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One key question in the ongoing COVID-19 pandemic is understanding the impact of government interventions, and

when society can return to normal. To this end, we develop DELPHI, a novel epidemiological model that captures

the e�ect of under-detection and government intervention. We applied DELPHI across 167 geographical areas since

early April, and recorded 6% and 11% two-week out-of-sample Median Absolute Percentage Error on cases and deaths

respectively. Furthermore, DELPHI successfully predicted the large-scale epidemics in many areas months before,

including US, UK and Russia. Using our �exible formulation of government intervention in DELPHI, we are able to

understand how government interventions impacted the pandemic’s spread. In particular, DELPHI predicts that in

absence of any interventions, over 14 million individuals would have perished by May 17th, while 280,000 current deaths

could have been avoided if interventions around the world started one week earlier. Furthermore, we �nd mass gathering

restrictions and school closings on average reduced infection rates the most, at 29.9± 6.9% and 17.3± 6.7%, respec-

tively. �e most stringent policy, stay-at-home, on average reduced the infection rate by 74.4± 3.7% from baseline

across countries that implemented it. We also illustrate how DELPHI can be extended to provide insights on reopening

societies under di�erent policies.
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1. Introduction

Currently, the world is facing the deadliest pandemic in recent history - COVID-19. As of December 16th,

there have been over 74.2 million con�rmed cases of COVID-19 and the disease has taken over 1,648,000

lives. To stop the further spread of COVID-19, governments around the world have enacted some of the

most wide-ranging non-pharmaceutical interventions in history. �ese interventions, especially the more

severe ones, carry signi�cant economic and humanitarian cost. �us, it is critical to understand the e�ec-

tiveness of such interventions in limiting disease spread.

However, there are many challenges in a�empting to understand the e�ect of government interventions

in a speci�c region or country. Di�erent regions have implemented, o�en concurrently, a variety of dif-

ferent policies, and worse, even the same interventions could produce largely di�erent e�ects in di�erent

societies, due to di�erences in factors such as demographics, population density, and culture.

�us, in order to provide a sensible analysis of the e�ect of policies across di�erent countries, in late

March, 2020 we created a novel epidemiological model, DELPHI, to model the spread of COVID-19. DEL-

PHI (Di�erential Equations Lead to Predictions of Hospitalizations and Infections) extends a classical SEIR

model (Kermack and McKendrick 1927) to include many realistic e�ects that are critical in this pandemic,

including deaths, underdetection, and changing governmental interventions. Since its inception in late

March, DELPHI has been one of the top 4 models consistently incorporated into the US Centers for Dis-

ease Control and Prevention’s (CDC) core ensemble forecast (Dean et al. 2020) and have been utilized by

various health and federal agencies including the Federal Reserve for pandemic planning. A major hospital

system in the United States, Hartford Healthcare, planned its intensive care unit (ICU) capacity based on

our forecasts.

One of the key innovations of DELPHI is the explicit and parametric characterization of government

interventions. �is allows us to understand the e�ect of di�erent non-pharmaceutical interventions as

they have been implemented in various regions while accounting for regional population characteristics

including baseline infection rate and mortality percentage. In Section 4.1, we provide evidence that school

closings and mass gathering restrictions were among the most e�ective measures in reducing the rate
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of infection during the early stages of the pandemic, though they carry a signi�cant social burden. �is

analysis suggests that despite their extreme cost, these policies were e�ective in controlling the extreme

growth in infections when other preventative measures (e.g. masks) and treatment options were still being

evaluated and developed. As a further illustration of their outsized e�ect, we are able to demonstrate that

had these restrictions been implemented just one week earlier, most – up to 90%– of the deaths in the

early stages of the pandemic could have been avoided.

Another major use case of DELPHI is scenario analysis for the future to enable long-term planning. In

Section 5, we demonstrate how DELPHI were utilized by Janssen Pharmaceuticals (a Johnson & Johnson

company) in mid-to-late 2020 to determine the Phase III trial locations of their leading vaccine candidate

Ad26.Cov.S to maximize baseline incidence based on di�ering scenarios of governmental interventions.

DELPHI has been applied to 167 geographic areas (countries/provinces/states) worldwide as of end

of April, and more than 215 as of end of September, covering all 6 populated continents. Its results and

insights have also been available since early April on www.covidanalytics.io. In this paper, we

document the statistical innovations, quantitative results, and insights extracted from the DELPHI model.

1.1. Literature

As the COVID-19 pandemic worsened, there has been a large number of research groups that created

COVID-19 epidemiological models in an e�ort to help understand the crisis. A large class of models uti-

lize some �avor of the SEIR compartmental model (Kermack and McKendrick 1927), which a�empt to

model large population dynamics by assuming the population divides into several compartments that

have dynamics coupled through di�erential equations. Some of these models utilize a classical compart-

mental model (?) while others create subdivisions based on age groups and symptom severity to account

for heterogeneity (DRA 2020). Furthermore, many modeling approaches supplement SEIR models with

additional behavioral data such as mobility and governmental policies (Woody et al. 2020, Chinazzi et al.

2020) to adjust for compliance and non-pharmaceutical interventions. �ere is also signi�cant work on

approaches that do not model the disease dynamics directly, such as utilizing deep learning for predicting
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week-ahead mortality (Rodriguez et al. 2020), or treating the past epidemiological data as a time-series

forecasting problem (Mehrotra and Ivan 2020). For a more comprehensive review of the di�erent models

that have been developed, we refer the reader to Dean et al. (2020).

�e DELPHI model is based on the SEIR compartmental model but di�ers signi�cantly with the previ-

ously illustrated models on multiple fronts. First, instead of utilizing governmental policies directly, we

utilize an embedded parametric curve in the epidemiological model to model the e�ect of governmental

policy. During this pandemic, we o�en observe that there is a large discrepancy between the o�cial policy

and the observed data on the ground, and thus this approach would allow us to capture the experienced

e�ect of the policy as re�ected by the epidemiological data. Similarly, parametric curves are utilized to

model changes in mortality percentage due to advances in treatments and care for COVID-19. We also

utilize an explicit separation of modeling for deaths and recoveries that allows us to �t to multiple end-

points (recorded cases and deaths) simultaneously, in contrast to many approaches which build separate

models for each endpoint (e.g. IHME 19).

Overall, the �exibility of the parametric curves allows us to be one of the very few models that are able

to produce consistent projections on all 6 populated continents. Our parametric modeling of the infection

rate also allows us to give actionable policy guidance by analyzing which non-governmental interventions

were more e�ective as described in Section 4.1 and showcasing the degree of which early intervention

could prevent the epidemic in Section 4.2.

Finally, the DELPHI model is one of the top 4 models to be consistently included in the CDC ensemble

forecast (Dean et al. 2020), and its favorable performance is demonstrated in Section 3.2.

2. The DELPHI Model

�e DELPHI model is a compartment epidemiological model that extends the classical SEIR model into 11

states under the following 8 groups:

• Susceptible (S): People who have not been infected.

• Exposed (E): People currently infected, but not contagious and within the incubation period.

• Infected (I): People currently infected and contagious.
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• Undetected (UR) & (UD): People infected and self-quarantined due to the e�ects of the disease, but

not con�rmed due to lack of testing. Some of these people recover (UR) and some die (UD).

• Detected, Hospitalized (DHR) & (DHD): People who are infected, con�rmed, and hospitalized.

Some of these people recover (DHR) and some die (DHD).

• Detected, �arantine (DQR) & (DQD): People who are infected, con�rmed, and home-

quarantined rather than hospitalized. Some of these people recover (DQR) and some die (DQD).

• Recovered (R): People who have recovered from the disease (and assumed to be immune).

• Deceased (D): People who have died from the disease.

In addition to main functional states, we introduce auxiliary states to calculate a few useful quantities:

Total Hospitalized (TH), Total Detected deaths (DD) and Total Detected Cases (DT). �e full mathematical

formulation of the model is as followed:

dS

dt
=−α̃γ(t)S(t)I(t)

dE

dt
= α̃γ(t)S(t)I(t)−βE(t)

dI

dt
= βE(t)− rdI(t)

dUR
dt

= rd(1− µ̃(t))(1− p̃d)I(t)−σUR(t)

dDHR

dt
= rd(1− µ̃(t))p̃dphI(t)−κDHR(t)

dDQR

dt
= rd(1− µ̃(t))p̃d(1− ph)I(t)−σDQR(t)

dUD
dt

= rdµ̃(t)(1− p̃d)I(t)− τ̃UD(t)

dDHD

dt
= rdµ̃(t)p̃dphI(t)− τ̃DHD(t)

dDQD

dt
= rdµ̃(t)p̃d(1− ph)I(t)− τ̃DQD(t)

dTH

dt
= rdp̃dphI(t)

dDD

dt
= τ̃(DHD(t) +DQD(t))

dDT

dt
= rdp̃dI(t)

dR

dt
= σ(UR(t) +DQR(t)) +κDHR(t)

dD

dt
= τ̃(UD(t) +DQD(t) +DHD(t)).
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Figure 1 �e DELPHI Model.

Figure 1a depicts a �ow representation of the model, where each arrow represents how individuals can

�ow between di�erent states. �e underlying di�erential equations are governed by 11 explicit parameters

which are shown on the appropriate arrows in Figure 1a and de�ned below. As the pandemic progressed,

the DELPHI model was also continuously updated to re�ect the changing situation. De�nitions that have

been updated during the course of the pandemic are detailed for full transparency. To limit the amount of

data needed to train this model, only the parameters denoted with a tilde are being ��ed against historical

data for each area (country/state/province); the others are largely biological parameters that are �xed

using available clinical data from a meta-analysis of over 190 papers on COVID-19 available at time of

model creation (Bertsimas et al. 2020). A small selection of references for each parameter is given below.

• α̃ is the baseline infection rate.
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• γ(t) measures the e�ect of government response and is de�ned as:

γ(t) = 1 +
2

π
arctan

(
−(t− t̃0)

k̃

)
+ c̃ exp

(
−

(t− t̃jump)
2

2σ̃2

)
,

where the parameters t̃0 and k̃ capture, respectively, the timing and the strength of the response.

�e exponential term intends to re�ect a resurgence in infections due to relaxation of governmental

policy and societal response, where c̃ controls the magnitude of resurgence, t̃jump the time of the acme

of the resurgence, and σ̃ the duration of the resurgence phase. �e e�ective infection rate in the

model is α̃γ(t), which is time dependent. �e exponential resurgence term was added to the model

in late June as we observed the large resurgence in the pandemic (i.e. before July the model assumed

c̃= 0). �e 2
π

constant is so that the starting γ(t) with c̃= 0 is normalized to the range of [0,2] with

γ(t) = 1 if t= t0.

• rd is the rate of detection. �is equals to log 2
Td

, where Td is the median time to detection (�xed to be

2 days), see Wang et al. (2020).

• β is the rate of infection leaving incubation phase. �is equals to log 2
Tβ

, where Tβ is the median time

to leave incubation (�xed at 5 days), see Lauer et al. (2020).

• σ is the rate of recovery of non-hospitalized patients. �is equals to log 2
Tσ

, where Tσ is the median

time to recovery of non-hospitalized patients (�xed at 10 days), see Hu et al. (2020), Kluytmans et al.

(2020).

• κ is the rate of recovery under hospitalization. �is equals to log 2
Tκ

, where Tκ is the median time to

recovery under hospitalization (�xed at 15 days), see Liu et al. (2020b), Grein et al. (2020).

• τ̃ is the rate of death. �is captures the speed at which a dying patient dies, and thus inversely

proportional to how long a dying patient stays alive.

• µ̃(t) is the mortality percentage, de�ned as:

µ̃(t) = (µ̃0−µmin)

(
1 +

2

π
arctan (−r̃mt)

)
+µmin,

Where µ̃0 is the initial mortality percentage, µmin is the minimum mortality percentage and r̃m is

the decay rate for mortality. Before June, the model had assumed r̃m = 0 as the mortality percentage
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was relatively constant in the early pandemic due to the lack of treatment options. �is parametric

curve describes the natural decay of mortality percentage as standard of care improves throughout

the pandemic. Notice that this quantity measures the percentage of people who die from the disease

in a particular region, and is independent from the rate of death.

• pd is the percentage of infectious cases detected, which is �xed at 20% based on various reports

trying to understand the extene of underdetection in countries with earlier outbreaks. Wang et al.

(2020), Krantz and Rao (2020), Niehus et al. (2020)

• ph is the (constant) percentage of detected cases hospitalized, which is set to 15%, see Arons et al.

(2020), Xu et al. (2020).

We �t on 11 parameters from the list above (α̃, µ̃, τ̃ , t̃0, k̃, c̃, t̃jump, σ̃, µ̃0, r̃m). In addition, we introduce 2

additional parameters k̃1, k̃2 to account for the unknown initial population in the infected (I) and exposed

(E) states. We thus �t 12 parameters per area.

�e parameters are ��ed by minimizing a weighted Mean Squared Error (MSE) metric with respect to

the parameters. Let DT (t) and DD(t) denote the number of reported total detected cases and detected

deaths, respectively, on day t. �en, the loss function for a training period of T days is de�ned as:

T∑
t=1

t2

T 2
·
(
D̃T (t)−DT (t)

)2

+λ2 ·
T∑
t=1

t ·
(
D̃D(t)−DD(t)

)2

,

where D̃T (t) and D̃D(t) are respectively the total detected cases and deaths predicted by DELPHI. �e

factor t2

T2 gives more prominence to more recent data, as recent errors are more likely to propagate into

future errors. �e lambda factor λ= min
{

DT (T )

3·DD(T )
,10
}

balances the ��ing between detected cases and

deaths; this re-scaling coe�cient was obtained experimentally. We utilize a rolling training window of up

to 4 months of historical data to train the model, as the parametric form of γ(t) would allow both the

modeling for the current wave and any resurgence in the future. We speci�cally exclude historical data

starting before the area recorded more than 100 cases; this allows us to exclude sporadic outbreaks that are

not epidemics. To optimize over the highly non-convex search space, we utilize both the local truncated

newton algorithm (Nocedal and Wright 2006) and the global optimization method of dual annealing (Xiang

et al. 1997). �e truncated newton algorithm is utilized to produce forecasts on a daily basis while the
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dual annealing optimization is performed on a weekly basis to shi� and re-adjust the parameters more

signi�cantly if the underlying mechanics have changed (e.g. in the case of a new wave of cases). �is

dual-track optimization allows e�cient optimization while ensuring that the resulting �t would not dri�

signi�cantly from the data. We next discuss the three key characteristics of the DELPHI model compared

to the standard SEIR formulation as well as the variants used for COVID-19 modeling which we have

referenced in section 1.1.

Accounting for Under-detection. In the COVID-19 crisis, one of the key modeling di�culties is the

chronic underdetection of con�rmed cases. �is is both due to the lack of detection abilities in the early

stages of the pandemic and also the similarity between a mild case of COVID-19 and the common �u.

�us, to account for such a signi�cant e�ect, we explicitly included theUR/UD states to model people who

actually contracted COVID-19 (and are infectious), but were not detected. In particular, we assume that

only pd of the total number of the cases were detected, while 1− pd of the total cases �ow to the UR/UD

states. �ere are two methods to gain information on the detection rate: treating pd as a parameter and �t

to the historical data, or recover pd from serological evidence. However, both methods were impractical

during the creation of this model. In an early to mid stage pandemic, a wide range of detection percentages

are consistent with the data but leads to vastly di�erent predictions (see e.g. Lourenço et al. (2020)), so

historical data could not provide strong evidence. Furthermore, at the time of redaction, the serological

data were largely limited to speci�c sub-areas such as cities and counties (see Doi et al. (2020), Streeck

et al. (2020), Sood et al. (2020), Bendavid et al. (2020) for examples), while region-wide surveys were largely

limited to a few European countries (see Erikstrup et al. (2020), Wise (2020) for examples and discussion)

and only very sparsely available around the world. Note that testing data was not explicitly used in the

di�erential equations of the DELPHI model, because trying to regress the coe�cient γ(t) or the detection

percentage on the time-varying tested percentage of the population signi�cantly decreased the empirical

performances of the model. �is can be explained by the inconsistency of the reported testing across

di�erent regions, and the fact that tests were not uniformly distributed across the population as they were

highly skewed towards the symptomatic individuals, especially in the earlier stages of the pandemic. One
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possible direction for improvement and future research is to smooth this testing data, for example using

7-day rolling averages, before feeding it to the DELPHI model.

�us, we instead �x the detection percentage to be 20% based on various reports trying to understand

the extent of underdetection in countries with earlier outbreaks (Wang et al. 2020, Krantz and Rao 2020,

Niehus et al. 2020). Even more recently, Breton (2020) has independently reached a similar conclusion to

our assumption. We acknowledge that this is a major simpli�cation of the true dynamics as we expect the

underlying detection rate to be changing over time and also in di�erent areas; however, the sensitivity

analysis conducted in Section 3.3 demonstrates that the model is relatively insensitive to this underlying

parameter, which is unidenti�able.

Separation of Recovery and Deaths. A large focus in many governments’ response to the COVID-

19 pandemic is to minimize the number of deaths, and thus in DELPHI, we included a death state. In most

epidemiological models that extend to include the death state (see e.g. Wang et al. (2020), Peng et al. (2020)

for COVID-19 modeling examples), the death state (D) is shown to �ow from the same active infectious

state as the recovery state (R), with a schematic shown in Figure 1b. However, this modeling approach

would cause the mortality percentage µ̃ to be dependent on the rates of recovery and death.

Let us assume that recoveries and deaths are modeled as shown in Figure 1b. �en, the out�ow from

the I state, denoted I−, can be wri�en as

dI

dt

−

=−(ν+ τ)I,

where ν is the rate of recovery and τ is the rate of death. �is state dependent model implies a mortality

percentage of ν
ν+τ

, which is �xed given the rate of recovery and the rate of death. However, in reality, the

mortality percentage should be independent from how fast people recover or die. �us, to resolve such

mismatch, we explicitly separated out the µ̃ fraction of the population infected that would eventually die

(ID) from the 1− µ̃ fraction that would recover (IR), as illustrated in Figure 1c.

�is allows the mortality percentage µ̃ to be independent from the rates of death and recovery. �e

�nal DELPHI model further di�erentiated the IR states into hospitalized (DHR), quarantined (DQR), and

undetected (UR) states to account for the di�erent treatments people received, and similarly with the ID

states.
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Modeling E�ect of Increasing Government Response. One of the key assumptions in the stan-

dard SEIR model is that the rate of infection α is constant throughout the epidemic. However, in real

epidemics such as the COVID-19 crisis, the rate of infection starts decreasing as governments respond to

the spread of epidemic, and induce behavior changes in societies. To account for such e�ect, we model the

e�ect of government measures with a parametric function γ(t) that includes an arctan function, as well

as an exponential function.

In total the parametric curve models 4 separate phases in a pandemic. �e concave-convex nature of

an arctan curve accounts for the �rst three phases: �e early, concave part of the arctan models lim-

ited changes in behavior in response to early information, while most people continue business-as-usual

activities. �e transition from the concave to the convex part of the curve quanti�es the sharp decline in

infection rate as policies go into full force and society experiences a shock event. �e la�er convex part of

the curve models a �a�ening out of the response as the government measures reach saturation, represent-

ing the diminishing marginal returns in the decline of infection rate. �en the exponential term is meant

to model a potential resurgence in cases, for instance due to premature relaxation of societal restrictions

or some other behavior in the area’s society. An illustration of such four phases is shown in Figure 2.

Figure 2 Illustration of γ(t) = 1+ 2
π
arctan

(
− t−10

5

)
+exp

(
− (t−25)2

8

)
(i.e., t̃0 = 10, k̃= 5 c̃= 1, t̃jump = 25, and σ̃= 2).

Parameters t̃0 and k̃ control the timing of such measures and the rapidity of their penetration, while

the c̃, t̃jump, σ̃ control the timing, magnitude, and duration of the resurgence. �is formulation allows us to
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model, under the same framework, a wide variety of policies that di�erent governments impose, including

social distancing, stay-at-home policies, quarantines, and others, along with the societal response. �is

modeling captures the increasing force of intervention in the early-mid stages of the epidemic, and also

accounts for the relaxation in behavior and measures in the later stages of the epidemic.

3. Results and Performance Analysis

In this section, we present the results of the DELPHI predictive model and its performances in terms of

Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) across time and regions,

and benchmark it against the state-of-the-art COVID-19 models used by the CDC. We also analyze the

sensitivity of DELPHI to perturbations in its parameters.

3.1. Forecasting Results

DELPHI was created in early April and has been continuously updated to re�ect new observed data. �e

codebase is available on GitHub1 with the primary model being wri�en in Python 3.7 using the SciPy

and NumPy libraries. �e implementation is also multiprocessing-friendly, which allows it to scale easily

(using servers/machines with multiple CPUs/threads) to the high number of areas the model is ��ed on

every day. Figures 3a and 3b show our projections of the number of cases in Russia and the United King-

dom made on three di�erent dates, and compare them against historical observations. �ese countries

were chosen for illustrative purposes, as they are major countries with very di�erent curves for the cases

on the three evaluation dates. �e results for Russia and the UK are however consistent with the overall

performances across all countries of all regions, as described extensively in the rest of the section. �ey

suggest that DELPHI achieves strong predictive performance, as the model has been consistently predict-

ing, with high accuracy, the overall spread of the disease for several weeks. Notably, DELPHI was able

to anticipate, as early as April 17th, the dynamics of the pandemic in the United Kingdom (resp. Russia)

up to May 12th. At a time when 100-110K (resp. 30-35K) cases were reported, the model was predicting

220-230K (resp. 225-235K) cases by May 12th—a prediction that became accurate a month later. In the case

of Russia, DELPHI was able to predict that the country was going to become a global hotspot as well as to
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(a) United Kingdom (b) Russia
Figure 3 Cumulative number of cases in the UK (a) and Russia (b) according to our projections made at di�erent points in

time, against actual observations. Note there predicted curves largely overlap with the actual curve.

accurately estimate the magnitude of the �rst wave of the outbreak even at an early stage of the pandemic

(less than 0.025% of the population infected, vs more than 0.16% a month later which has put the country

at the 4th rank worldwide in terms of cumulative number of cases).

Furthermore, Table 2 reports the median Mean Absolute Percentage Error (MAPE) and the Root-Mean-

Squared Error (RMSE) on the observed total cases and deaths in each area of the world for two periods:

1) �e �rst period uses data up until April 27th, and evaluates on the 15 day period up until May 12th; 2)

�e second period uses data up to September 21st, and evaluates on the 15 day period up until October

6th. We illustrate the results over two separate periods to demonstrate the e�ect of the update in mod-

eling to account for resurgence in infections and decay in the mortality percentage. Overall, our model

seems to predict the epidemic progression relatively well in most countries across the two periods with

< 10% MAPE on reported cases, and< 15% MAPE on reported deaths with a very competitive worldwide

median MAPE at 5.8% for cases and 10.6% for deaths. Additionally, the areas with the highest MAPE are

o�en those that have the fewest deaths, with selected examples in Table 1. �is stems from the fact that

DELPHI—like all SEIR-based models—is not designed to perform well on areas with small populations and

interactions. �e e�ect is further exacerbated by the choice of the metric, since MAPE inherently heavily

penalizes errors on small numbers. If we turn our a�ention to RMSE, we see that the median RMSE in

deaths in both periods were< 100 across all regions, which is signi�cant given the high amount of deaths

reported in each region (e.g. by the second period a majority regions in North America and Europe were
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reporting over 5,000 cumulative deaths). �e median RMSE on cases are more signi�cant at just above

2,000 cases in the second period, but is still small compared to the daily median number of recorded cases

across all areas (∼ 60,000).

We further observe that a�er introducing additional terms to account for the decay in mortality per-

centage, the MAPE for deaths dropped signi�cantly to 4.8% over the second period, demonstrating the

e�cacy of improved modeling as additional data became available.

Table 1 Breakdown of number of deaths vs. MAPE on deaths for large errors on the prediction period of April 28th to

May12th.

Country/Province Bahrain Djibouti Guinea Kazakhstan Sri Lanka Oman Qatar Venezuela

Number of deaths

as of May 11 2020
8 3 11 32 9 17 14 10

MAPE on deaths 89.6% 193.1% 53.3% 62.6% 54.5% 44.0% 106.9% 48.1%

3.2. Comparison with Other Models

To further understand and showcase the performance of DELPHI, we compare DELPHI to other top-

performing models submi�ed to the CDC ensemble forecast in the context of predicting the number

of deaths in the United States 4 weeks ahead, the furthest away and most di�cult endpoint that the

CDC ensemble forecast records. In particular, we have selected comparison models that are consis-

tently included the CDC ensemble forecasts. �is includes the models from University of Texas, Austin

(UT-Mobility, ?), Institute for Health Metrics and Evaluation (IHME-CurveFit, IHME (19)), Youyang Gu

(YYG-ParamSearch, ?), Northeastern University’s Laboratory for the Modeling of Biological and Socio-

technical Systems (MOBS-GLEAM COVID, ?), Predictive Science Inc. (PSI-DRAFT, DRA (2020)), Los

Alamos National Laboratory (LANL-GrowthRate, LAN (2020)), and Notre Dame University (NotreDame-

mobility, Perkins and Espana (2020)).

In Figure 4a, we compare the out-of-sample MAPE of these models for the endpoint de�ned above using

the actual weekly predictions submi�ed to the CDC between July and September. �is particular period
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Median MAPE Cases Median MAPE Deaths Median RMSE Cases Median RMSE Deaths

Region # Areas (10th, 90th percentile) (10th, 90th percentile) (10th, 90th percentile) (10th, 90th percentile)

April 28th

Africa 19 14.7% (3.1, 32.0) 23.4% (11.8, 60.3) 138.7 (27.0, 1019.6) 4.8 (1.1, 27.5)

Asia 32 4.8% (2.1, 18.4) 14.4% (2.9, 65.2) 677.3 (51.5, 9778.1) 13.0 (1.0, 151.6)

Europe 42 3.4% (0.8, 12.9) 9.0% (2.3, 24.3) 238.1 (15.4, 3276.4) 14.8 (1.6, 236.2)

North America 10 7.9% (3.9, 28.3) 12.6% (2.8, 23.6) 594.4 (36.1, 1947.5) 16.3 (4.0, 132.3)

Oceania 2 3.2% (2.4, 4.1) 12.0% (11.0, 13.0) 68.6 (49.4, 87.8) 2.0 (1.8, 2.3)

South America 11 14.9% (7.6, 26.7) 6.1% (3.3, 30.1) 683.6 (31.4, 10815.0) 6.8 (0.6, 426.1)

United States 51 8.5% (1.9, 16.7) 7.8% (3.3, 25.1) 1231.6 (73.8, 4861.8) 33.5 (1.7, 210.7)

World 167 5.8% (1.5, 22.6) 10.6% (2.9, 36.6) 412.6 (26.1, 4788.7) 12.0 (1.3, 193.1)

September 22nd

Africa 53 5.2% (0.6, 30.4) 4.2% (0.0, 42.6) 364.5 (27.5, 2913.2) 8.8 (0.0, 121.7)

Asia 38 6.5% (1.7, 38.4) 8.3% (1.4, 26.8) 6311.3 (120.9, 53046.7) 47.4 (0.7, 719.5)

Europe 44 13.4% (3.8, 38.5) 7.7% (1.1, 22.5) 4452.9 (326.6, 22405.9) 43.6 (1.7, 776.5)

North America 14 7.3% (1.2, 17.1) 4.8% (1.0, 22.0) 2180.4 (187.5, 8656.7) 48.9 (2.0, 269.0)

Oceania 3 2.7% (1.6, 4.2) 1.1% (0.8, 7.1) 51.0 (16.0, 127.5) 0.8 (0.6, 3.8)

South America 13 9.4% (1.2, 15.5) 5.2% (2.1, 22.7) 5683.8 (473.2, 131184.4) 95.6 (3.5, 4438.1)

US 51 5.2% (1.3, 20.6) 3.0% (0.5, 15.0) 5323.5 (661.6, 17571.2) 66.9 (3.1, 275.0)

World 216 6.5% (1.2, 28.2) 4.8% (0.6, 27.6) 2170.0 (69.3, 18549.4) 31.2 (1.1, 505.3)

Table 2 Median country-level Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) of the

predicted number of cases and deaths in each region. Projections in the �rst (resp. second) half of the table are made using data

up to 04/27 (resp. 09/21) for the period from 04/28 to 05/12 (resp. 09/22 to 10/06).

was selected because it encompassed the majority of the period of resurgence in the United States and its

decay, making its prediction even more di�cult. We observe that DELPHI consistently achieves low MAPE,

and that its predictions are stable with a MAPE never exceeding 3.5% throughout the entire period. Figure

4b further illustrates the performance of DELPHI in comparison to other models by graphing the weekly

ranking (with respect to MAPE). We observe that DELPHI consistently outperforms all other models, holds

the �rst rank for 6 out of 13 weeks, and never drops below rank 4 among the 8 models evaluated: this

provides further evidence of the real-world performance of DELPHI.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2021. ; https://doi.org/10.1101/2020.06.23.20138693doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.23.20138693
http://creativecommons.org/licenses/by/4.0/


Li et al.: Forecasting COVID-19 and Analyzing Government Interventions
16 Article submi�ed to Operations Research; manuscript no. (Please, provide the manuscript number!)

(a) MAPE of DELPHI for US wide 4 week ahead deaths prediction from July to September

(b) Rank of DELPHI for US wide 4 week ahead deaths prediction from July to September
Figure 4 Comparison of 4 week MAPE on deaths prediction in the US between DELPHI and other models used by the CDC

3.3. Sensitivity Analysis

�e DELPHI model utilizes a number of �xed parameters derived from literature or our clinical database

in an a�empt to reduce the amount of data needed for ��ing the model. In reality, these parameters would
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be changing over time and therefore it is critical to understand the e�ect of �xing these parameters on

the model. �erefore, we conducted an extensive sensitivity analysis to illustrate the e�ect on the model

when the key �xed parameters are perturbed. Speci�cally, for every �xed parameter in DELPHI (β, rd, σ,

κ, pd, ph), we randomly perturb the parameter by a normal noise term ε that has mean 0 and standard

deviation of 20% of the nominal parameter’s absolute value (i.e. ε∼N (0,0.2 · |param|)). �en we �t the

DELPHI model using data up to a certain prediction date using the modi�ed �xed parameter and record

the 30 day out-of-sample MAPE and compare with the MAPE of the actual model that was ran on that

prediction date (using the publicly available records of our predictions).

We conducted the sensitivity experiment for all states in the United States and 6 international coun-

tries with large outbreaks: Italy, Spain, Brazil, South Africa, Japan and Russia. �e countries were chosen

to have a broad representation around the world. For completeness purposes, for each area we further

conduct the experiment on 3 separate prediction dates. Figure 5a and 5b record the quantile plots of the

absolute di�erence between the MAPE of the actual model and the perturbed model across all 6 perturbed

parameters and 3 prediction dates (meaning that each box contains the distribution of 57 points for a given

prediction date and perturbed parameter). We observe that for all 6 parameters, across both cases and

deaths, the e�ect of the perturbation on the one-month MAPE is relatively small, with interquartile range

mostly falling between ±5% for a perturbation with a standard deviation of 20% of the parameter value.

�is demonstrates that the results from the DELPHI model are robust to a (relatively important) change

to the underlying �xed parameters, which comforts us in some of our core hypotheses.

4. Evaluating Di�erent Government Intervention Scenarios

In this section, we extend DELPHI to evaluate the impact of government interventions. �at allows us to

quantify the e�ciency of Non-pharmaceutical Interventions (NPIs) and predict counterfactuals and “what-

if” scenarios under di�erent policies, which enable policy-makers to assess their COVID-19 response and

decide on their future interventions accordingly.

4.1. E�ect of Government Interventions

A particular bene�t of the parametric modeling utilized by DELPHI is that it could easily be utilized for

policy evaluation. For that, we can extract the normalized ��ed government response curve γ(t) in each
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(a) Sensitivity of predictions on cases based on perturbation of key �xed parameters.

(b) Sensitivity of predictions on deaths based on perturbation of key �xed parameters.
Figure 5 Sensitivity analysis of various �xed parameters, comparing perturbed MAPE on cases and deaths to their nominal

counterparts without perturbations.

area, and utilize it to understand the impact of speci�c government policies that have been implemented.

In particular, we aim to understand the average e�ect of each policy on γ(t) during the early stages of the

pandemic to retrospectively understand which policies were e�ective. To this end, for all countries except

the US, we collect data from the Oxford Coronavirus Government Response Tracker for historical data on
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government policies Hale et al. (2020), during the period between January 1st 2020, and May 19th 2020.

For the US, we collect the policy data from the Institute for Health Metrics and Evaluation Murray et al.

(2020) during the same period.

At each point in time, we categorize the government intervention data based on whether they restrict

mass gatherings, schools, travel and work activities. We group travel restrictions and work restrictions

together due to their tendency to be implemented simultaneously. From January 1st to May 19th, the 167

areas in total implemented 5 combinations of such interventions. Speci�cally, these are: (1) No measure;

(2) Restrict travel and work only; (3) Restrict mass gatherings , travel and work; (4) Restrict mass gatherings,

schools, travel and work; and (5) Stay-at-Home. �e detailed correspondence between raw policy data and

our categories are contained in the Appendix. Other potentially feasible combinations were not imple-

mented by the countries, meaning that these 5 policies are mutually exclusive and collectively exhaustive.

�en for each policy category i= 1, . . . ,5, we extract the average value of γ(t), γ̄i, across all time periods

and areas for which policy i was implemented. �en we calculate the residual fraction of infection rate

under policy i, pi, compared to the baseline policy of no measure:

pi =
γ̄i
γ̄1

Restrictions Area-Days Residual Infection Rate

None 2142 100%

Travel and Work 2049 88.9± 4.5%

Mass Gathering, Travel, and Work 340 59.0± 5.2%

Mass Gathering, School, Travel, and Work 1460 41.7± 4.3%

Stay-at-Home Order 6585 25.6± 3.7%

Table 3 Implementation Length and E�ect of each policy category as implemented across the world.

Table 3 shows the number of area-days that each policy was implemented around the world and its

e�ect. We further report the standard deviation of such estimate treating each geographical area as an
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independent sample. We see that each selected policy was enacted for at least hundreds of Area-Days

worldwide, while the stringent stay-at-home policy was cumulatively implemented the most. In particular,

we see that mass gathering restrictions generate a large reduction in infection rate, with the incremental

reduction between travel and work restrictions compared to mass gathering, travel, and work restrictions

is 29.9±6.9%. �is is further supported by the large residual infection rate of 88.9±4.5% when travel and

work restrictions are implemented, but mass gatherings are allowed. Additionally, we observe that closing

schools also generate a large reduction in the infection rate, with an incremental e�ect of 17.3± 6.6%

on top of mass gathering and other restrictions. Stay-at-home orders produced the strongest reduction in

infection rate across the di�erent countries, with a residual infection rate of just 25.6± 3.7% compared

to when no measure was implemented.

If COVID-19 has an average basic reproductive numberR0 of 2.5-3 (Zhang et al. (2020), Liu et al. (2020a)),

then on average, only the strongest measure (Stay-at-Home orders) are su�cient to control a COVID-19

epidemic in reducingR0 to be less than 1. However, this presents a serious dilemma to policymakers as the

stay-at-home orders in early 2020 proved to carry a large social and humanitarian cost. �is demonstrates

that in the face of an already fast-growing outbreak, policymakers are o�en stuck between unpalatable

policy options: in this case whether to let the pandemic grow uncontrollably or to in�ict a signi�cant

humanitarian cost on society. In particular, this further stresses the value of early control for an epidemic

as demonstrated in Section 4.2.

4.2. Modeling Alternative Initial Responses

Beyond analyzing the e�ect of di�erent governmental interventions, our �exible parametric formulation

allows us to easily explore alternative scenarios, such as what would have happened if the initial gov-

ernment interventions were enacted at di�erent times. Speci�cally, to model what would happen if the

government response was enacted m days earlier, we can simply correct the government response as

followed:

γ′(t) =
2

π
arctan

(
− t− (t̃0−m)

k̃

)
+ 1.
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Figure 6 shows the percentage of cases and deaths avoided around the world by May 17th if the govern-

ment interventions occurred one week earlier. �e 50 countries with the highest reduction in deaths and

cases are selected for clarity. �e May 17th endpoint is selected as the vast majority of countries had not

reopened by then, and thus the DELPHI assumption of increasing government intervention still holds. We

can see that the DELPHI model predicts an over 75% reduction in both cases and deaths for many coun-

tries around the world if the restrictions were just implemented one week earlier. In particular, Western

European countries such as Switzerland, Spain, and Italy would have bene�ted the most if restrictions had

been enacted earlier. �is corroborates the fact that these locations had some of the �rst outbreaks outside

of Asia, and thus did not have as much time to react as countries which su�ered a later outbreak, such as

Romania and Iceland. Cumulatively across the world, DELPHI predicts that over 280,000 deaths or 68%

of the world’s cumulative death count, could have been avoided around the world by May 17th, if every

country in the world enacted its restrictions one week earlier.

Another insightful scenario to consider is what would have happened if there had been no societal and

governmental action against the epidemic, and COVID-19 was allowed to spread freely in the society. �is

can be naturally modeled in DELPHI with a constant government intervention curve of:

γ′(t) = γ(0) =
2

π
arctan

(
t̃0

k̃

)
+ 1.

Using such response, DELPHI predicts that over 14.8 million individuals would have perished due to

COVID-19 by May 17th if there had been a total lack of intervention. �is demonstrates that the severe

measures implemented by governments and societies worldwide saved a signi�cant portion of the popu-

lation around the world.

5. Analysis of What-If Scenarios for Long-term Planning

In Section 4.2, we observed how DELPHI could evaluate the e�ect of alternative initial responses by the

governments worldwide. By extension, a natural use case of the DELPHI model is to create what-if scenar-

ios due to changing future restrictions in di�erent countries to enable long-term planning. In particular, in

this section, we would illustrate how DELPHI was utilized by Janssen Pharmaceuticals in late May to cre-

ate what-if scenarios on the e�ect of li�ing restrictions in di�erent countries in order to plan their Phase
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(a) Percentage of cases avoided around the world if policy enacted one week early.

(b) Percentage of deaths avoided around the world if policy enacted one week early.
Figure 6 Scenario analysis if restrictions implemented one week earlier.

III trial location for their leading vaccine candidate, Ad26.Cov-2.S. By reverting the e�ect of each policy

on γ(t) at the time of the hypothetical policy relaxation, Janssen Pharmaceuticals is able to understand

the potential di�ering infection scenarios so that it can choose trial locations that would maximize the
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infection incidence in the placebo group. Since its successful deployment in late May, DELPHI has been

continually utilized in further COVID-19 vaccine trials in the Janssen portfolio.

Speci�cally, suppose that we are considering a policy easing from policy i to j at time tc in some area

that has not yet experienced a resurgence (c̃ = 0). �en for all times t ≥ tc, we correct the government

response as follows:

γ′(t) =
2

π
arctan

(
− t− t̃0

k̃

)
+ 1 + (pj − pi) ·min

[
2− γ(tc)

1− pi
,
γ(tc)

pi

]
︸ ︷︷ ︸
Di�erential in policy e�ect between policy i and j

, ∀t≥ tc.

Essentially, we apply a correction term that is proportional to the fractional di�erence in policy e�ect

between policy i and j (which is pj−pi > 0 as it is an easing). �e multiplicative factor min
[
2−γ(tc)
1−pi

, γ(tc)
pi

]
scales the fractional di�erence so that the resulting γ′(tc) is constrained within the initial range [0,2].

�en, we would replace γ(t) with γ′(t) in the DELPHI model to forecast the epidemic under the updated

policy. Using this correction factor, we predict what would happen in di�erent areas under various future

policies. Figure 7 shows results for France and Brazil respectively, under policy change implemented on

June 16th (four weeks a�er the last historical value on May 19th). Further results for other countries are

contained in the Appendix.

We observe di�erent levels of risk for the same re-opening strategies across di�erent countries. For

example, Figure 7c predicts that loosening measures in Brazil on June 16th would result in a second wave

of infections with up to 6.8 million additional cases by July 15th, while even a stay-at-home order would

lead to almost 1.9 million additional cases. Such alarming numbers can be understood through Figure

7d where we compute a rolling average of the weekly incidence of cases per 100K people. We can see

that Brazil is still on a steep ascending curve, and that any kind of loosening could be catastrophic. Such

behaviour stands in sharp contrast with France’s situation. Figure 7b demonstrates that the peak has long

passed in France and the epidemic has mostly died out. �us, as we can see in Figure 7a, loosening policies

(like France has already started doing) is likely to only minimally a�ect the number of infections.

To further understand the disparate impact of the policies across countries, we made predictions for the

situation around the world assuming a policy that involves mass gathering, travel, and work restrictions

was universally implemented on 06/16. Figure 8a shows three clusters of countries for July 15th:
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(a) France, total Detected Cases. (b) France, weekly Incidence per 100K.

(c) Brazil, total detected cases (log scale). (d) Brazil, weekly incidence per 100K (log scale).
Figure 7 Forecasts of total detected cases and weekly incidence per 100K for France and Brazil under various policies.

• Countries with a small number of cumulative cases (relative to the population), and that are in a late

stage of the pandemic with relatively few new cases, such as Greece, Japan, Morocco and Venezuela.

• Countries with a large number of cumulative cases, but that are in a late stage of the pandemic, with

relatively few new cases, mainly in Western and Northern Europe (e.g. the United Kingdom, Italy,

France and Finland).

• Countries where the pandemic has had a large impact with a large number of cumulative cases,

and where the situation will still be worsening at an alarming rate. �ese include the United States,

India and Brazil. A close-up of these countries is presented in Figure 8b, where we see that DELPHI

predicts Brazil would be severely hit by July, with up to 8% of the entire population infected, if the

hypothetical policy above is implemented. �is suggests that in these countries, such hypothetical

policy could be inadequate for controlling the epidemic, and a stronger policy (such as Stay-at-Home

orders) is needed.
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(a) Weekly Incidence of Cases (per 100K) in the �rst half of July against fraction of population infected for

multiple countries.

(b) Predictions for total cumulative cases (normalized by the population) vs new cases (per 100K) for

countries which are predicted to be highly impacted and still worsening at an alarming rate by July 15th.

Figure 8 World Predictions for Early July under Mass Gathering, Travel and Work Restrictions.
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6. Limitations

One limitation of this analysis is that some parameters are �xed to a constant value, most importantly

the median time to leave incubation Tβ (�xed at 5 days), the median time to recovery (Tσ �xed at 10

days for non-hospitalized patients and Tκ �xed at 15 days for hospitalized patients) and the detection

percentage �xed at 20%. However, the detection times are reasonably consistent throughout a certain

number of studies (Lauer et al. (2020), Hu et al. (2020), Kluytmans et al. (2020), Liu et al. (2020b), Grein

et al. (2020)). For the detection rate, using the sensitivity analysis and the values inferred from random

serology testing, we can show that the DELPHI model and its predictions are robust to this input. DELPHI

also does not currently capture a potential time-varying nature of these �xed constants. Including such

e�ect could sharpen the analysis further, though at the expense of increased ��ing di�culty and data

requirements. Furthermore, while we decided to use a decaying mortality percentage (using the arctan

function) which allowed us to predict even more precisely deaths all around the world, one criticism could

be that this parametric function cannot grasp a bump in mortality percentage. Indeed, in December 2020,

the observed mortality percentage has started raising again in some regions of the world, mostly because

of the temporary saturation of hospital systems: one way to account for this could be to use, similarly to

what we did in the government intervention modeling, an exponential bump. While we haven’t seen the

need to do so now, we acknowledge that this could be a limitation for a few limited periods.

One further important limitation of the DELPHI model is that it does not explicitly model the e�ect

of asymptotic undetected infections, who are unlikely to quarantine and thus would participate in the

infection loop throughout their entire infectious period (currently we assume that everyone participates in

the infection loop for some time before they are quarantined in some fashion). �is limitation is the result

of the long-standing signi�cant debate in the medical community regarding the magnitude of COVID-

19 infections due to asymptomatic undetected individuals. �ere were early estimates (see e.g. Ing et al.

(2020)) that suggest a high percentage of infections were caused by such e�ect, but a recent published

meta-analysis (Byambasuren et al. 2020) concluded that asymptotic infections account for no more than

17% of total infections and asymptotic infections are 42% less likely to further infect other individuals,
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so the impact of such infections on the pandemic is small. Given such wide-ranging di�ering estimates

of the e�ect, we made a decision not to explicitly model asymptotic undetected patients as there does not

seem to be su�cient reliable data on their impact in the COVID-19 pandemic. However, once reliable data

is present, an explicit modeling of such e�ect could further improve the forecasting results for DELPHI.

It is also interesting to note that DELPHI has the same limitations than other SEIR-based models (Holm-

dahl and Buckee (2020)) in terms of size of populations and minimum number of cases. Experimentally, it

translates in some rare cases with a signi�cant drop in accuracy for very small provinces (as described in

Table 1). Holmdahl and Buckee (2020) also point out that SEIR-based models, including DELPHI, struggle

with long-term predictions: even though DELPHI is able to detect new waves very well when the occur,

it absolutely cannot detect them beforehand, causing potentially the long-term predictions to be o� if one

or multiple new waves happen between the training and the prediction dates.

�is analysis also assumes, in analyzing government interventions, that the same nominal policy (e.g.

Mass gathering restrictions) could be compared across countries. In reality, di�erent countries have imple-

mented variants (though largely similar) of restrictions under the same name, and this could further impact

the validity of the analysis.

In the reopening analysis, we have assumed that the e�ect of government interventions imposed at

the start of the epidemic is indicative of the e�ect when it is removed. �is is potentially a�ected by a

permanent change in social behavior during the epidemic. For example, if a signi�cant portion of the

population adapts social distancing measure even a�er the o�cial restrictions are li�ed, this could lead to

a smaller resurgence of infections than what is predicted in the analysis.

7. Conclusions

We introduced DELPHI, a novel epidemiological model that extended SEIR to include many realistic

e�ects critical in this pandemic. DELPHI was able to accurately predict the spread of COVID-19 in many

countries, and aid planning for many organizations worldwide, among which governmental entities and

pharmaceutical companies. Furthermore, the explicit modeling of government interventions allowed us

to understand their e�ect, and help inform how societies could reopen.
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Appendices
A. Detailed Forecasting Results for the World

(a) Africa (b) Asia

(c) Europe
(d) North America

(e) Oceania (f) South America

Figure A1 Mean Absolute Percentage Error (MAPE) of the predicted number of cases and deceases in each country (projec-

tions made using data up to 04/27 for the period from 04/28 to 05/12).
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B. Correspondence between Policy Data and Categorized Policies

Oxford Policy Categorized Policy

C3: Cancel Public Events

Restrict Mass GatheringsC4: Restrictions on gatherings

C5: Close public transport

C2: Workplace closing

Travel and Work RestrictionsC7: Restrictions on internal movement

C8: International travel controls

C1: School closing School Restrictions

C6: Stay at home requirements Stay-at-Home Order

Table A1 Correspondence between Oxford Policy Data and Categorized Policies.

IHME Policy Categorized Policy

Mass Gathering Restrictions Restrict Mass Gatherings

Business Closure

Travel and Work RestrictionsNon-essential Businesses Closed

Travel Severely Limited

Educational Facilities Closed School Restrictions

Stay-at-Home Order Stay-at-Home Order

Table A2 Correspondence between IHME Policy Data and Categorized Policies.
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C. Additional Results for Reopening Strategies

(a) Japan, total detected cases. (b) Japan, weekly incidence per 100K.

(c) South Africa, total detected cases (log scale).
(d) South Africa, weekly incidence per 100K (log

scale).
Figure A2 Forecasts of total detected cases and weekly incidence per 100K for Japan and South Africa under various policies.
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