can serve as a basis for welfare measurement.’

In this paper we retain the objective of constructing a model for the
decision maker’s observed choice. We seek a model that works whether or
not these choice contain contradictions to rationality. Our strategy is to look
for a set of preference relations and a method for aggregating them that
work in the same "as if" sense that is employed in the standard theory. Our
interpretation of this set of preference relations is that they represent multiple
conflicting motivations that influence the decision maker’s choice. Thus we
model decision makers who are "conflicted" in that they simultaneously hold
multiple preferences over the alternatives. We want the data to tell us what
conflicts the decision maker might be experiencing; and we respect all these
conflicting preferences when evaluating welfare. It is in this sense that we
retain the central principle of choice-based welfare economics that has been
the hallmark of microeconomics.

Our central definition is that of an "explanation": A set of preferences and
an aggregation method such that this method, applied to these preferences,
reproduces the observed choice at every datum.

Aggregating conflicting preferences is the domain of social choice theory,
the most important result of which is Arrow’s Theorem. This theorem tells
us that any non-trivial aggregation of preferences must display inconsisten-
cies. Democracy and collective rationality are incompatible. This is usually

3See, for example, Deaton-Muellbauer (1980). Rationality in demand is tested via the
implication that under rational choice the Slutzsky substitution terms are symmetric.

4Rubinstein-Salant (2007) describe a theory of "choice with frames" which can explain
some forms of inconsistency of this type. This approach is related to that in our paper
in that they seek a more general theory that can incorporate irrationality and derive the
nature of the irrationality from the data. On the other hand, in their theory there is one
complete ordering that describes any particular choice datum, whereas in our theory the
choice will turn out to be a compromise among the relevant orderings.

>The need to extend welfare methods in economics to account for quasirational behavior
is discussed in Berheim-Rangel (2005) and Gul-Pessendorfer (2005).



taken as a negative, disappointing, result. For our theory, however, this re-
sult is a source of strength. Because we explain irrationality as a necessary
consequence of compromise among conflicting objectives, we seek a type of
converse to social choice theory: We ask what forms of conflict and compro-
mise can play the same "as if" role in an explanation of an irrational choice
pattern that a single preference relation plays for rational data in revealed
preference theory?

Our results are as follows:

First we show that there are generally many explanations for any finite
data set, and that they form a convex subset in the relevant space. When
evaluating welfare using our method, we obtain a range of welfare measures
due to the multiplicity of the explanations.® The geometric structure of the
set of all explanations makes it feasible to compute bounds on welfare.

Second we show that any choice function, no matter how irrational, can
be explained by our method. One may construe this as a negative result
in that the theory is therefore not testable. We do not, however, view it in
this light. Although there are no logically-imposed limits on the extent of
the irrationality that can be encompassed by this theory, highly irrational
choice functions may require explanations by very strange sets of simultane-
ously held preferences. If it were possible to rule out those combinations of
preferences either by assumption or on the basis of other evidence, one could
provide testable restrictions that even irrational choice must satisfy.

Third, we show that we show that although the decision maker may
be irrational in some respects, it is possible to preserve the conclusions of
rational choice theory provided the choice data satisfies a limited consistency
property. Specifically, suppose that a change in the set of opportunities
causes a change in outcome from y to x and that y is never chosen at any
situation where both are available. Then, even though the choice function
may be highly irrational in other respects, the consistency of choice as it
pertains to x and y guarantees that there exist explanations that give all
the weight possible to preferences in which z is indeed preferred to y. Thus
the beneficial nature of the change in the available set can be insulated from
observed irrationalities that are not relevant to the change at hand.

Fourth, we explore a converse to this result. If the choice data indicates a
"preference reversal" between two alternatives x and y, we show that a typical

6 As mentioned above, revealed preference theory would display the same sort of mul-
tiplicity on finite data sets.



explanation of this behavior must entail preferences that are in conflict with
respect to the ranking of = and y. Thus, ordinal welfare inferences associated
to changes in the choice from z to y will not be possible.

Fifth we go beyond the above results which rely on only choice-based
information. When some cardinal, non-choice based information is available,
we can derive more detailed welfare conclusions. The idea is, again, to parallel
rationality-based theory, which constructs cardinal measures of welfare based
on assumptions beyond the rationality of the choices observed.” We show
that the most optimistic and most pessimistic bounds on welfare are always
realized within a special highly structured family of explanations that we
characterize. Because of the complexity of the general set of explanations for
choice functions, this result drastically simplifies the calculation of the best
and worst case scenarios for welfare change. As an application of this theory
we show what it implies in the case of three alternatives — a case that has
been thoroughly documented in psychological experiments.

The accumulation of laboratory and field-based evidence of irrationality
over the past twenty years has led other authors to explain choice either
by sequential procedures involving multiple objectives, or as the outcome of
a game in which these conflicting objectives play strategically against each
other. Papers in the non-strategic, sequential category posit additional infor-
mation about the alternatives in order to structure the procedure. For exam-
ple, the alternatives may be described by a list of attributes which could be
considered in a fixed order to eliminate or reorder the alternatives. Observed
choice is explained "as if" this process were followed by the decision maker.
From a welfare point of view, however, it is not clear which of the attributes
is most salient — or, if preferences over attributes are to be combined, how
should they be weighted. Classic studies in this mode are Tversky (1972),
Shafir (1993), and Shafir-Simonson-Tversky (1993). More recent theoreti-
cal papers along the same lines are Ahn-Ergin (2007) and Manzini-Mariotti

"These assumptions are of several types. One uses studies of brain function, other
physiometric measures, or self-reported measures of satisfaction as the basis for the car-
dinalization. Another uses further data on choices among lotteries, and then, under the
assumption that these choices fulfill an independence condition, produces a cardinal utility
from the observed risk preferences. Finally, if the choices are over commodity bundles and
one of the commodities, typically money, is assumed to enter preferences in a quasi-linear
form, then this commodity can be used to perform the scaling — yielding the "money met-
ric" utility scale. All of these methods thus rely on additional axioms and assumptions to
produce a cardinalization.



(2007).

Models of irrational choice in the game theoretic category recognize the
existence of multiple conflicting preferences and impose strategic structure
on the problem within which these preferences interact. These studies are at-
tractive because many people do consciously question their own motivations,
engage in introspection, and sometimes consciously act so as to suppress mo-
tivations that they deem harmful to their own true interests. The difference
between these models and our is that they take the nature of the multiple
selves to be exogenous, using a fixed structure of these selves to generate
the irrational observations. We, on the other hand, ask the data to gen-
erate the multiple explanatory preferences for us. When the nature of the
decision problem has enough structure that one can identify classical moti-
vations, such as patience and impulsiveness, the strategy followed by these
papers can pay handsome dividends. Our structure is perhaps more appro-
priate in general context-dependent situations where the detailed nature of
the alternatives is unknown to the analyst and a priori assumptions about
which preference plays which strategic role in the game may not be appropri-
ate. Important papers in this strategic mold include Strotz (1956), Schelling
(1984), Bernheim-Rangel (2005), Gul-Pessendorfer (2001), and Fudenberg-
Levine (2006). In many of these papers the pattern of choice that is generated
by game theoretic interactions among the preferences displays enough con-
sistency to be "explained" as the maximization of a composite, aggregated
preference. These papers do not address the question of how to measure
welfare. It would seem that one either would have to accept the aggregated
preference as the appropriate welfare measure, or as in the case of the se-
quential procedures, welfare analysis would depend upon making one of the
underlying preferences more salient than the others.®

Our paper is, to our knowledge, the first to take a non-strategic approach
to the problem of aggregating conflicting motivations. We treat both the
alternatives and the motivations symmetrically, imposing no structure on
the characteristics of the alternatives. We take this symmetric approach in
order to allow the observed choice behavior to be the sole determinant of the
welfare analysis.

The paper is organized as follows: The basic set up, notation and concepts

8Sometimes these papers adopt a specific choice for the aggregation of conflicting prefer-
ences, such as Laibson, Repetto and Tobacman (1998) which gives priority to the long-run
self rather than any of the more impatient selves. See also O’Donahue and Rabin (1999).



are given in section 2. Section 3 is devoted to a three-alternative example,
typical of psychological evidence on the presence of context effects, involving
choice among delayed payoffs. Section 4 gives an analysis of the general three
alternative case. In Section 5 we deal with the general case, showing that the
results for three alternatives generalize without much change. Section 6 is
devoted to the question of how a limited, weak form of rationality concerning
the comparison of two particular alternatives, which we call pairwise coher-
ence, allows some fundamental welfare conclusions to survive in the presence
of considerable irrationality of the choice function more generally. Through
Section 6 we are making only ordinal comparisons. In section 7 we allow
for each explanatory preference to be given a cardinal representation, and
we adopt a utilitarian criterion when aggregating multiple conflicting prefer-
ences in an explanation. In this framework we evaluate welfare bounds for
expansions of the sets of alternatives and for some particular well-documented
irrational behavior patterns in the three alternative case. A brief concluding
section follows. Proofs are in the Appendix.

2 Choice and Welfare Measurement

2.1 Conflicting Motivations and a Voting Model of Choice

The set of all possible outcomes is X. A typical outcome is a € X. A set of
available alternatives A C X is a choice situation. An observation is a pair
(a, A) with a € A. We observe choices from a domain A of choice situations
A. Thus the data we need to explain is a choice function ¢ : A — X
summarizing all the observations (c¢(A), A) for A € A. We will take A to be
the set of all non-empty subsets of A unless otherwise noted.”!’

The set of all strict orders on X is denoted II. An individual is identified

90ne of the strengths of revealed preference theory is that it uses the structure of the
available sets, in particular the linear structure of consumers’ budget sets, to make indirect
inferences about preferences. This enables the construction of a preference relation from
families A that are far smaller than the set of all non-empty subsets of X. Moreover, Forges
and Minelli [2006], and Fostel, Scarf and Todd [2004] have extended standard revealed
preference theory to the case of non-linear budget sets, and have shown how sparse A can
be while still enabling the construction of an explanatory preference relation.

90ur model assumes that choice is single-valued. This assumption is not hard to
generalize but doing so would introduce considerable additional notation and complexity
that is not germane to the basic decision theoretic and welfare measurement issues.



with a probability distribution A € A!l, the set of all probability measures
over II. Our interpretation of ) is that it describes the simultaneously held
preferences that motivate an individual, as well as the strengths of each
of these motivations. For this reason we use the term motivations when
speaking about the orders m. We call A a population of motivations or, for
brevity, a population. An individual’s choice behavior is to be explained
as if the population A\ were aggregated by some fixed procedure, described
by a correspondence v : A x A — X. We will call v a voting rule. The
interpretation of a voting rule is that if the population of motivations is A\ and
the available set of alternatives is A then v(\, A) is the set of outcomes that
can result when this population votes over the set A.!' Further specifications
and restrictions on the voting rules that we consider will be discussed below
in section 2.2.

Thus, we are given a choice function ¢ and seek to explain ¢ "as if" it
were generated by an individual who is characterized by a pair (A, v).

Definition 1 An explanation of a choice function c is a pair (A, v) consisting
of a population A and a voting rule v such that c(A) € v(\, A) for all A € A.

For a fixed voting rule v the set of populations A such that (A, v) is an
explanation of ¢ is denoted E(c,v). If the voting rule were not restricted in
some way any choice function can be "explained", and any population A can
be part of that explanation. One could simply let the voting rule ignore A and
chose ¢(A) whenever the available set is A. Thus all interesting conclusions
of our model are driven by the restrictions that we place of the form of the
voting rule v.

Let us restrict the voting rule by requiring that v lie within a specified
family of rules V. The smaller V is, the fewer explanations of ¢ there will
be. Thus it becomes interesting to ask, for a particular family V', whether
a given choice rule ¢ can be explained by any (A,v) with v € V. If such
explanations do exist, the populations A that are part of these explanations
will reflect the restriction to v € V' as well as the rationality or irrationality
of c. For example, if ¢ actually satisfies the axiom of revealed preference, and
V' includes voting rules that respect unanimity (c(A) is the maximal element

'Notice that we do allow v to be set-valued. The voting rules we use in this paper,
however, have non-singleton values only on a null set of populations, and thus our speci-
fication of v as a correspondence is for technical correctness only, and not for the purpose
of allowing multi-valued choice at some observations.



of m on A whenever \ is a point mass at 7), then there will be a "rational
explanation" of ¢. There may, however, be other explanations of ¢ as well. To
take one more example, if v € V' were Plurality rule (¢(A) is the element that
maximizes the weight on the first choice of 7 within A, under the distribution
A), then a cyclic choice pattern ¢ will be explainable by (A, v) provided that
A admits the required Condorcet paradox.

In this paper we explore explanations that are based on a particular family
of voting rules, the scoring rules Vj, such as Borda count or plurality. Further
details on the construction of scoring rules are given shortly in Section 2.2.

Definition 2 A scoring rule explanation of ¢, is an explanation of ¢, (A, v),
where v € V.

Given a choice function ¢, the set of populations that are associated with
some scoring rule explanation of ¢ is E(c) = Uyev, F(c,v). This is the set
A € Al such that (A, v) explains ¢ over A for some v € V. For the family of
scoring rule explanations of this paper we are interested primarily in three
questions. Which choice functions ¢ have explanations? And for a given
choice function ¢, what is the set E(c)? We provide answers to these questions
in sections 4 and 5. Finally, given that we have restricted the explanatory
populations to lie in F(c), what can be said about the change in the decision
maker’s welfare when the set of available alternatives varies? We approach
this welfare question in sections 6 and 7.

Decision rules that derive from voting procedures, particularly those that
derive from scoring rules, are interesting for a number of reasons. Scoring
rules ignore cardinal information: only ordinal information is necessary in
order to determine voting outcomes. Thus any difference between the welfare
maximizing outcome and the actual voting outcome can be traced to the fact
that voting via scoring rules ignores the intensities of motivations that a true
welfare maximization would require.!?

12However we note that purely ordinal theory forms one endpoint of the continuum of
preference aggregation procedures. In a second paper we study the relationships between
the performance of this ordinal theory and more powerful methods for aggregation that
use increasingly some of the cardinal intensity information to compare the influence of
different motivations. See Green and Hojman (2007).



2.2 Scoring Rules and Explanations

A scoring rule v € V; is characterized by a set of | X| — 1 scoring vectors
{%}ke{l...,l x|y, Where ~y; is the scoring vector that applies when the available
set has k alternatives. We write v = (75,73, ...,7)x|) and the k-alternative
scoring vector
Ve = (711c7 P)/IQW ) 7]13)

has k components satisfying v, > 77 > ... > 7, and at least one these
inequalities is strict. The scoring vector gives the number of "points" 7,
assigned to the j** ranked alternative among the & alternatives in a subset
A. Without loss of generality we assume . = 1 and % = 0 for all k €
{2,...,]X|}. Given a choice situation A C X, k = |A|, and order 7 that
ranks alternative a as the j* best alternative among those available from A,
the score of alternative a from A under the ordering 7 is s(a, A, 7) = 7.
The total score of alternative a in choice situation A given a population \ is

then
s(a, A N) = s(a, A, m)A(r).
mell
The result of a vote under v by a population A when the set of alternatives
is A is the set of alternatives that receives the highest score, that is,

V(A A) ={a € Ala € arg max s(x, A, \)}

Examples of scoring rules include Plurality, the Borda count, and Antiplu-
rality. Scoring rules are a special case of general positional voting rules.'3

Example 1 (Plurality) Plurality is characterized by weights 7{; = 0 for
all k€ {2,..,1X|}, 7 € {2,...,k}. Thus, scoring vectors have the form
s = (1,0,...,0).

Example 2 (Borda) The Borda count is characterized by weights vl =
Lk e{2, X} e {1, k)

Example 3 (Antiplurality) Antiplurality is characterized by weights vi =
1 forallk € {2,..,|X|} and 1 < j < k, and v§ = 0.

13 General positional voting rules are those rules that depend on the rank orders of the
alternatives. In scoring rules this dependence is restricted to be additive —resulting in the
scores s(a, A, \). An axiomatic specification can be found in Young (1975).

9



For any scoring voting rule v, = (1,0), so that when deciding between
only two available alternatives, all scoring rules are identical. Note also
that, in the case of three alternatives, a scoring rule v is determined by a
single parameter, the weight 72 assigned to the second best choice from three
alternatives.

We conclude this section with an important remark. For a fixed scoring
rule and a choice function ¢ we can rewrite

c(A) e v (N A)
as a set of choice inequalities

> s(e(A), A, m)N(m) > >0 s(x, A, m)A\(m) for all x € A. (1)

well mell

A key property of these inequalities is their linearity in the population
strengths vector A. Each inequality defines a half space in the space of popu-
lations AM. As a result, the set of explanations F(c, v) for a fixed voting rule
v is the polytope defined by the set of these linear inequalities for each a € A
and each A € A.M Thus, the set E(c) = Uyev, E(c,v) of all populations that
can be part of an explanation is a union of polytopes, which is not necessarily
itself a polytope. We discuss the geometric structure of E(c) and E(c,v) for
v € V, below.

2.3 Welfare Measurement

We use the set of explanations to derive conclusions about welfare changes as
the available set varies. Initially, in sections 4, 5, and 6, we restrict ourselves
to ordinally-based conclusions, by which we mean that all the explanatory
motivations must agree on the welfare evaluation of the outcome. Any mo-
tivations that do not share this evaluation appear in the explanation of the
choice function with a zero weight. Later in the paper, in section 7, we ex-
amine the case of cardinal preferences, which as mentioned above will need
to be based on non-choice based information. When such information is
available we choose to measure welfare based on the natural utilitarian cri-
terion — adding the welfare changes across the population of preferences and

14 A polytope is a bounded polyhedron. A polyhedron is an intersection of half spaces.
Since the simplex is bounded, so is the polyhedron defined by choice inequalities (1).

10



weighting according to the relevant A. In this case we will say that welfare
is improved if the utilitarian sum increases for any explanation in E(c).!

Formally speaking, we approach welfare measurement in the following
sequence of steps:

(W1) Given a domain A of choice instances, observe {c(A)} . 4.

(W2) Given a family of voting rules V' compute the set of populations
E(c,V) = Uyev E(c,v) that can be part of an explanation.

When only ordinal, choice-based, information is to be used in the welfare
analysis, we then proceed to step (W3, Ordinal)

(W3) (Ordinal) Given a change in the set of opportunities from A to B, test
whether there exists A € E(c, V) such that ¢(A) and ¢(B) are ranked
in the same way by all 7 for which A(7) > 0.

For a given change in the available set, step (W3) focusses our attention
on the subset of choice functions for which unambiguous welfare evaluations
are possible for some change in the set of opportunities, defined as follows.

Definition 3 Let F' = (A, B) € Ax A denote a change in the opportunity
set from A to B. A choice function c¢ is said to admit an ordinal welfare
inference at F if there exists A € E(c,V') such that there is unanimity with
regard to the ranking of c(A) and c¢(B) among the preferences m that are given
strictly positive weight \(w) > 0.

Our definition of ordinal welfare inferences relies only on the existence of
a non-conflicted explanation. This existence requirement might seem weak
at first glance as there could be several conflicted explanations of the behav-
ior. It must be noted, however, that step (W3) is a natural generalization of
welfare inference in the rational choice model. Indeed, the traditional frame-
work requires the choice data c¢ to satisfy the axiom of revealed preference
and, given that, welfare inferences are performed using explanations that put
all the weight on a single preference.

5Roemer (1996) has offered a powerful argument against the general applicability of the
utilitarian criterion in interpersonal contexts. While the applicability at the intrapersonal
level requires further discussion, objections based on ethical considerations — for example,
egalitarianism or rights-baseed arguments — seem to carry no force in this context.

11



If cardinal preference information is available as a basis for welfare mea-
surement it can be summarized by u : X x II — R, which defines a cardinal
utility function u(-, 7) for each m € II. Then it is natural to compute utili-

tarian the welfare functional W that aggregates the cardinal information.

Definition 4 The utilitarian welfare functional W based on the cardinal-
ization u 18 N
Wiz, Au) = 3 u(x, m)A(r) (2)

mell

If cardinal preference information is available we do not need the una-
nimity criterion of step (W3). Welfare can be evaluated directly:

(W3’) (Cardinal) For each A\ € E(c, V) compute the welfare measure at A
based on A: N
WA, ¢, A u) = W(c(A), A, u). (3)

Of course, as there are multiple explanatory populations the sign of
welfare change may vary with the the choice of this population. For
any A the change in welfare associated to the change in opportunities
F=(ADB)is

AW (F,c,\,u) =W (B,c,\,u) — W(A, ¢, \,u). (4)

3 A Motivating Example

To make our ideas concrete, we consider a motivating example that concerns
the choice over consumption that is received after a known time delay. Each
alternative a is a particular consumption level m, and an associated delay
to. We will write a = (m,,t,). We use this example to illustrate the welfare
measurement method proposed above in a familiar economic context.

Take three alternatives = = (10,0), y = (15,1) and z = (35,2). The
choice function defined on subsets of these three alternatives will be cyclical
on pairwise choices, and will select x when all three are available:

c{z,y}) =, c{y,2}) =y, c({z,2}) = 2, and c({z,y, 2}) = z.

This pattern is typical of experimental evidence and is a simplification of
examples in Tversky (1969) and Roelofsma and Read (2000).

12



To shorten the notation slightly we write zyz to indicate that the pref-
erence ordering m under consideration ranks x above y and y above z. Thus
the six possible different orderings 7;, i = 1,...,6 are:

T = XYz, Ty =XT2Y
T3 = YRT, T4 = YTz,
Ty = 2TY, Tg = 2YT

One can generate all of these preferences from a standard discounted
utility formulation u;((m, t)) = @;(m)e~?" in which the Bernoulli utility ;(m)
function varies but the time preference parameter p is common across the six
motivations. Moreover the Bernoulli utilities can be chosen so that they are
concave in m.'

Now let us examine some of the explanations that exist for the cyclical ¢
that has been observed. Given the population, when the set of alternatives
has only two elements, all voting rules produce the same result. Thus, to pro-
duce a cycle on the three two-element sets, the population must be display a
Cordorcet pattern. For example, A = ( ,0, ;, 0, ;,0) produces pairwise votes
of % to % with the majority in favor of the indicated choice in each instance.
Other populations produce the same cyclic choice patterns, but with differ-
ent majorities of the motivations in favor of the winner. A borderline case
is the population A = ( 0,0,0, é, 0) where z is unanimously preferred to y
and there is a tie on the other two two-element sets. Now we consider the
one additional piece of evidence — the fact that x is chosen from the three-
element set. To be part of an explanation, the population must also lead to
this choice, and here the voting rule is relevant to the outcome. If we examine
Plurality rule, for example, then \ = ( ,0, é, 0, ;’, 0) produces a three-way tie
on this set, and \ = ( 0,0,0,1 5,0) produces a tie between x and z. Thus
these \’s can combine Wlth the Plurality rule to form explanations of ¢, but
they do not make ¢(A) the unique score maximizer at every A. Such ties can
be avoided at voting rules other than Plurality. At Antiplurality or Borda
A= ( 0,0,0, ;, 0) produces z as the unique outcome because z is last in 7,
and x is second in 75, while A = ( ,0, ;, 0, ;’, 0) still produces a tie for these
voting rules.

The case of \ = ( 0,0,0, 2,O) is quite interesting because arbitrarily
close to this population are the populations A = (%, 0,¢,0, %, 0). Each of

16See Appendix A.
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these populations, together with some non-Plurality voting rules, uniquely
select all the required choices. Moreover, as € can be made arbitrarily small,
almost all the weight is placed on preferences that favor x over y.

Let us now consider the evidence presented by this choice function as to
the pairwise preference that might be held by this decision maker. For the
pair {z,y} the evidence is unambiguous that x > y. Whenever both = and
y are available, x is selected — independent of the presence or absence of z.
For the pair {z,z} there is contradictory evidence since the presence of y
causes z to be chosen, but z is chosen in y’s absence. For the pair {y, z} the
evidence favors y > z, but as we do not know what the second choice would
have been from {x,y, 2z}, where x is chosen, the evidence for the preference
x > y must be based solely on choices from the three pairs of alternatives.

We would like to be able to draw inferences as to whether an expansion is
the set of alternatives is good for the decision maker, as it would be for some-
one who is rational. Consider the expansion from A = {y, z} to X = {z,y, 2z}
and the consequent change in the choice from y = ¢(A) to x = ¢(X). Is there
an explanation consistent with the evidence that = is always chosen in pref-
erence to y? We can answer this question in the affirmative by considering
the explanation of ¢ via the population A = (%, 0,¢,0, %, 0). In this ex-
planation there is near unanimity that this expansion is beneficial. Thus we
see that the irrationality of cyclic choice does not stand in the way of some
explanations which very strongly indicate that the switch from y to z is ben-
eficial. This example suggests, therefore, that a revealed preference between
two alternatives can be consistent with an arbitrarily large a majority in fa-
vor of the better one, despite unequivocal evidence of irrationality involving
alternatives other than these two. We will see in Theorem 3 that this is a
general proposition.

Considering the other two expansions in the available set of alternatives
leads us to different conclusions. Going from {z,y} to {z,y, 2} is irrelevant
to welfare, as x is chosen in both instances. Going from {z,z} to {z,y, 2z}
switches the choice from z to . One can show, however, that there is no
explanation of ¢ that puts all the weight, or approximately all the weight,
either on preferences concentrated on = > z or on preferences concentrated
on z > x. Non-trivial conflict is a necessary ingredient in any explanation
of this choice function, as far as the pair {x, z} is concerned. Therefore, as
we are restricting ourselves to ordinal information about the motivations,
there is no explanation from which we can decide which of these alternatives
is preferred. The fact that this type of ambiguous welfare conclusion is an
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unavoidable consequence of irrational choice patterns is a general proposition
— see Theorem 4.

Now let us turn to the case in which cardinal welfare measures are avail-
able for each of the motivations. Cardinal information in our model must
come from observations beyond the choice function itself. We need such car-
dinal information if we are going to make welfare comparisons in ambiguous
cases such as that of x versus z above. For concreteness, let us use as this
cardinal measurement the parameters of Appendix A in the Bernoulli utility
that represents each motivation.

For these parameters we can see that quantitative welfare measurement
is ambiguous in sign even for an expansion for which there is unambiguous
evidence of pairwise preference — as in the comparison of x to y. This can
be shown by considering the following two explanations of ¢: (A, v!), with
A = (.43,0,.40,0,.17,0) and v¥ is Plurality rule, and (\,v%), with \' =
(.40,0,.17,0, .40, .03) and v* is Antiplurality. W ({y, z},c, \,u) = 1.176 and
W({z,y,z},c,\,u) = 1.165, yielding a decrease in utilitarian welfare. On the
other hand, for the population \" we obtain W ({y, 2z}, ¢, \',u) = 1.149 and
W({{z,y, 2z}, ¢, N, u) = 1.174, so that the welfare change for the explanation \’
is positive. Thus in this example the sign of the cardinal welfare evaluation for
the expansion from {y, z} to {z,y, z} is ambiguous, even though the decision
maker has revealed no irrationality with respect to the two alternatives that

are chosen before and after the expansion. We return to this issue in sections
6 and 7.

4 Choice Rules in the Three Alternative Case

We provide a classification of choice rules and a characterization of the choice
functions that can be explained by our theory above for the case in which X
has three elements. The results for the general case are presented in Section
5. For concreteness, let X = {z,y, z}.

4.1 The Four Choice Rules

If X has three alternatives there are four possible choice situations, three
corresponding to choices from two-element subsets of X and one for choice
over the entire set. This yields twenty-four possible choice rules for the three-
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alternative case'” which can be classified into four choice patterns: Seemingly
Rational Choice, Second Place Choice, Third Place Choice and Cyclic Choice.
Rules in the same class are formally identical modulo a permutation of the
alternatives.

The first three classes of choice rules have in common the existence of an
alternative z” which is "Condorcet winner" in pairwise contests. Let 2* and x*
denote the other alternatives, where 2° = ¢(X\{2"}) is the "second-place"
choice and ' is the "third-place" choice, 2 ¢ {{z",2°}. When pairwise
choice exhibits a Condorcet winner in this three-alternative environment,
pairwise choice will have "revealed" a preference relation " = x* = z!. For
example, if X = {z,y, z} the following choice function

c({r,y}) ==, c({z, 2}) = 2, c({y, 2}) =y

has 2" = z, #° = y and z' = 2z which is consistent with the order "z over y
over z". The question remaining, however, is whether this preference relation
also characterizes the choice when all three alternatives are available.

The three classes of choice rules are defined by the choice from the triple.
If ¢(X) = 2" the choice rule is Seemingly Rational. If ¢(X) = x* the choice
rule displays Second Place Choice. If ¢(X) = x' the choice rule displays Third
Place Choice. Clearly, second and third place choice are not consistent with
explaining choice based on the maximization of a single preference relation.

When pairwise choice does not exhibit a Condorcet winner, Cyclic Choice,
the fourth class of choice rules, exists. For example,

c({r,y}) ==, c({z,2}) = 2, c({y, 2}) = v. (5)

This example exhibits the cycle "x over y over z over z".!8

We conclude this section remarking that the three patterns inconsistent
with rational behavior have been documented by the experimental psychol-
ogy and decision-making literature that focuses on context effects in choice
with multi-attribute alternatives. A classic paper by Tversky (1969) and

1"There are three two-alternative choice instances and the choice instance corresponding
to the triple give 24 =2 x 2 x 2 x 3.

18The absence of a Condorcet winner necessitates the existence of a pairwise cycle with
three or more elements. Consider the directed graph in which each vertex is an alternative
in X and there exists a directed edge from a vertex a to another vertex a’ if ¢({a,da’}) = a.
If ¢ does not have a Condorcet winner this means that each vertex has an outgoing edge
and, since there are a finite number of edges, the graph must contain a directed cycle.

16



more recent work by Roelofsma and Read (2000) show that cyclic choice can
arise systematically. There is also robust evidence of Second Place Choice,
as shown by Simonson (1989). Third place choice seems to be more elusive
but Redelmeier and Shafir (1995) finds this pattern.®

4.2 Characterizing Explanations in the Three-Alternative
Case

In the case of three alternatives the set of all orderings II has six elements.
As in Section 3, we adopt the concise notation that, for a generic © € II, if
ay is preferred to as and as is preferred to az we write m = ajaga3. With this
notation the six strict orderings are

T = TYZ, Ty =T2Y
T3 = YRT, T4 = YTz,
Ty = 2TY, Tg = 2YT

and a population of motivations A € AS is a probability distribution over
these six orderings. For short, we write \; = A(m;) for each i = 1,2, ..., 6.

As mentioned earlier, with three alternatives a positional voting proce-
dure v is determined by a single free parameter 72 € [0, 1] and therefore, we
can identify the voting rule with this parameter: v = ~2 € [0,1]. We are
interested in characterizing the set of choice functions that can be explained
by these rules. As illustrated by the following examples, given a positional
voting rule v, if (A, v) is an explanation of a choice function ¢ then five choice
inequalities must be satisfied.

Example 4 Explaining Seemingly Rational Choice

Consider the following Seemingly Rational choice function

c{z,y}) =, c{z, 2}) = v, c({y,2}) =y, c({z,y,2}) =z (6)

19The prevailing psychology theories include sequential decision-making procedures such
as elimination by aspects or theories based on context-dependent salience such as asym-
metric dominance. A more comprehensive theory called reason-based choice is proposed
by Shafir, Simonson, and Tversky (1993). This theory, based on the idea that the context
determines which among of many conflicting reasons prevails in a given choice situation,
is close in spirit to the model presented in this paper.
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For an explanation based on voting rule v € [0, 1] the choice inequalities in
(1) translate into

AMAXA+As > A+ M+ A (7a)
MA+X+ M > Ag+ X5+ A (7b)
MAX+N > A+ X5+ X (7c)

M+ A+vA+As) > A3+ M+ oA+ Ne) (7d)

MAX+oM+2As) > A5+ Ag+v(Xa+ Ag) (7e)

Inequalities (7a)-(7c) correspond to choices from pairs of alternatives and
express respectively that x beats y in the pairwise contest, x beats z in the
pairwise contest, and y beats z in the pairwise contest. Inequalities (7d)-(7e)
correspond to choice from the triple and express that x has a higher score
than y and z when all three alternatives are available. F(c,v), where c is
the seemingly rational choice function, is the set of solutions to these five
inequalities under the restriction that A is in the five-dimensional simplex

AS,
Example 5 Ezplaining Second-Place Choice
Consider the Second-Place Choice rule
c({z,y}) =z, c{z, 2}) ==, c({y,2}) =y, c({z,y,2}) =y
An explanation of ¢ based on v must satisfy inequalities (7a)-(7c) and

)\3 + )\4 + U()\l + )\6>
)\3 + )\4 + U()\l + )\6)

)\1 + )\2 + U()\4 + )\5)

>
> A5+ X +v(dg 4+ A3)

These two inequalities express the fact that y beats z in the triple y beats z
in the triple.

The following Theorem characterizes the set of choice observations that
can be explained using a scoring rule.

Theorem 1 Suppose that | X| = 3. For any choice function c there ezists a
full measure set of explanations E(c).
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The content of Theorem 1 is that this theory of choice is rich enough to
explain any choice function on three-element sets. The result can be viewed
as a limitation of the theory as it also implies that it cannot be rejected based
on choice data from three-element sets. On the other hand, as mentioned
earlier, the psychology evidence suggests that in fact all choice patterns can
be observed. Finally, the specific structure of a choice problem may impose
constraints on the motivations and conflicts that are feasible. For example,
we may know from external evidence that certain "reasons" or motivations
are simply absent in a given choice problem. Alternatively we may deem
certain preferences to be a priori unreasonable and we may restrict the theory
to give them a zero weight in any explanation. Such reduction of the set of
possible orderings could result a greatly reduced set of explanations, indeed
it can produce situations in which some choice patterns have no explanation
within the theory as illustrated by the example below. Without such external
restrictions however, the theorem above tells us that no behavior pattern can
be ruled out a priori.

Example 6 Fach alternative a = (mg,e,), a € X, is a job opportunity
with two attributes. To fix ideas m, is a monetary compensation for a and
e, 15 an "ethical reward” measured in a numerical scale. Alternatives are
such that my > my, > m, and e, > e, > e,.2" There are two motivations
that rank according to one attribute alone. Using the above motation, the
motivation ranking according to the monetary compensation is w1 and the
motivation ranking according to the ethical reward is mg. Thus, the domain
of populations is restricted by A\ + \¢ = 1. It is straightforward to check
that if ¢ display either cyclic choice or third-place choice then E(c) is either
empty or has measure zero.

Theorem 1 is a consequence of the following Lemma, a special case of the
results presented in the next section.

Proposition 1 Suppose that | X| = 3. If v € V; is a voting rule other than
the Borda count (v # %) then for any choice function ¢ and any there exists
a full measure set E(c,v) of explanations of ¢ based on v. If v is the Borda
count (v = %) then for any choice function c that does not display third-place
choice there exists a full measure set E(c,v) of explanations of ¢ based on v.

20Thus x could be a lucrative job that involves criminal activities, z a low paid job
helping the poor, and y an academic job.
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The Lemma says that, excluding the Borda count, for any voting rule v
and any given choice function ¢ it possible to find populations of motivations
A such that (A, v) is an explanation of ¢. The fact that third-place choice is
ruled out by the Borda count illustrates that restricting the set of voting rules
can also reduce the behaviors explained by the theory (see also Proposition
2). We note that each set E(c,v) is a polytope defined by inequalities just
like those in (7a)-(7e). Thus, for each v, the simplex of motivations AS is
cut up into 24 pieces each of which is a polyhedron within which the choice
rule is constant.?! All of these polyhedra are pointed cones that touch at
one point, the profile that puts equal weight to each ordering in II. Each of
the polyhedra that contains a vertex of the simplex -a pure motivation- is
associated with seemingly rational choice.

5 The General Case

The results presented for the three-alternative case generalize for any number
of alternatives.

Theorem 2 For any choice function c¢ there exists a full measure set of
explanations E(c).

The Theorem follows from the following Lemma, which is originally due
to Saari (1989, 2001).22

Lemma 1 For any function ¢ and almost any voting rule v there exists a
full measure set of explanations E(c,v) based on v.

A proof is provided in the Appendix. We outline the main argument
of the proof. Observe that each voting rule v defines a linear scoring map

S A" — % where A is the set of populations and ¥ = X X, is a space
AcA

of all possible scores, with £, C RII. Indeed, for each subset of alternatives
A € A, a population A € A" produces a vector of scores s(A, \) € ¥4 that

21 Any element of the polytope E(c,v) is a convex combination of its vertices. For
| X | = 3, the vertices of E(c,v) for each type of choice function ¢ and arbitrary voting rule
v are available at the authors web pages.

22The authors thank J.P. Benoit for pointing this out. The proof presented in the
Appendix uses an argument similar to Saari (1989).
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has as components the score of each alternative in A. Since these scores are
linear in A, so is s(A, \). The scoring map S is a stack of all of these vectors.
The result is established by showing that, except for a lower dimensional set
of voting rules, the map S is onto: for any possible stack of scores o € ¥ we
can find a population A € Al such that S(\) = 0. This means that we can
generate any possible scores for each alternative and each subset and, thus,
any choice function by varying the population of motivations. A key insight
for the result is that, for a generic scoring rule, populations that achieve the
same voting results (choices) for a subset of the domain B C A, can achieve
arbitrarily different results for subsets that are not in 5. In particular, the
voting results obtained for pairs of alternatives place no constraint on the
results for larger subsets. Scoring rules have just enough degrees of freedom
to make this possible.

Definition 5 A voting rule v = (vy, ...,7,,) is said to be a generalized Borda
rule if the k-alternative voting vector v, k € {2,...,n}, satisfies

o J=l i k=g
Tk = m’ﬂc_l + E’Yi_1

forje{2,...k—1}.

Generalized Borda rules define a lower dimensional family of scoring
rules. These rules satisfy a form of consistency: Fix a set A € A, a €
A, and let K(a,A) be the collection of |A| — 1 subsets of A that contain
a. It is easy to check that for any generalized Borda rule s(a, A,\) =
|A|+1 ZBeK(a’A) s(a, B, A) for any population . That is, the score of a from
A is just the average score of a across subsets in K (a, A). But then, s(a, B, \)
is the average score of a across the |A| — 2 subsets in K (a, B), and so on.
Continuing with this recursion we conclude that for generalized Borda rules,
the scores for any subset are fully determined by the scores obtained for pairs
of alternatives. As a consequence, it will not be possible to explain all choice
rules using generalized Borda rules as shown by Proposition 2 below.

Definition 6 Fiz a choice function ¢ and A € A. Two alternatives x,,, x; €

A are pairwise separated by A for c if (i) c({xy,x}) = xy for allx € A\{z,}
and (ii) c({x;, x}) = x for all x € A\{z;}.
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Condition (i) says that ¢ has an alternative z,, that is a "Condorcet
winner" among those in A and (ii) says that z; is a "Condorcet loser" in A.
In particular, this means that each of the scores of x,, in pairwise contests is
higher than the scores obtained by z; in pairwise contests.

Proposition 2 Suppose that a choice function c is such that there exists
a subset of three or more alternatives A € A such that (i) xy,,x € A are
pairwise separated by A for ¢ and (ii) ¢(A) = x;. If v is a generalized Borda
rule then there exists no explanation of ¢ based on v, i.e., E(c,v) = (.

Note that if | X| = 3, (i) and (ii) is equivalent to saying that ¢ displays
third-place choice. Condition (ii) says that even though z; is a Condorcet
loser in A, it chosen when all alternatives in A are chosen. Proposition 2
illustrates the fact that by restricting the family of aggregation procedures,
choice functions that exhibit certain types of irrationality will be ruled out.

6 Ordinal Welfare Inferences

This section presents the paper’s main normative conclusions. Two tenets of
welfare economics in the rational choice model are revealed preference -if x
is chosen over y, x is better than y- and the fact that more choice is always
better. We ask whether a limited forms of behavior consistency lead to
similar welfare inferences even if choice data is not compatible with rational
choice.

6.1 Pairwise Coherence

In the rational choice model choice and welfare are perfectly aligned: choices
are consistent and if choice data reveals that x is always chosen over y this
is because the decision-maker’s welfare is higher under x than it is under
y. Our welfare method allows for choice patterns that incompatible with
rational choice. If this indeed the case but choice data is such that z is
always chosen over y, can we infer that that welfare increases if the available
set changes from a set A having y = ¢(A) to a set B having x = ¢(B)? This
motivates a key concept of limited consistency:

Definition 7 A choice function c is said to be pairwise coherent with respect
to (x,y) € X2 if for any A that contains both x and y we have that c(A) €
{z,y} = c¢(A) = z.
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Pairwise coherence is a version of the consistency axioms of rational choice
theory valid for particular pair rather than all pairs.?® In the case of three-
alternatives, there two type of choice functions that exhibit pairwise coher-
ence. Using the notation introduced in section 3.1, the seemingly rational
choice is pairwise coherent with respect to two pairs: (z”,z%) and (z°,z").
The second type are choice functions that display cyclic choice. If ¢ displays
cyclic choice and is given by (5), then c is pairwise coherent w.r.t (z,y).

Theorem 3 Let A,B € A with y = ¢(A) and x = ¢(B). If ¢ is pairwise
coherent with respect to (x,vy) there exists an explanation A\ € E(c) that puts
weight exclusively on motivations that prefer x overy. In particular, ¢ admits
an ordinal welfare inference for a change in the available set from A to B.

Theorem 3 says that if ¢ is such that z is always chosen over y, no matter
how crazy the choice pattern ¢, there is always an explanation of the behavior
that involves motivations which are not conflicted with respect to this pair
of alternatives. As a consequence, for this choice function, one can never
rule out a welfare improvement if opportunities change from a set where y
is chosen to one where x is chosen. It also worth to point out that if ¢ is
pairwise coherent w.r.t. (z,y) there is an upper bound of 1/2 on the strength
of motivations that prefer y over z.2*

The following Proposition is a partial converse to Theorem 3. We first
introduce a non-generic set of scoring rules.

Definition 8 A scoring rule v = (75, ...,7‘X|) has equal components if for
some k € {2, ..., | X}, j1,j2 with 1 < ji < ja < k we have yi* = v}

Scoring rules with equal components are sometimes non-responsive, or
"rank-insensitive" to switches in preference orders.

Proposition 3 If ¢ is not pairwise coherent w.r.t. (x,y) and v does not have
equal components there exists no explanation A\ € FE(c,v) that puts weight
exclusively on motivations that prefer one alternative over the other.

23The choice functions compatible with rational choice are those satisfying Houtakker’s
axiom. Let a,a’ € X and ¢, = {A € A| ¢(4) € {a,a'}}. One version of this axiom is
as follows: For any pair of alternatives a and o', either a € ¢(A) for all A € cuqr or else
a’ € c¢(A) for all A € cuqr. If ¢(A) is a singleton for all A € c,q, One can replace "€"
with "=". Hence, the axiom just says that for c there are no "preference reversals": ignor-
ing indifferences, either a is "revealed preferred" to a’ or vice-versa. Pairwise coherence
establishes the same for a particular pair a = = and o’ = y.

24This is immediately inferred from c({z,y}) = z.
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The Proposition says that whenever there is conflicting choice data about
the revealed preference between two alternatives, all explanations that rely
on "rank-sensitive" scoring rules arise from population of motivations that
are conflicted with respect to these alternatives.

6.2 Expansion Monotonicity

If choice is seemingly rational and thus consistent with the optimization of a
preference, the maximal element of this preference must be ¢(.X), the choice
when all alternatives are available. The second best element can be inferred
by looking at the choice from X\{c(X)}. If we continue this iteration by
deleting alternatives that are c