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Abstract 

For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-

sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In 

this paper, we train machine learning algorithms on 15 reported types of scope 3 emissions. The models 

utilize as inputs widely available financial statement variables, scope 1 and 2 emissions, and industrial 

classifications. We find that most reported scope 3 emission types can be predicted with higher accuracy 

using Adaptive Boosting machine learning algorithms relative to linear regression models and other 

supervised machine learning algorithms.   
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Introduction 

An organization’s carbon emissions comprise three categories: scope 1, 2, and 3 (Ranganathan et al., 2004). 

Scope 1 emissions are direct emissions produced by a firm through the operation of its owned assets in its 

value chain. For example, airlines produce scope 1 emissions by burning jet fuel while flying their owned 

aircraft. Scope 2 emissions are indirect emissions generated from electricity, steam, heat, and cooling usage 

in firm operations and purchased from an external utility provider. Grocery stores produce scope 2 

emissions by running appliances, light fixtures, and refrigeration equipment. Scope 3 emissions (often 

referred to as value chain emissions) are indirect emissions generated from all other activities conducted 

using assets not owned by the reporting company that are involved in the production and usage of the 

reporting company’s product or service. Scope 3 emissions are produced from a broad diversity of sources 

and processes including emissions associated with purchased goods and services, employees commuting, 

waste generated from operations, processing of sold products, and use of sold products (Bhatia et al., 2010).  

To date, among the firms interested in measuring their carbon emissions, most have spent their time 

quantifying scope 1 and 2 emissions. Those emissions are often the most intuitive to comprehend because 

they are directly tied to the reporting firm’s actions and the simplest to quantify. Scope 1 emissions can be 

measured using internal activity metrics while to quantify scope 2 emissions, a firm must sum its utility 

consumption by energy source and multiply by a set of emission conversion factors. Moreover, reductions 

of scope 1 and 2 emissions are more within the span of control of a company, while reductions in scope 3 

emissions require changes in supplier and customer behavior. Hence, when firms begin to manage their 

emissions, they tend to gravitate toward measuring, reporting, and targeting scope 1 and 2 emissions due 

to ease of calculation and higher degree of control. By comparison, scope 3 emissions are more difficult to 

understand and quantify (Cheema-Fox et al., 2021). The data needed to quantify these emissions frequently 

comes from third-parties or secondary sources. These business partners may not even collect such data, in 

which case, the reporting company may need to locate average secondary source data, contributing to 

estimation difficulty. Challenges such as these are common in quantifying the different types of scope 3 

emissions.  

Despite the challenges in measuring and mitigating scope 3 emissions, these emissions are 

significant. First, it is common for scope 3 emissions to account for a substantial share of a firm’s total 

emissions footprint (Klaaßen & Stoll, 2021). Automobile manufacturing is an example of an industry in 

which scope 3 emissions dominate corporate emissions profiles. Running factories and operating assembly 

lines to produce internal combustion engine vehicles (ICEVs) generates a significant amount of scope 1 

and 2 emissions, however, it is consumers driving vehicles (the use of sold products) that comprises the 

vast majority of a vehicle manufacturer’s carbon footprint. The same can be said for the food products 

industry, which has significant upstream emissions from agricultural activities and transportation and 



distribution. Absent reporting scope 3 emissions, the narrative surrounding a company’s climate-related 

financial risk may be incomplete or misleading. For example, a company with very large upstream scope 3 

emissions operating in an industry where suppliers have power and can pass costs to their customers (i.e. 

the company), could find themselves bearing the costs of future carbon taxes not only on their scope 1 

emissions but also on their upstream scope 3 emissions. This would be especially damaging for firms that 

have limited ability to pass their own costs to customers, in industries with low customer switching costs. 

Similarly, for companies with large downstream scope 3 emissions, technological risk might be heightened 

as cost effective alternative products might be preferred by customers (e.g., Electric Vehicles vs ICEVs).  

Perhaps equally significant is the role of scope 3 emissions as a potential driver of change across 

supplier and consumer networks. If firms are held accountable for their scope 3 emissions, firms will likely 

push existing business partners to reduce their emissions or seek out new business partners with better 

emissions performance. We already observe evidence of this taking place. Walmart, to reduce its scope 3 

emissions footprint, has launched an initiative to engage with its suppliers to accelerate their transition to 

renewable energy and sustainable practices.1 Coordinated efforts of this kind have the potential for swift, 

widespread impact.2 In sum, scope 3 emissions represent a substantial future climate transition risk due to 

their sheer volume, but also represent a significant opportunity to motivate future emissions reductions. 

Most firms, especially smaller financially constrained firms, do not have the resources or influence 

to engage in costly scope 3 measurement exercises. For example, the Securities and Exchange Commission 

(SEC) rule on climate disclosure mentions that scope 3 measurement often triples the professional service 

fees that a firm would need to pay relative to measuring scope 1 and 2 emissions.3 Those firms would 

benefit from a low cost and time efficient solution to the scope 3 measurement challenge that allows them 

to establish a rough approximation of their emissions and improve the quality of those measurements over 

time as they have more resources. Moreover, data providers already estimate scope 3 emissions, using linear 

models and heuristics, given the lack of disclosure by most firms.4 The estimation of those emissions could 

benefit from the application of machine learning algorithms. Therefore, the goal of this paper is to report 

the prediction accuracy of machine learning algorithms using a set of variables that are widely available in 

financial statements or by firms reporting the easier to measure scope 1 and 2 emissions. The algorithms 

train on reported scope 3 emissions, thereby using the information set available.  

 

                                                           
1 Walmart. Sustainability Hub. Project Gigaton. 
2 McKinsey & Company. Strategy & Corporate Finance Practice Research. How to succeed with carbon reduction initiatives. 
3 SEC. The Enhancement and Standardization of Climate-Related Disclosures for Investors. Proposed Rule.  
4 Refinitiv. ESG Carbon Data and Estimate Models.  

  MSCI ESG Research. Filling the Blanks: Comparing Carbon Estimates Against Disclosures. Comparing Carbon Estimates 

Against Disclosures.  
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Results 

Features 

We incorporate features that are widely available across publicly listed firms. We note that there could be 

more elaborate models that incorporate many more features, such as industry-specific energy production 

data, than those we use in this study that could improve further the prediction of scope 3 emission types. 

For our purposes, we prioritize the practicality of the models and for that reason we choose features that 

are widely available.  

Those features can be classified into five groups. The first group includes nominal variables; the 

sub-industry classification and home country of a firm. We download Global Industry Classification 

Standard (GICS) sub-industry data from Compustat via Wharton Research Data Services (WRDS) and 

Bloomberg. Where GICS data is unavailable from Compustat, we use data from Bloomberg. We merge 

GICS data onto CDP data using ISIN. Since 2002 over 8,000 companies have disclosed climate-related 

data to the CDP (CDP, 2020). The organization’s primary method of data collection is the dissemination of 

its annual Climate Change Questionnaire. 5 

The next three groups all include accounting and financial statement variables in addition to a 

market valuation multiple. The second group includes variables that represent a stock of resources, such as 

those found in the balance sheet (e.g., total assets). The third group includes variables that represent flows 

of resources, such as those found in the income statement (e.g., sales). The fourth group includes variables 

that represent ratios (e.g., profitability margin, operating efficiency). We source annual financial metrics 

from Worldscope via Wharton Research Data Services (WRDS). We merge financial data onto CDP data 

using International Securities Identification Number (ISIN) and year. We download year-end foreign 

exchange rates from Bloomberg to convert local currency values in the CDP data to USD. We merge 

exchange rates onto CDP data using ISIN and year.  

The fifth group contains scope 1 and 2 emissions metrics. We source these data from CDP. We 

compile corporate data from Climate Change Questionnaires published from 2013 through 2020.  All non-

ratio variables are logged to mitigate skewness in their distribution. Summary statistics for variables in 

groups 2-5 are presented in Table 1. 

Table 1 

Feature Observations Mean Median 
Standard 

Deviation 

Stock Variables         

logTotal Assets 9,013  22.88 22.84 1.41 

logNet Property Plant and Equipment  9,013  21.38 21.47 1.87 

                                                           
5 CDP. Climate Change Questionnaire. Reporting Guidance 2020.  

https://guidance.cdp.net/en/guidance?cid=13&ctype=theme&idtype=ThemeID&incchild=1&microsite=0&otype=Questionnaire&tags=TAG-13071,TAG-605,TAG-599


logCommon Equity 9,013  21.88 21.88 1.41 

logMarket Capitalization 9,013  22.64 22.65 1.49 

logNumber of Employees 9,013  9.58 9.67 1.64 

Flow Variables         

logSales 9,013  22.48 22.49 1.48 

log Cost of Goods Sold 9,013  21.73 21.90 2.19 

logSelling, General & Administrative Expenses 9,013  20.68 20.71 1.64 

logOperating Expense 9,013  22.33 22.36 1.51 

logOperating Income 9,013  19.42 20.09 4.00 

logCapital Expenditures 9,013  19.45 19.54 2.06 

Ratios         

Return on Sales 9,013  0.13 0.10 0.12 

Asset Turnover 9,013  0.85 0.75 0.55 

Capital Intensity 9,013  0.10 0.05 0.16 

Capital Renewal 9,013  0.19 0.16 0.15 

Age of Capital Assets 9,013  11.10 6.66 16.91 

Inventory Turnover Ratio 9,013  16.91 3.67 48.27 

Market to Book 9,013  1.70 1.36 0.99 

Emissions Metrics         

logScope 1 9,013  11.64 11.54 2.96 

logScope 2 9,013  11.70 11.91 2.16 
   

Table 1 | Summary statistics for the sample set of predictive input features. All observations have non-missing values for Scope 1 

and Scope 2 emissions. Financial variables that are missing yet required input features are imputed using a k-nearest neighbor 

algorithm.  

 

Reporting of Scope 3 Emission Types 

Unlike the reporting of scope 1 and 2 emissions, scope 3 emissions are disclosed by type. There are 15 

Scope 3 types and in this analysis these are known as targets. Table 2 shows the percentage of total firm-

years with emissions reported, emissions reported with mostly primary data (more than 80%) sourced from 

suppliers or customers, and emissions reported as zero for each of the 15 Scope 3 types. Several patterns 

emerge. First, emission types that are more idiosyncratic to the operating and strategic choices of individual 

firms tend to be less reported or reported as zero (i.e., franchises, investments, processing of sold products, 

or leased assets). Outside of this group of idiosyncratic scope 3 emissions types, we observe that more 

companies are reporting emissions, using primary data and as non-zero values, for upstream rather than 

downstream (i.e., purchased goods vs use of sold products, upstream vs downstream transportation and 

distribution), and for types that are easier to measure and where firms have more control (i.e., business 

travel, fuel and energy, waste generation from firm operations, employee commuting).  

  



Table 2 

 

Table 2 | Summary statistics for the sample set of predicted targets.  Business travel is the most reported Scope 3 emission type, due to its ease of calculation, however, calculations are highly 

dependent on designated emission factors corresponding the assumed mode of transportation. The mode of transportation assumption is also applicable in the calculations of employee 

commuting as well as downstream and upstream transportation and distribution, which are highly industry dependent. Equally, although there is a higher level of reporting within fuel and 

energy related activities and waste generated in operations, these responses have significant variation dependent on country-based regulations, access to fuel type and waste emission factors. 

Purchased goods and services is the second most reported Scope 3 type, however, firms of varying size and supply chain complexity choose to either calculate complete or only partial portions 

of their purchased goods and services value chain ranging from raw materials to intangible support services. Some firms choose to calculate these emissions based on a life cycle analysis 

(LCA) of the total value chain meanwhile other firms limit reported emissions to direct suppliers. Due to this, firms with similar financial and industry profiles may report emissions that are 

inconsistent with one another, and this proves to be challenging for a predictive model to accurately reproduce. Upstream and downstream leased assets also present challenges in terms of 

inconsistent reporting. Upstream and downstream leased assets are dependent on a firm's business model by way of operational or managerial decision-making. This leads to low reporting and 

high intra-industry variation. Therefore, firms with similar financial and industry profiles may report upstream and downstream leased assets emissions that are not comparable across identical 

sub-industries leading to a source of prediction error. Franchises and Investments Scope 3 types are highly industry dependent which is a primary driver of low response rates and relevancy. 

In addition, these two Scope 3 types depend on the firm's business model, as well as the operational or financial control boundary as defined by the GHG protocol. Use of sold products, 

processing of sold products and end of life treatment of sold products present challenges in calculation given that the boundary that separates these types is often not clear to firms and carry 

assumptions dependent on end user behavior. Within the sample set, this calculation challenge is reflected in the low response rate, large standard deviation relative to the mean, as well as the 

high variance exhibited by the log transformed distributions of these three Scope 3 types. In general, given the complex challenges in reporting denotes above, controlling for the sample set's 

bias and variance inherent to certain reporting methods upon a backdrop of irreducible error was a central concern. The total reducible error was mitigated by tuning the machine learning 

model to the optimal set of hyperparameters and controlling for certain sub-sets of total data such as cutting the sample training set by primary responses or excluding zero reported emissions.  

log (Target)
Non-missing 

Observations  

% of 

Observations 

Non-missing

N with Primary 

Data=>80%

% of reported 

with Primary 

Data=>80%

N Zeros
% of reported 

as Zero
Mean Median

Standard 

Deviation

Scope 3 Type

Busines Travel               7,728 86%              4,238 55%                   78 1% 8.53 8.69 2.18

Purchased Goods               5,454 61%              1,805 33%                  321 6% 11.68 12.92 4.35

Fuel and Energy               5,308 59%              2,152 41%                  416 8% 9.81 10.31 3.93

Waste Generated in Operations               5,306 59%              2,066 39%                  370 7% 7.66 8.19 3.24

Employee Commuting               5,005 56%              1,250 25%                  332 7% 8.28 8.84 3.13

Upstream Transportation and Distribution               4,729 52%              1,768 37%                  436 9% 9.63 10.48 3.99

Downstream Transportation and Distribution               3,857 43%              1,435 37%                  524 14% 9.16 10.36 4.48

Capital Goods               3,474 39%                695 20%                  647 19% 9.05 10.96 4.88

Use of Sold Products               3,374 37%                867 26%                  665 20% 11.48 13.56 6.45

End of Life Treatment of Sold Product               2,793 31%                537 19%                  716 26% 7.60 8.87 5.36

Upstream Leased Assets               2,133 24%                563 26%               1,011 47% 4.32 3.95 4.47

Downstream Leased Assets               2,014 22%                537 27%                  943 47% 4.93 4.84 5.08

Investments               1,827 20%                485 27%                  918 50% 5.65 0.00 6.02

Franchises               1,781 20%                212 12%               1,374 77% 0.46 0.00 2.24

Processing of Sold Products               1,691 19%                250 15%                  953 56% 5.07 0.00 6.19



Models  

We present prediction metrics for primary models alongside benchmark models described in detail in the 

methodology section. We focus on Random Forest and Adaptive Boosting (AdaBoost) algorithms as 

primary models. While both algorithms are ensemble learning algorithms, random forest uses the concept 

of bagging while AdaBoost the concept of boosting (Dietterich, 2000). To benchmark these models, we 

report model statistics for linear regression estimators using ordinary least squares and gamma general 

linear models. Moreover, we report results for the k-nearest neighbors (k-NN) algorithm, a commonly used 

baseline for evaluating non-parametric, supervised machine learning model performance (Pedregosa et al., 

2011).  

Prediction Metrics 

We report three distinct metrics that assess the predictive accuracy of the models. Given the characteristics 

and flaws of each metric, evaluating the models across multiple statistics increases the robustness of our 

conclusions. First, we report the Root Mean Squared Logarithmic Error (RMSLE). Lower values mean 

lower percentage errors in predicted emissions. RMSLE penalizes underestimated predictions more than 

overestimated predictions. Second, we report the R-squared between predicted and reported values (R2). 

Higher values mean that more of the variation in reported target values is explained by the input features. 

However, it does not provide a measure of prediction accuracy. Third, for non-zero reported values we 

report the mean absolute percentage error (MAPE). Lower values mean lower percentage error. In contrast 

to RMSLE, MAPE penalizes overestimates more relative to underestimates given that errors are divided by 

reported values.6 The models are trained on a training set comprised of 80% of the total samples. All 

reported prediction metrics are assessed on a holdout test set comprised of 20% of the total samples not 

previously seen by the model. The test train data set split is initialized through a pseudorandom number 

generator with seed 1.  

In Table 3, across models, we observe a decline (increase) in RMSLE (R2). Across all emission 

types, the average R2 increases from 46% for OLS to 68% for k-NN to 75% for random forest and to 78% 

for AdaBoost. Restricting the sample to observations where companies are using mostly primary data from 

suppliers and customers to estimate their scope 3 emissions in each type increases further the across type 

average R2 to 83%. 

  

                                                           
6 Sci-kit learn. Metrics and scoring: quantifying the quality of predictions. Documentation. 

https://scikit-learn.org/stable/modules/model_evaluation.html


Table 3 

Scope 3 Emissions 

Category Type 

 

All Data including Zeros 

Primary 

Data>=80% 

with Zeros 

 OLS KNN RF AdaBoost AdaBoost 
       

Business Travel RMSLE 1.57 1.31 1.24 1.24 0.87 
 R2 Score 69.2% 79.7% 82.2% 82.2% 89.3% 

Capital Goods 
RMSLE 4.62 3.86 3.47 3.26 1.53 

R2 Score 41.6% 65.2% 73.0% 76.8% 89.9% 

Downstream 

Leased Assets 

RMSLE 4.75 3.87 3.30 2.97 2.02 

R2 Score 41.1% 66.9% 77.3% 82.2% 86.4% 

Downstream 

Transportation and 

Distribution 

RMSLE 4.07 3.49 3.00 2.92 1.71 

R2 Score 40.8% 62.0% 74.0% 75.5% 81.7% 

Employee 

Commuting 

RMSLE 2.75 2.38 2.27 2.19 1.41 

R2 Score 50.6% 66.3% 70.1% 72.5% 79.5% 

End of Life 

Treatment of Sold 

Products 

RMSLE 4.66 3.64 3.40 3.10 1.77 

R2 Score 49.9% 73.7% 77.5% 81.8% 90.1% 

Franchises 
RMSLE 1.98 1.34 1.30 1.28 2.56 

R2 Score 16.7% 74.3% 76.4% 77.2% 84.1% 

Fuel and Energy 
RMSLE 3.07 2.70 2.37 2.25 1.79 

R2 Score 59.4% 70.7% 78.2% 80.8% 81.5% 

Investments 
RMSLE 5.37 4.35 3.82 3.55 1.76 

R2 Score 44.5% 68.9% 77.0% 80.6% 91.0% 

Processing of Sold 

Products 

RMSLE 5.63 4.71 4.17 4.09 4.26 

R2 Score 46.6% 67.2% 75.6% 76.7% 70.3% 

Purchased Goods 
RMSLE 3.68 2.94 2.72 2.55 1.93 

R2 Score 54.8% 74.2% 78.5% 81.4% 82.0% 

Upstream Leased 

Assets 

RMSLE 4.33 3.83 3.27 3.14 2.12 

R2 Score 25.6% 51.7% 68.4% 71.2% 82.2% 

Upstream 

Transportation and 

Distribution 

RMSLE 3.32 2.99 2.69 2.56 1.93 

R2 Score 50.4% 62.7% 71.6% 74.6% 73.3% 

Use of Sold 

Products 

RMSLE 5.59 4.57 4.26 3.74 2.65 

R2 Score 47.6% 69.4% 74.2% 80.9% 83.5% 

Waste Generated 

in Operations 

RMSLE 2.86 2.30 2.13 2.06 1.62 

R2 Score 49.4% 71.4% 76.1% 78.0% 79.3% 
 

Table 3 | Summary statistics for the full sample set of predicted targets across the benchmark and primary models. All models are trained 

on 80% of full sample set and the output metrics denote the prediction performance on a holdout test set comprised of 20% of the total 

samples not previously seen by the model. The four first columns of output metrics are tested on a randomized 20% of the total sample not 

previously seen by the model. The fifth column of output metrics are tested on a randomized 20% of the sample set where greater than or 

equal to 80% of the reported data is sourced from direct suppliers.  

 



Table 4 reports similar models but excludes reported values of zero. This allows to report results for 

Gamma-GLM and to report MAPE. We observe that AdaBoost reaches the lowest RMSLE and MAPE and 

highest R2, across almost all types. Across type average MAPE declines from 43% and 46% for OLS and 

GLM to 37% for k-NN, 33% for random forest and 27% for AdaBoost. Using only reported emissions 

estimated mostly with primary data decreases further MAPE to 15% for AdaBoost. However, in some cases 

using the smaller sample of observations leads to higher RMSLE and lower R2, suggesting a trade-off 

between higher quality data and sample size. We find that the model can significantly improve prediction 

accuracy metrics when report zero values are excluded from the data set.  

Table 4 

Scope 3 

Emissions 

Category Type 

 

All Data without Zeros 

Primary 

Data>=80% 

without 

Zeros 

   OLS GLM KNN RF AdaBoost AdaBoost 
  

      
 RMSLE 1.33 1.36 1.08 0.98 0.90 0.77 

Business Travel R2 Score 74.3% 73.1% 84.1% 87.1% 89.2% 90.6% 
 MAPE  14.1% 14.8% 10.3% 9.2% 7.5% 13.8% 

Capital Goods 

RMSLE 2.23 2.21 1.69 1.49 1.39 1.47 

R2 Score 49.9% 51.5% 75.3% 81.5% 84.2% 85.4% 

MAPE  23.2% 23.2% 15.0% 13.7% 10.7% 12.6% 

Downstream 

Leased Assets 

RMSLE 2.59 2.69 2.16 1.91 1.76 1.62 

R2 Score 45.7% 38.5% 67.0% 75.5% 79.7% 83.4% 

MAPE  29.7% 31.7% 22.0% 19.9% 15.3% 17.5% 

Downstream 

Transportation 

and Distribution 

RMSLE 2.36 2.31 1.83 1.66 1.55 1.17 

R2 Score 48.7% 51.8% 73.7% 78.9% 81.8% 89.0% 

MAPE  30.0% 30.9% 21.9% 20.4% 16.8% 8.4% 

Employee 

Commuting 

RMSLE 1.73 1.75 1.37 1.24 1.19 1.32 

R2 Score 66.4% 65.2% 80.6% 84.3% 85.6% 78.1% 

MAPE  25.9% 26.7% 18.6% 15.5% 13.6% 8.8% 

End of Life 

Treatment of 

Sold Products 

RMSLE 2.74 2.85 2.32 1.97 1.81 1.50 

R2 Score 60.7% 56.4% 74.1% 82.2% 85.1% 89.3% 

MAPE  48.7% 57.3% 37.0% 32.0% 22.1% 11.8% 

Franchises 

RMSLE 2.57 2.82 2.10 1.55 1.18 1.41 

R2 Score 65.2% 55.5% 78.5% 89.0% 93.8% 86.8% 

MAPE  33.3% 37.1% 21.4% 17.2% 8.8% 6.3% 

Fuel and Energy 

RMSLE 1.88 1.91 1.51 1.45 1.34 1.39 

R2 Score 75.8% 74.9% 85.2% 86.4% 88.4% 87.2% 

MAPE  99.9% 105.8% 66.2% 63.8% 55.0% 11.9% 

Investments RMSLE 2.42 2.43 1.69 1.49 1.35 1.75 



R2 Score 60.4% 60.0% 83.2% 87.1% 89.6% 82.4% 

MAPE  20.2% 21.1% 13.4% 11.8% 9.0% 20.8% 

Processing of 

Sold Products 

RMSLE 2.77 2.71 2.07 1.74 1.59 3.15 

R2 Score 51.3% 54.2% 76.8% 84.2% 87.0% 42.2% 

MAPE  18.6% 18.7% 12.4% 11.0% 8.5% 15.6% 

Purchased Goods 

RMSLE 2.68 2.70 2.06 1.88 1.66 1.72 

R2 Score 58.9% 58.2% 78.3% 82.4% 86.6% 87.0% 

MAPE  31.6% 33.2% 23.3% 21.0% 16.1% 20.2% 

Upstream Leased 

Assets 

RMSLE 2.25 2.32 2.18 1.84 1.87 1.34 

R2 Score 47.8% 42.6% 52.7% 69.5% 68.3% 84.1% 

MAPE  156.2% 159.9% 183.2% 146.8% 139.1% 34.0% 

Upstream 

Transportation 

and Distribution 

RMSLE 2.11 2.13 1.77 1.48 1.37 1.54 

R2 Score 59.3% 58.5% 74.0% 57.3% 87.2% 81.6% 

MAPE  63.0% 67.7% 67.0% 82.6% 55.9% 16.5% 

Use of Sold 

Products 

RMSLE 2.66 2.69 1.84 1.65 1.36 1.57 

R2 Score 63.6% 62.3% 84.6% 87.8% 91.9% 90.3% 

MAPE  21.4% 22.1% 13.4% 12.9% 9.5% 6.9% 

Waste Generated 

in Operations 

RMSLE 1.98 2.05 1.57 1.49 1.42 1.41 

R2 Score 65.1% 62.2% 79.9% 82.2% 83.8% 83.3% 

MAPE  31.2% 34.0% 23.1% 21.5% 18.5% 15.8% 
 

Table 4 | Summary statistics for a partial subset excluding reported zero values from sample set of predicted targets across the benchmark 

and primary models. All models are trained on 80% of the partial subset excluding reported zero values from sample set and the output 

metrics denote the prediction performance on a holdout test set comprised of 20% of the subset not previously seen by the model. The four 

first columns of output metrics are tested on a randomized 20% of the partial subset not previously seen by the model. The fifth column of 

output metrics are tested on a randomized 20% of the partial subset where greater than or equal to 80% of the reported data is sourced from 

direct suppliers. For Scope 3 Types with a sufficiently large sample subset size, the model can more accurately predict emission values 

closer to the reported values than for the model which includes reported zero values for emissions, as in the distinction between Table 3 

and Table 4. The reason for the improved accuracy in predicting non-zero values may be due to firms reporting zero value emissions within 

categories that they deem not relevant to their business model or not yet evaluated rather than the true value of those emissions being zero. 

This reporting distinction may be at times arbitrary and thus the model has difficulty in reproducing a zero prediction which results in a 

lower overall prediction accuracy when reported zero emissions are included in the training set. In addition, model prediction accuracy 

decreases and mean absolute percentage error increases for some Scope 3 types when the sample set becomes too small to be statistically 

significant due to the exclusion boundary of primary data exclusive of zero reported emissions values.  

 
  



Figure 1 | AdaBoost model using all data excluding zeros test set distribution of Scope 3 emissions by type 

   
 

Figure 1 | The visual distributions in metric tons (MT CO2e) of reported and predicted values from the AdaBoost model using a subset of data 

excluding reported zero values for each one of the 15 Scope 3 types. Distributions correspond to the output metrics in column 5 of Table 4.  The 

data shows that the model produces more leptokurtic distributions compared to the distribution of reported values. In general, with the exclusion of 

reported zeros the model predicts a higher number of firm’s emissions as being concentrated around the mean and avoids the upper/lower tails. 



Figure 1 cont. | AdaBoost model using all data excluding zeros test set distribution of Scope 3 emissions by type   

Figure 1 cont. | The visual distributions in metric tons (MT CO2e) of reported and predicted values from the AdaBoost model using a subset of 

data excluding reported zero values for each one of the 15 Scope 3 types. Distributions correspond to the output metrics in column 5 of Table 4.  

The data shows that the model produces more leptokurtic distributions compared to the distribution of reported values. In general, with the exclusion 

of reported zeros the model predicts a higher number of firm’s emissions as being concentrated around the mean and avoids the upper/lower tails. 



Table 5 reports results for the random forest and AdaBoost algorithms in two ways. First, it reproduces the existing results where each scope 3 type 

model is trained and tested separately, which is referred to as the 'By Type' model below. We report those results for benchmarking purposes. Second, 

it produces results for a singular model where every scope 3 type is combined into one model and we introduce one more feature, a nominal variable, 

representing the scope 3 type and is referred to as the 'Singular' model below. This model allows us to understand if there is a benefit in prediction 

accuracy and model fit by allowing different scope 3 emission types to be estimated in the same model. We do not observe clear patterns emerging 

that would allow us to conclude that the singular model either underperforms or outperforms the type-specific models.  

Table 5 

   All Data 

  

 
RF with Zeros RF without Zeros AdaBoost with Zeros AdaBoost without Zeros 

   By Type Singular By Type Singular By Type Singular By Type Singular 

      
    

 RMSLE 1.24 1.23 0.98 0.91 1.24 1.24 0.90 0.82 

Business Travel R2 Score 82.2% 83.1% 87.1% 88.6% 82.2% 82.9% 89.2% 90.8% 

 MAPE N/A N/A 9.2% 9.5% N/A N/A 7.5% 8.0% 

Capital Goods 

RMSLE 3.47 3.04 1.49 1.61 3.26 2.62 1.39 1.58 

R2 Score 73.0% 78.5% 81.5% 77.4% 76.8% 84.6% 84.2% 78.5% 

MAPE N/A N/A 13.7% 22.8% N/A N/A 10.7% 19.6% 

Downstream Leased 

Assets 

RMSLE 3.30 3.37 1.91 2.15 2.97 2.97 1.76 2.17 

R2 Score 77.3% 75.1% 75.5% 64.5% 82.2% 81.4% 79.7% 63.4% 

MAPE N/A N/A 19.9% 22.1% N/A N/A 15.3% 17.6% 

Downstream 

Transportation and 

Distribution 

RMSLE 3.00 2.88 1.66 1.64 2.92 2.89 1.55 1.56 

R2 Score 74.0% 77.2% 78.9% 79.0% 75.5% 77.0% 81.8% 81.2% 

MAPE N/A N/A 20.4% 14.1% N/A N/A 16.8% 12.0% 

Employee Commuting 

RMSLE 2.27 2.08 1.24 1.32 2.19 2.15 1.19 1.28 

R2 Score 70.1% 75.9% 84.3% 81.9% 72.5% 73.9% 85.6% 83.2% 

MAPE N/A N/A 15.5% 15.8% N/A N/A 13.6% 12.6% 

RMSLE 3.40 3.09 1.97 1.99 3.10 2.67 1.81 1.90 



End of Life Treatment 

of Sold Products 

R2 Score 77.5% 80.1% 82.2% 80.6% 81.8% 85.7% 85.1% 82.5% 

MAPE N/A N/A 32.0% 35.5% N/A N/A 22.1% 25.8% 

Franchises 

RMSLE 1.30 1.37 1.55 1.62 1.28 1.28 1.18 1.62 

R2 Score 76.4% 75.3% 89.0% 81.9% 77.2% 78.8% 93.8% 81.9% 

MAPE N/A N/A 17.2% 17.5% N/A N/A 8.8% 12.4% 

Fuel and Energy 

RMSLE 2.37 2.35 1.45 1.46 2.25 2.18 1.34 1.41 

R2 Score 78.2% 78.8% 86.4% 85.5% 80.8% 82.1% 88.4% 86.6% 

MAPE N/A N/A 63.8% 12.7% N/A N/A 55.0% 10.7% 

Investments 

RMSLE 3.82 3.63 1.49 1.76 3.55 3.48 1.35 1.71 

R2 Score 77.0% 81.0% 87.1% 75.0% 80.6% 82.6% 89.6% 76.6% 

MAPE N/A N/A 11.8% 11.8% N/A N/A 9.0% 10.3% 

Processing of Sold 

Products 

RMSLE 4.17 3.89 1.74 2.14 4.09 3.79 1.59 1.85 

R2 Score 75.6% 77.2% 84.2% 65.8% 76.7% 78.5% 87.0% 75.9% 

MAPE N/A N/A 11.0% 15.7% N/A N/A 8.5% 11.7% 

Purchased Goods 

RMSLE 2.72 2.75 1.88 1.76 2.55 2.49 1.66 1.64 

R2 Score 78.5% 77.1% 82.4% 84.1% 81.4% 81.6% 86.6% 86.4% 

MAPE N/A N/A 21.0% 22.1% N/A N/A 16.1% 16.6% 

Upstream Leased 

Assets 

RMSLE 3.27 3.33 1.84 1.46 3.14 3.20 1.87 1.43 

R2 Score 68.4% 66.3% 69.5% 78.2% 71.2% 69.4% 68.3% 79.2% 

MAPE N/A N/A 146.8% 13.0% N/A N/A 139.1% 10.2% 

Upstream 

Transportation and 

Distribution 

RMSLE 2.69 2.44 1.48 1.59 2.56 2.25 1.37 1.49 

R2 Score 71.6% 79.4% 57.3% 81.5% 74.6% 82.7% 87.2% 84.1% 

MAPE N/A N/A 82.6% 26.8% N/A N/A 55.9% 24.2% 

Use of Sold Products 

RMSLE 4.26 3.81 1.65 1.64 3.74 3.34 1.36 1.37 

R2 Score 74.2% 80.6% 87.8% 87.3% 80.9% 85.4% 91.9% 91.3% 

MAPE N/A N/A 12.9% 112.0% N/A N/A 9.5% 108.3% 

Waste Generated in 

Operations 

RMSLE 2.13 2.05 1.49 1.44 2.06 1.95 1.42 1.35 

R2 Score 76.1% 76.9% 82.2% 83.8% 78.0% 79.4% 83.8% 86.0% 

MAPE N/A N/A 21.5% 52.1% N/A N/A 18.5% 50.0% 

 



Table 5 | Summary statistics for model performance using the full sample set and partial sample subset including and excluding reported zero values from sample set of predicted targets across 

the two primary Random Forest and AdaBoost models using the targeted by Scope 3 type as compared to the singular model where all Scope 3 types are used as a singular input predictive 

feature. All models are trained on 80% of the partial subset excluding reported zero values from sample set and the output metrics denote the prediction performance on a holdout test set 

comprised of 20% of the subset not previously seen by the model. In general, the AdaBoost model prediction accuracy metrics show marginally improved performance in comparison to the 

Random Forest model. Both the AdaBoost and Random Forest models have comparable performance between the targeted by Scope 3 type as compared to the singular model. Although no 

general trend emerges, the singular model underperforms or overperforms the targeted by type model.



Figure 2 | Cumulative distribution function of the relative error for models run as a singular model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 |Cumulative distribution function (CDF) of the relative error (y_predicted - y_reported )/y_reported) for four machine learning 

algorithms tested as a singular model. The CDF represents the probability that the relative error in emissions takes a value less than or 

equal the value along the horizontal axis. Both ensemble models outperform the Gamma-GLM and the k-NN models significantly, with 

the AdaBoost model performing better than the Random Forest model. Adaptive Boosting is the best performing model, where 80% of the 

predictions have a relative error below 12%. The relatively simple Gamma-GLM model performs the worst of the 4 models and has 80% 

of predictions below 32%.  

 

Feature Importance 

Having documented that the AdaBoost model provides improved predictive accuracy as measured against 

comparable decision tree models as well as linear models, we analyze which features are important for 

different scope 3 types. Scope 1 emissions, number of employees, scope 2 emissions, inventory turnover, 

and SG&A expenses stand out as the most important features. Scope 1 emissions are particularly important 

in predicting emissions from waste in operations, fuel and energy, processing of sold products and end of 

life treatment of sold products.  

Several flow and stock variables achieve high levels of feature importance depending on the type. 

Some relationships are expected as they directly and intuitively influence emissions. For example, the 



number of employees achieves high feature importance for emissions from employee commuting given that 

these emissions will be a function of the number of employees, alongside commuting distance, and the 

carbon intensity of the method of commuting. Capital expenditures have high feature importance for capital 

goods as these emissions will increase the more capital goods a firm purchase, all else equal. SG&A 

expenses have high feature importance for business travel, as these emissions will be larger the more 

employees travel for business, an expense that is recorded within SG&A for most companies.  

Ratio variables are less important except for inventory turnover, which is particularly important in 

predicting capital goods but also several other types. Among the nominal variables sub-industry 

membership is a more important feature than home country for most scope 3 types. Interestingly, sales, a 

variable often used to create carbon intensity metrics (i.e., carbon emissions per unit of sales) exhibits low 

feature importance apart from emissions from use of sold products. 

 

Figure 3 | Feature importance heatmap of the AdaBoost targeted by Scope 3 type model using all 

data excluding zeros 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 | Each predictive input feature is assessed between 0 and 1 that measures the average importance of each features in creating a 

decision tree results in more accurate predictive outcomes. The data shows that the most useful features in creating accurate predictions 



are Scope 1 emissions, number of employees, scope 2 emissions, inventory turnover, and SG&A expenses. In general, the least useful 

features in creating accurate predictions are the remaining ratio variables, total assets, operational income, nation of domicile and sales.  

 

Discussion  

Current limitations within reported Scope 3 data include inconsistent and partial reporting across Scope 3 

types (Klaaßen & Stoll, 2021). Moreover, most firms lack the resources and ability to measure their scope 

3 emissions, given lack of data, control over decisions made by their suppliers or customers, and difficulty 

in calculation. This results in scope 3 measurement being completed mostly by large firms with plenty of 

financial resources.  

A central aim of the machine learning approach presented in this paper is to leverage existing 

reporting of scope 3 emissions by firms who have invested the resources to calculate their emissions to train 

models and document their predictive ability. By leveraging the data of first movers within the emissions 

reporting landscape, we take a first steps towards estimating Scope 3 emissions using different models. We 

document that machine learning models trained on reported data can be a promising avenue to provide 

widespread access to estimates of scope 3 emissions for all 15 types. This in turn would allow companies 

that lack the resources to conduct detailed measurement of their scope 3 emissions to derive a first estimate 

of their emissions, upon which they can improve measurement practices, set targets for emissions 

improvement and design decarbonization strategies. In addition, a machine learning approach can enable 

investors that need data on a very large number of companies for portfolio construction and benchmarking 

purposes, to use the data as they evaluate the scope 3 emissions of companies.  

Several caveats apply to our methodology and inferences. First, the models estimate scope 3 

emission types using broadly available accounting data and the more easily calculated scope 1 and 2 

emissions. While a strength of this approach is that a firm could retrieve all these data items with relative 

ease and as a result calculate its scope 3 emissions using machine learning models, the models miss other 

important features, such as idiosyncratic supply chain and product choices, that could influence scope 3 

emissions. Moreover, the external validity of the predictions derived from the machine learning models 

might be limited if some firms have supply chains and product features that materially differ from those in 

the dataset on which the models are trained.  

 

Conclusion 

Scope 3 value chain emissions have rapidly become a central concern for companies and investors seeking 

to assess their climate risk exposure. Companies seek to use this data to understand and manage their climate 

risk. Investors seek to use this data as a proxy for assessing the climate transition risks facing their 

investments. Current limitations to accurately assessing and accessing this data include inconsistent and 

partial reporting across Scope 3 types as well as lack of resources to perform total value chain carbon 



emissions accounting. In this analysis, machine learning is applied as a tool for use by both companies and 

investors to create a complete, publicly accessible dataset for quantifying Scope 3 emissions across 

thousands of companies. In comparison to traditional linear regression models and naïve mean models 

currently applied within the industry, machine learning algorithms prove to be a cost-effective solution to 

improving prediction accuracy by leveraging the non-linear interactions between the input features and 

predicted targets.  By leveraging the non-linear interactions and multi-collinearity of financial and emission 

features, the machine learning models applied in this analysis can successfully improve prediction accuracy 

where traditional regression models fail. The data finds that the average R2 increases from 46% for OLS to 

78% for AdaBoost when applied to the full sample set of reported Scope 3 emissions. In addition, restricting 

the sample to observations where companies are using mostly primary data from suppliers and customers 

to estimate their scope 3 emissions in each type increases average R2 to 83% across the Scope 3 types. 

Furthermore, the data finds that AdaBoost reaches the lowest RMSLE and MAPE and highest R2 across 

almost all types when the sample subset excludes reported zero emissions from the training set. Across all 

Scope 3 types the average MAPE declines from 43% to 27% for AdaBoost, a 16% average improvement 

from traditional linear models. Using only reported emissions estimated mostly with primary data decreases 

the average MAPE across Scope 3 types further to 15% for AdaBoost. Prediction accuracy has a marginal, 

but not significant, improvement using distinct machine learning algorithms. Most of the improvement is 

captured in the hyperparameter tuned decision tree model applied in this analysis. 

Notwithstanding the improved accuracy achieved by machine learning algorithms to complete the 

data set, significant challenges persist in the Scope 3 emissions reporting landscape. Machine learning 

algorithms are only able to predict emissions that reflect the extent of the accuracy in the reported, or 

training, data. Given the challenges companies face in reporting their Scope 3 carbon emissions, the 

machine learning models trained on this sample set provide a first approximation for estimating total value 

chain emissions. In summary, applying machine learning models to build out a complete Scope 3 emissions 

data set is a cost-effective method to help drive first approximations of a corporate Scope 3 emissions.   

 

  



Methods 

Data and methodology 

The purpose of this machine learning model is to create an open-access method for total value chain carbon 

emissions predictions at the firm level based on nominal, financial metrics in addition to scope 1 and 2 

emissions data available to investors. The total value chain carbon emissions target variables are the 15 

individual Scope 3 types as defined by the GHG protocol for publicly listed firms.  

Data Cleaning and Pre-Processing To ensure a high-quality dataset, pre-processing steps are taken as 

follows: Scope 1 and Scope 2 reported emissions data are compiled from the CDP Climate Change 

Questionnaire between 2013-2020. Firms whose total Scope 1 or Scope 2 emissions are zero or missing are 

eliminated from the data frame. Scope 3 reported emissions data are disaggregated into 15 types and are 

compiled from the CDP Climate Change Questionnaire between 2013-2020. 23 firms that report values 

greater than 1 billion metric tonnes of emissions across any individual Scope 3 type are eliminated from 

the data frame, as these may be erroneous calculations. After eliminating these outliers, firms with total 

Scope 3 equal to or greater than 1 billion when summed across all types remain. 49 firms with missing 

GICS Industry classification are eliminated from the data frame. In addition, GICS 'Financials' Sector 

classified firms (29,581 entries ~ 1,972 unique firms) are eliminated from the data frame. This decision was 

made because most financial firms do not report scope 3 emissions associated with financed emissions and 

therefore most of the entries are close to zero. The Partnership for Carbon Accounting Financials is 

currently working to address this measurement challenge. 10 GICS Sector classifications remain (Energy, 

Industrials, Materials, Real Estate, Communication Services, Utilities, Information Technology, Consumer 

Staples, Health Care, Consumer Discretionary). Observations containing Scope 3 emission responses yet 

having missing entries within the requisite predictive financial features are imputed through a k-nearest 

neighbors imputer using the observation's 5 nearest neighbors. Each observation's missing financial features 

are imputed using the mean value from the sample's 5 nearest neighbors found in the training set neighbors 

by applying the Euclidean distance matrix (Rubinsteyn & Feldman 2016).  

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  |𝑋 −  𝑌| √∑ (𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖 = 1

 

In addition, 2,059 firm-year observations with a total Scope 3 emissions reported as zero are held out to be 

predicted from the final trained model.  Finally, to limit the effect of outliers, predictive features that are 

financial ratios, namely inventory turnover ratio, age of capital assets, return on sales, capital intensity, 

capital renewal, market to book, asset turnover are winsorized to the 1st and 99th percentile. Tree-based 

models are rule-based models that partition or bin the input space of predicted targets based upon the data 



boundaries (Maclin & Optiz 1999) . As such, rule-based models, such as gradient boosted trees and random 

forests, are largely incapable of extrapolating the predicted target values below or beyond the lower and 

upper limit range of the training data (Loh et al. 2007). This limitation involved in predicting a continuous 

output such as emissions is addressed by including reported emissions values that range from 0.5 to 1 x 109 

metric tons output.  

Feature and Target Transformation and Scaling 

Both predictive features and predicted targets are distributed across multiple orders of magnitude. To 

determine the data distribution in order to apply the appropriate scaling, continuous predictive features are 

examined under a logarithmic transformation, 𝑧′ =  𝑙𝑜𝑔(𝑧 + 1). The continuous financial features treated 

with a log-transform resulted in a better behaving normal-like distribution. This is to be expected as the 

studied financial variables are likely a result of multiplication of different factors, where a log normal 

distribution is expected, rather than an addition operation, where a normal distribution is expected 

(Aitchison & Brown 1957). In addition, the model prediction accuracy improved with the log-transformed 

financial features. The ratio financial features, such as inventory turnover ratio, are not transformed, as their 

distributions do not benefit from a log transformation. 

Once log-transformed, the 15 types of Scope 3 emission targets display a compound Poisson-gamma 

Tweedie distribution with a cluster of observations as a point mass at zero followed by continuous 

distribution. This distribution is representative of the landscape of reporting. This also results in an 

additional degree of difficulty in using regression models to train for a minimal error.  

Distance-based models require feature scaling and normalization, such as OLS regression models and k-

nearest neighbors (k-NN) (Pedregosa et al. 2011). Two primary methods are used for feature scaling 

dependent on the data distribution. Standard scaling, or Z-score normalization, is appropriate for normally 

distributed predictive features and it scales features to unit variance with a zero mean. 

𝑋′𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =
𝑋𝑖  − 𝑋̄

√𝑉𝑎𝑟(𝑋)
 

Rescaling, or minimum-maximum normalization, is applied for non-normally distributed predictive 

features and rescales the features to fall between the range 0 and 1.  

𝑋′𝑛𝑜𝑟𝑚 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  



As a test for appropriate scaling, a normal quantile-quantile (Q–Q) plot is generated to compare the 

predictive feature with a randomly generated, independent standard normal data. The linearity of the graph 

is used to determine if features are normally distributed in order to apply the appropriate scaling. 

The following features display a normal distribution as defined by the Q-Q plots: 

o Total Assets 

o Market Capitalization 

o Operating Expense 

o Selling, General & Administrative Expenses 

 

All other continuous financial features are treated with a minimum-maximum normalization with the 

distance-based regression models. Standard scaling and normalization are not required for tree-based 

ensemble models, such as the Random Forest Regressor and AdaBoost Regressor, therefore, standard 

scaling and normalization of the features did not result in an improved model test score. In these instances, 

the models were trained with log-transformed features without scaling. Finally, nominal variables were 

encoded and tested through two different methods: ordinal encoding and one-hot encoding. Ordinal 

encoding produces a single column of features by encoding categorical features as an integer array to 

produce one feature of integers to values 0 to n - 1 categories. One-hot encoding encodes categorical 

features as binary vectors by first mapping the categorical features into integer values and subsequently 

encoding each integer as a binary vector. Model performance did not vary significantly between the two 

methods, therefore, ordinal encoding was selected. Ordinal encoding is implemented using Python Sklearn's 

pre-processing OrdinalEncoder. 

Feature Selection 

Predictive feature selection was performed through a combination of the following: selecting the most 

widely used variables within current regression techniques, the most operations-relevant financial features 

reported within the balance sheet and income statement, as well as critically applying recursive feature 

elimination through regularization techniques that penalize model complexity and prevent overfitting.  

 Recursive Feature Elimination 

To understand the relationships between the predictive features and the target variables, we first examine 

the feature correlation matrix to develop an initial understanding of the Pearson correlation coefficients 

between features and targets.  

Introducing multicollinearity exposes the model to excess noise that may negatively affect certain model 

predictions. Tree-based models, which are rule-based, are relatively resistant to the noise introduced 

through predictive feature multicollinearity (Friedman & Popescu 2008). As such, we keep the majority of 



features throughout each model to understand which features are most successful at predicting the 

individual 15 targets. However, this may become a stronger issue for linearized models that are used as 

benchmarks, where introducing excess collinearity possibly leads to overfitting or increased error. The 

impact of this can be mitigated through recursive feature elimination.   

Feature selection was performed through a combination of selecting the most commonly reported financial 

and emission features as well as through recursive feature elimination. Features selected by hand represent 

both financially relevant as well as commonly used features in emissions predictions regression techniques 

as applied by emissions data providers. As a separate test to measure the quality of predictions of the 

selected features, recursive feature elimination (RFE) with cross validation was applied using a Lasso CV, 

Random Forest and Gradient Boost mask by voting. Recursive feature elimination does not make prior 

assumptions about the most relevant features but rather fits the model to all the features recursively and 

upon each loop eliminates the least predictive feature. RFE is useful to eliminate interdependencies and 

collinearity that may exist between the model features in order to reduce noise within the data (Pedregosa 

et al., 2011). In this instance, RFE was applied to the training data initially with all features fitting to three 

models: Lasso CV, Random Forest Regression and Gradient Boosted decision trees and each model voted 

on which features to keep or eliminate. The features with the most votes are retained and the features with 

the least votes are eliminated. Each Scope 3 type target is fitted independently with distinct features selected 

for each target. We conclude that the targets selected by hand on average agree with the targets selected 

through recursive feature elimination. By applying recursive feature elimination, some non-commonly used 

financial features were identified, such as inventory turnover ratio. Recursive feature elimination is 

implemented using Python Sklearn's feature_selection RFE. 

After the data selection and pre-processing, 9,013 firm-year observations remain for 1,938 unique firms. 

Two general models are constructed: one model is structured to predict 15 Scope 3 emission types as 

individual targets while the other model is structured to predict one emissions output using the reported 

emission's attributed scope 3 type as an additional predictive feature. Each predicted target has access to 

the following predictive features: 2 nominal variables, 11 financial variables, 7 financial ratio variables and 

2 emissions variables.  

Data Subsets and General Models 

Given the complexity of the reporting landscape, the selected models were run on different subsets of data 

that varied the quality of the data responses both in acceptable responses (zero or non-zero emissions) as 

well as in method of calculated emissions (primary supplier reported data or estimated reported data). The 

first method accepted zero emissions responses as ground truth entries for observations. Allowing zero 



entries in responses creates inconsistent patterns to base model predictions on. The model has difficulty in 

predicting zero responses while simultaneously taking into account non-zero responses. Although there are 

some discernable patterns within zeros responses, such as less relevant Scope 3 types within specific 

industries, these patterns extend at random to firms that have not yet calculated these emissions or firms 

with varied responses for Scope 3 type relevancy. As such, the model prediction produced by allowing zero 

emissions responses systematically underestimate Scope 3 emissions across all types. As a response to this 

reporting, a second data method was constructed to drop zero emissions responses as ground truth entries 

for samples. When zero emissions responses are dropped from the data set, model performance improves 

significantly, while in some cases, overestimating emissions. 

In addition to constraining responses for zero and non-zero emissions, a primary data measure was 

constructed to control for the quality of responses. Primary data is reported by the firm as being calculated 

using supplier (or customer) sourced emissions data. The data set is further constrained by limiting the 

sample set to be 80% or greater percentage of primary data. The model trained using primary data performs 

well within Scope 3 types that have sufficient samples. Model performance can only be measured and 

validated on the test set, which comprises 20% of the sample set. The constraint on primary data yields a 

training set that is as low as 250 training samples and a test set that is as low as 50 samples, in the case of 

primary data entries for "Processing of Sold Products". This reduction in sample size makes it difficult to 

validate the model performance using primary data for low reported Scope 3 types.   

Models: By Type vs Singular 

Two primary approaches are taken towards constructing a general model. Each machine learning model is 

trained on a general targeted by type or singular model.  Model 1 is a targeted by type model which creates 

an individual model for each of the 15 Scope 3 types, resulting in 15 fits. Model 2 is a singular model which 

uses the 15 Scope 3 types as an additional singular feature to the data set. Model 2 has consistent 

performance across Scope 3 types by being able to leverage a more extended data set, instead of having a 

reduced sample set to train on, as is the case with specific targets in the targeted by type Model 1. Model 1 

displays improved performance on some individual Scope 3 types but performs poorly when the sample set 

is comprised of significantly reduced observations. Model 2 avoids both extremes by having the ability to 

generalize well using data across all Scope 3 types in one model.  

Model Selection and Evaluation 

Benchmarking  



To assess the performance of current industry estimates from data providers, alternate prediction models 

are constructed. The performance of selected machine learning models, k-NN, Random Forest and 

AdaBoost, in comparison to existing prediction models used by data providers, such as OLS and Gamma-

GLM models. 

Ordinary Least Squares Regression 

As a first measure of estimation between features and targets, an ordinary least squares linear regression is 

fitted to the data. A linear regression fits a linear model between features and targets to minimize the 

residual sum of squares between the observed targets, or Scope 3 types, in the dataset, and the targets 

predicted by the linear approximation. The GammaRegressor is implemented using Python Sklearn library 

with a log link function.   

Generalized Linear Models, Gamma-GLM 

The data provider, CDP, applies a multi-variable Gamma-Generalized Linear Model (Gamma-GLM) using 

revenue and activity information to estimate Scope 3 emissions.7 Each of the 15 Scope 3 types has an 

independent multi-variable regression model where activity-revenue is the independent variable. The CDP 

model assumes that revenue is directly proportional to production and therefore proportional to emissions. 

The emissions associated with ‘Employee Commuting’ are estimated using the number employees and the 

emissions associated with ‘Capital Goods’ are estimated using capital expenditure, both as reported by the 

firm. In addition to these assumptions, CDP applies the CDP Activity Classification System (CDP-ACS) 

hierarchy to their regression model. This categorial classification system, developed by CDP, provides a 

framework that focuses on quantifying a company’s environmental impacts connected to its activities to 

ensure that the environmental impacts are as consistent as possible. Rather than general broad-based 

industry classifications, CDP firms are group by primary industry, sector, and "activity". The environmental 

granularity of the CDP-ACS allows firm "activity" to be used as a predictor variable. To reproduce a 

benchmark model according to CDP's Scope 3 emission model, a Generalized Linear Model with a Gamma 

distribution is implemented on the data set. A Gamma-GLM regressor is fit to each Scope 3 Type using all 

available financial and categorical features. The primary differences between the two approaches include 

industry classification, selection of "Applicable/Not Applicable" criteria and the use of collinear features. 

The aim of the machine learning model is to be able to produce accurate predictions using widely reported 

financial features as well as industry-based classifications. For this reason, we structure our Gamma-GLM 

benchmark model to fit to the CDP regression model while preserving the features used within the 

subsequent machine learning models. In the Gamma-GLM benchmark model, the GICS sub-industry 

                                                           
7 CDP. Full GHG Emissions Dataset. Technical Annex IV: Scope 3 Overview and Modelling. 

https://cdn.cdp.net/cdp-production/comfy/cms/files/files/000/003/076/original/2020_01_23_Scope_3_Overview.pdf


classification is used as a categorial feature, rather than the CDP-ACS, and all available firm financial 

features are applied. The GammaRegressor is implemented using Python Sklearn library with a log link 

function.   

K-nearest neighbors 

The k-nearest neighbors (k-NN) regressor is a non-parametric algorithm that calculates predictions based 

on a measure of similarity defined by the minimal distance between samples (Pedregosa et al., 2011). The 

k-NN regressor calculates the continuous target by taking the average of the k nearest neighbors where 

distance is evaluated using the default Minkowski metric. The KNeighborsRegressor is implemented using 

Python Sklearn library with a default of n_neighbors = 5 and calculated as follows: 

𝑑𝑎,𝑏 = (∑(|𝑥𝑎𝑖 − 𝑦𝑏𝑖|)𝑞

𝑘

𝑖=1

)

1/𝑞

 

where q = 1 for the Manhattan distance and q = 2 for the Euclidean distance. 

Ensemble Methods 

Ensemble methods are a category of non-parametric machine learning algorithms constructed to make 

prediction based on the combined collective action of different estimators. Tree-based ensemble methods 

are relatively robust against overfitting, are not heavily impacted by the multi-collinearity of input features 

and perform well within noisy data including outliers. In contrast to linear models, tree-based ensemble 

regressors need minimal data pre-processing and are not sensitive to scaling and normalization. The 

following models apply decision tree (CART) base estimators to create flexible models with reduced bias 

and variance (Maclin & Optiz 1999).  

 Random Forest Regressor 

The Random Forest algorithm is a parallel ensemble learning meta-estimator that primary aims to decrease 

mode bias using bagging (Breiman 2001). In ensemble algorithms, Random Forest bagging methods build 

a randomized forest of a decision tree estimators on random subsets of the original training set drawn with 

replacement and aggregate individual predictions to form a final prediction. These methods reduce the 

variance and overfitting of the decision tree by introducing randomization into the construction and then 

build an ensemble using averaging of predictions. The RandomForestRegressor is implemented using 

Python Sklearn library with default parameters.  

Adaptive Boosting  

The Adaptive Boosting algorithm (AdaBoost) is a sequential ensemble learning meta-estimator that 

primarily aims to decrease model bias using boosting (Freund & Schapire 1996). Boosting achieves 



minimal training errors by combining a series of weak base learners to create a collectively stronger 

predictor that minimizes the sum of squared error residuals of predictions. In this application, the model 

initializes the boosting algorithm on a sequential forest of decision trees paired to a linear loss function.   

Similar to Random Forest, AdaBoost is an ensemble method that trains a forest of decision tree regressors. 

In the case of AdaBoost, only shallow trees, called decision stumps, are formed. Decision stumps are 

typically one node and two leaves and are known as weak learners. Weak learners focus on using only one 

variable input feature to make a prediction. Unlike Random Forest, in AdaBoost, the order in which weak 

learners are constructed is directed by the error of previous learners. In this way, AdaBoost guides and 

informs the construction of sequential decision stumps dependent upon the performance of the previous 

stumps, rather than independent, in determining predictions. Unlike other tree methods, in AdaBoost, not 

all stumps carry equal weight, or significance, used to form a prediction. Varying the decision stump 

significance allows AdaBoost to focus on correcting the residuals of difficult predictions in order of greatest 

to least sum of squared error residuals (Drucker 1997).  

The samples within a data frame are initialized with equal importance called sample weights. All sample 

weights sum up to 1. The sample weight is increased or decreased depending on the prediction quality, 

which is the ability of the weak learner to correctly predict the target as measured by increasing to 

decreasing sum of squared residuals error for each decision stump predictor. The order in which decision 

stumps are selected to train on the data set is measured by the sum of squared residual errors. The best 

decision stump predictor which results in the smallest sum of square residuals total prediction error is used 

to begin the training and to subsequently create the sequential decision stumps. The total error of each 

predictor is the sum of square residuals total prediction error of the data set as measured by minimizing the 

AdaBoost linear loss function. 

1. AdaBoost initializes decision stump regressors known as weak learners with equal sample weights. 

  𝑤𝑖
(1) = 1     𝑖 =  1, … , 𝑁1 

2. AdaBoost trains the decision stump weak learners based on the equal sample weights and obtains 

predictions  

𝑦𝑖
(𝑝)

(𝐱𝑖)    𝑖 =  𝟏, … , 𝑁1 

3. AdaBoost measures the error in predictions of each weak learner by calculating the linear loss 

function for each training sample and averaging the loss over the training data set 

𝐿𝑖 =
|𝑦𝑖

(𝑝)
(𝐱𝑖) −   𝑦𝑖|

𝐷
                 where      𝐷 = 𝑠𝑢𝑝 |𝑦𝑖

(𝑝)
(𝐱𝑖)  −   𝑦𝑖  |      𝑖 =  𝟏, … , 𝑁1  

Calculate average loss:  𝐿̅ = ∑ 𝐿𝑖𝑝𝑖
𝑁1
𝑖=1  



4. AdaBoost determines the significance, 𝛽, to assign to each stump based on the magnitude of 

compensation of the previous error. The greater the compensation or reduced sum of squared 

residual error, the higher the measure of confidence in the predictor which results in a lower 𝛽 or 

significance assigned to that decision stump. 

𝛽 =
𝐿̅

1 − 𝐿̅
 

5. Sample weights are updated based on the loss function. The updated sample weight will increase 

for larger average loss and decrease for smaller average loss. The decrease in sample weight for 

smaller average loss reduces the probability that those samples will be chosen within the next 

training set for the next decision stump in the ensemble.  

6. Each subsequent weak learner is informed by the errors of the previous weak learner and uses this 

information to determine the construction of subsequent weak learner.  

7. Varying the sample weights to focus on predictions that are more difficult to estimate means that 

each sequential machine has a disproportionately more difficult subset of training samples to learn 

from. The average loss increases over iterations until the bound on the loss function 𝐿̅  =  0.5 is not 

satisfied and the algorithm terminates. 

The AdaBoost algorithm approximates the expectation of the modeling and prediction error using the 

training set observation average over multiple experiments.  

y(𝑝)(𝐱)  sample modeling error (ME) and prediction error (PE) are defined as follows: 

𝑃𝐸 =
1

𝑁2
∑ [𝑦𝑖 − 𝑦𝑖

(𝑝)
(𝐱𝑖)]

2
𝑁2

𝑖=1

            𝑎𝑛𝑑              𝑀𝐸 =
1

𝑁2
∑ [𝑦𝑖

(𝑡)
− 𝑦𝑖

(𝑝)
(𝐱𝑖)]

2
𝑁2

𝑖=1

 

where 𝑦𝑖
(𝑝)

(𝐱𝑖) is the prediction for the i th test sample and 𝑦𝑖 the i th test sample where 𝑦𝑖
(𝑡)

 is the i th test 

sample ground truth (company reported value). 𝑁1 is training set, 𝑁2is the test set  (Drucker 1997). 

 

Model Evaluation 

Feature Importance 

Feature importance is a measure used to calculate the relative predictive performance score of each input 

feature in a model for each target. The score is indicative of the predictive strength of an input feature. 

Features with a higher feature importance have a larger impact on the model predictions relative to the other 

input features. Within the base estimator used with AdaBoost, a decision tree regressor, the feature 

importance is calculated using the mean and standard deviation of accumulation of the Gini index, or node 

impurity, decrease within each tree.  



Model Evaluation Metrics 

Model are evaluated along on three metrics: 
 

 R2 Regression Score 

 MAPE: Mean Absolute Percentage Error 

 RMSLE: Root Mean Squared Log Error 

 

R2 Regression Score 

The R2 regression score function evaluates the of goodness of fit of the model where the best possible score 

is 1.0 (Pedregosa et al., 2011). The R2 regression score function represents the proportion of variance in the 

target, or dependent variable, that can be attributed to the independent variables, or input features, in the 

model. The R2 regression score function provides measure of the goodness of fit between the data and the 

model and serves as a measure of how well unseen test samples are likely to be predicted by the model, 

through the proportion of explained variance. R² is not comparable between different datasets or across 

different targets given that variance is dataset dependent. The R2 regression score function is implemented 

using Python Sklearn library and calculated as follows: 

𝑅2(𝑦, 𝑦̂)  =  1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 , 

where the i-th sample model prediction is 𝑦̂𝑖 , 𝑦𝑖   is the corresponding ground truth reported value and 

 𝑦̅  =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1
  

MAPE: Mean Absolute Percentage Error 

The mean absolute percentage error calculates a measure of prediction accuracy as a ratio of relative error 

between ground truth value and the predicted value (Pedregosa et al., 2011). The difference is divided by 

the corresponding ground truth value and this ratio is summed for every predicted sample. The mean 

absolute percentage error is implemented using Python Sklearn library and calculated as follows: 

𝑀𝐴𝑃𝐸(𝑦, 𝑦̂)  =
 1

𝑛
∑

|𝑦𝑖 − 𝑦̂
𝑖
|

𝑚𝑎𝑥(𝜖, |𝑦𝑖|)

𝑛

𝑖=1

 

where ϵ is a small positive number to apply when 𝑦𝑖 = 0 

RMSLE: Root Mean Squared Log Error 

The root mean squared log error score calculates a measure of difference between the expected value and 

the predicted value of samples to produce a risk metric corresponding to the expected value of the squared 

logarithmic error or loss (Pedregosa et al., 2011). RMSLE is most applicable to measure which have an 



exponential distribution whose values are products of multiplicative operations. RMSLE is robust in 

handling data outliers without drastically increasing the relative error, as happens in RMSE. RMSLE is 

primary calculating the relative error between predictive values and corresponding ground truth values and 

incurs a larger penalty for the underestimation of the ground truth sample values than overestimating. The 

root mean squared log error score is implemented using Python Sklearn library and calculated as follows: 

𝑅𝑀𝑆𝐿𝐸(𝑦, 𝑦̂)  = √
 1

𝑛
∑(𝑙𝑜𝑔(1 + 𝑦𝑖) − 𝑙𝑜𝑔(1 +

𝑛

𝑖=1

𝑦̂𝑖))2 

K-fold Cross Validation  

K-fold cross validation is applied to evaluate the model performance as an estimate of generalizability or 

expected model performance on unseen data (Pedregosa et al., 2011). The k-fold produces reduces both 

bias and variance towards any particular train-test split. The k-fold cross-validation procedure divides the 

data set into k non-overlapping folds. K-1 folds are used as a training set while the remaining data is used 

as a test set. A total of k models are fit and evaluated on the individual k test sets and the mean performance 

score with standard deviation is calculated. Two scoring metrics, mean absolute percentage error and root 

mean squared log error, are evaluated on multiple test set through k-fold cross-validation where k =10. The 

performance measure reported by k-fold cross-validation is average of the values computed in the 10-fold 

loop. The resulting CV score demonstrates the generalizability of the model or expected performance metric 

base on the averaged result across the k-fold iterations. 



Figure 4 | The k-fold cross validation process reduces both bias and variance towards any particular train-

test split. The k-fold cross-validation procedure divides the data set into k non-overlapping folds. K-1 folds 

are used as a training set (80%) while the remaining data is used as a test set (20%). 

 

Figure 5 | Mean Absolute Percentage Error (MAPE) performance across 10- fold cross validation 

  

Figure 5 | MAPE boxplot of cross validation scores for each Scope 3 types. The model is run 10 times with 

randomly shuffled subsampling of the training and test data for each model fit. Given that the data set 

sample includes multiple firm year observations for any single firm, a constraint is applied such that firms 

only appear in either the training data or the test data subsets. We design a test train split to keep all firm 

year observations of any specific firm within either the test or the train split, but not both. The data shows 

that business travel, downstream transportation and distribution, employee commuting, processing of sold 

products, purchased goods and services repeatedly obtained similar mean absolute percentage errors across 



distinct subsets of train and test data splits. Use of sold products and upstream transportation and 

distribution perform very poorly in terms of predictive accuracy across shuffles train and test splits.  

Figure 6 | Root Mean Squared Log Error (RMSLE) performance across 10- fold cross validation 

 

Figure 6 | RMSLE boxplot of cross validation scores for each Scope 3 types. The model is run 10 times 

with randomly shuffled subsampling of the training and test data for each model fit. Given that the data set 

sample includes multiple firm year observations for any single firm, a constraint is applied such that firms 

only appear in either the training data or the test data subsets. We design a test train split to keep all firm 

year observations of any specific firm within either the test or the train split, but not both. The data shows 

business travel, downstream transporation and distribution, employee commuting, fuel and energy and 

waste generated in operations have the smallest spread in log error across the 10 model fits. Wide variation 

in prediction error are found in end of life treatment of sold products, franchises and processing of sold 

products.  
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