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Abstract

Common identity often provides a foundation for workplace rapport. Though gender is perhaps
the most frequently studied dimension of identity among workers, little is known about how
gender match between managers and their workers might affect team performance. Using
personnel and productivity data from the universe of fast food restaurants of a large chain
in Colombia, we study whether mismatched gender identity between managers and workers
affects the team’s ability to deal with demand shocks. We leverage the staggered expansion
of a leading food delivery platform across the country to study how well managers are able to
adjust worker staffing to match resulting increases in demand. In this setting, managers spend
considerable time and attention on training workers in tasks and allocating them to shifts to meet
variable demand. Worker cooperation is critical for the manager to successfully accomplish
both of these tasks. We show that stores in which managers and workers share predominantly
the same gender: 1) have better communication and rapport between their managers and
workers; 2) have more broadly-skilled workers who are more easily reallocated across shifts;
3) exhibit the largest impacts on observed worker reallocation following the delivery platform
implementation; and consequently, 4) realize nearly three times the sales gains relative to stores
in which predominantly male managers supervise predominantly female workers. Stores with
female managers and predominantly male workers suffer less from gender mismatch, consistent
with female managers being generally more aware of and responsive to workers’ scheduling
constraints.
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1 Introduction

Rapport among workers shapes workplace performance (Ashraf and Bandiera, 2018). For
example, productivity is affected by knowledge flows between peer co-workers (Atkin et al., 2023;
Sandvik et al., 2020), as well as by the degree of interpersonal interaction with peers in nearby firms
(Atkin et al., 2022). Managers’ ability to establish and maintain relationships with their workers
contributes to the strong impact managers have on workplace outcomes like worker retention and
productivity (Adhvaryu et al., 2023; Hoffman and Tadelis, 2021).1

Workplace rapport between supervisors and subordinates can impact knowledge transfers and
the advancement of workers, and frictions in establishing this rapport such as language barriers
and gender mismatch can hinder the development of these relationships (Cullen and Perez-Truglia,
2023; Guillouet et al., 2021). In particular, the degree to which co-workers identify with each
other and the ease with which they communicate and cooperate can impact relationships both
among peers as well as across the hierarchy (Akerlof and Kranton, 2000, 2005). For example, peer
coworkers’ ethnic identities can affect their willingness to cooperate with each other and, in turn,
their joint productivity (Hjort, 2014). Identity-based distance – including age, gender, education,
and experience – can also impede the degree to which fellow managers of parallel teams cooperate
to help insure each other against shocks (Adhvaryu et al., 2021a).

Though gender is perhaps the most often studied dimension of identity among workers (Albanesi
et al., 2023; Goldin and Katz, 2018; Goldin and Mitchell, 2017; Olivetti and Petrongolo, 2016, 2017),
there is still much to learn about how shared or mismatched gender identity between managers
and their workers might affect managers’ abilities to elicit cooperation from workers.2 Using rich
personnel records and granular productivity data from the universe of fast food restaurants of a
leading chain in Colombia, we study the degree to which mismatched gender identity between
managers and workers affects the managers’ ability to successfully perform one of their primary
responsibilities and a critical determinant of store performance: the allocation of workers to shifts
to meet variable demand.

In this setting, a manager’s time and attention are largely devoted to training workers in subsets

1An interesting related study of a training intervention which improves leader-subordinate relationships finds impacts
on retention of the leader rather than the subordinate (Alan et al., 2023).

2A few recent studies have investigated related topics. Bagues et al. (2017) find that female scientific evaluators are
no more favorable to female candidates for professorship positions, but that male evaluators are less favorable to female
candidates when females are present on the scientific committee. Ronchi and Smith (2021) show that male managers
who experience the birth of a daughter rather than a son begin to prioritize hiring women of similar quality over men,
but there appears to be no performance impact of this change. Perhaps most relatedly, Buchmann et al. (2023) find
that male managers are less willing to hire women for night shift jobs when they believe safe transport is not available,
denoting this paternalistic discrimination; and Karpowitz et al. (2023) find that female majority and female leadership
both improve female influence in teams. To our knowledge, ours is the first paper to study how managers’ gender match
with workers impacts managerial efficacy and team performance.
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of the numerous stations which have to be covered each shift and then allocating workers to shifts to
meet variable demand. Scheduling workers is particularly complicated in the quick service restaurant
context. Demand is highly variable across hours of the day and days of the week. Composition of
products demanded also shifts within and across days resulting in changes in required composition
of skills for different stations of the production process.

Workers must be trained and certified for a given station before they can be assigned to it, and
this process involves a substantial amount of one-on-one face-time between the manager and the
worker. Accordingly, on average in our sample, a given worker is trained and certified on only
4-5 of the 37 possible stations. As a result, managers’ training and scheduling responsibilities
are quite interrelated. When scheduling workers to shifts, the manager must take into account on
which stations each worker is certified to work, how many workers are needed on each station
given predicted demand for different products, and the workers’ own idiosyncratic availability or
preferences across shifts. The confluence of these constraints makes staffing an extremely complex
and time-consuming process, especially in the presence of demand shocks which result in the need
for changes.

Of course, how many workers are trained in each skill will impact how constrained are the
possible allocations of workers to shifts. Given that the training and certification process is
personally costly to both workers and managers, we hypothesize that managers who have better
relationships with their workers will invest more time and effort in training, and that their workers
will be more willing to be trained in more stations. In a comprehensive survey of management
styles and practices among the universe of current managers of all stores in Colombia, managers for
whom their workers predominantly share their same gender identity are 44% more likely to prefer
having employees who are trained across more stations over specialized workers and report that
their workers are on average trained on 50-80% more stations, as compared to managers of stores in
which predominantly male managers supervise predominantly female workers. This lower cost of
training, and greater investment in training as a result, allows the (re)allocations of workers across
shifts to be less constrained.

On the other hand, a large empirical literature has documented that female workers make
different labor decisions and/or have different preferences than their male counterparts in many
contexts (Goldin, 2015; Goldin and Katz, 2011; Haegele, 2021; Mas and Pallais, 2017). In particular,
women often prefer to work different hours than men due to competing demands on their time at
home (Ashraf et al., 2022) or safety concerns (Buchmann et al., 2023).3 They also have higher
valuations for control over which shifts they work and greater disutility from having their hours
changed (Mas and Pallais, 2017). Accordingly, we hypothesize that managers who share a common

3Related studies on school-aged girls have documented similar concerns (Fiala et al., 2022; Muralidharan and
Prakash, 2017).
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gender identity with their workers will be more likely to understand these types of preferences
among their workers and, as a result, be more successful at adjusting worker shift scheduling to
meet changes in demand than will gender mismatched managers. Consistent with this notion, we
find that managers of gender-balanced stores are 59% more likely to report scheduling as the most
important of their responsibilities for store performance. In addition, female managers may be
generally more aware of or sympathetic to these constraints and preferences than are male managers.
Indeed, female managers are 13% more likely to both report spending more time on scheduling
than any other task and report assigning workers preferred shifts to prevent turnover.

We leverage the geographic expansion of a leading delivery platform across the country to study
how well managers are able to adjust worker staffing to match resulting non-uniform increases in
demand. The expansion was governed by the delivery app firm and therefore plausibly exogenous
to the operations of each QSR store in our data.4 Using event study models and two-way fixed
effect (TWFE) differencing strategies, we find that stores realize a 4.7% increase in sales on average
as a result of the arrival of the delivery platform to their neighborhood. We also find that stores do
not on average hire more workers to meet this demand, consistent with the difficulty in hiring and
training new workers for just a few hours a day and to cover a broad and variable set of stations.

Rather, stores tend to maintain a larger than strictly necessary workforce spanning different
station certifications and preferences across shifts, given the aforementioned complexity arising
from the need to cover a broad set of stations at different times of the day (and regular changes
due to absenteeism and turnover). These extra workers still need to be given a minimum number
of hours per week to satisfy labor regulations, leading to overstaffing at lean times like breakfast
shifts. Consistent with this, we find that in response to the increased demand after the arrival of the
delivery platform, managers harvest workers from previously overstaffed shifts like breakfast and
reallocate them to peak hours (both as temporary reschedules and as more permanent changes to
modal shift assignments of workers), often cutting the shifts into smaller segments. Specifically,
in the 18 weeks after a restaurant partnered with the delivery app, managers rescheduled 18.8%
more shifts and changed the modal shift for more than twice as many workers as compared to stores
which did not yet have access to the platform.

However, the effects on sales are highly heterogeneous. Gender-balanced stores achieve 2.8
times the sales increase that stores with predominantly male managers and female workers do (6.4%
vs. 2.3%). Gender-balanced stores also gain more in sales than do stores with predominantly female
managers and male workers, but less dramatically so (25% larger sales increase). Patterns in survey

4The restaurant chain agreed to join the platform whenever it became available in each area, but the timing of that
availability was governed by the spatial expansion of the delivery app, with that expansion staggered across cities and
to some extent in large cities across neighborhoods with recruitment of drivers and uploading of restaurant details as the
logistical constraint determining the rate and scope of incremental expansion. A lack of pre-trends in event studies
supports the validity of the identification.
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responses indicate that gender-balanced stores have better communication and rapport between
managers and workers, and that managers in these stores are more collaborative with workers in
their style and practices. For example, managers of gender-balanced stores are 33% less likely to
report acting without consulting workers, 80% more likely to report discussing key performance
indicators (KPIs) with workers very frequently, and 52% more likely to report looking out for the
welfare of their employees as compared to stores in which predominantly men manage women.
Stores with predominantly women managing men also exhibit better communication and rapport
than do stores in which predominantly men manage women.

Consistent with these better relationships, the greater investment in training, and the more
broadly skilled workers that result, gender-balanced stores achieve 30-40% more permanent modal
shift changes than imbalanced stores and entirely drive the positive average effects on temporary
reschedules. Taken together, we argue that the better relationships which prevail among gender-
balanced stores, and to a lesser degree in women-managing-men stores, is a primary reason for the
observed pattern of realized gains in sales following the introduction of the delivery platform.

1.1 Related Literature and Contributions

Our results build on the set of studies documenting the impacts of the quality of workplace
interpersonal interactions and relationships on organizational performance (Ashraf and Bandiera,
2018; Atkin et al., 2023; Sandvik et al., 2020). More specifically, our work relates to studies
showing that (mis)matched identities among co-workers affect cooperation and, in turn, productivity
(Adhvaryu et al., 2021a; Hjort, 2014). While most of these studies have focused on matching of
identities among peer coworkers, we add to recent evidence from a study of mismatch between
managers’ attitudes and their subordinates’ identities (Glover et al., 2017), a study of gendered
manager-worker social interactions in the workplace (Cullen and Perez-Truglia, 2023), and a related
study of language barriers across the management hierarchy (Guillouet et al., 2021).

While this prior work studies impacts on outcomes for the lower-level worker (e.g., knowledge,
productivity, absenteeism, promotion), our study is the first to document effects on the manager’s
ability to perform their responsibilities which rely heavily on these interpersonal relationships. On a
related note, another recent study documents that workers’ willingness to cooperate can determine
the degree to which a firm can realize value from the adoption of new technologies (Atkin et al.,
2017). We show that common gender identity between managers and workers is a predictor of
this willingness to cooperate and, therefore, can be an important mediator of the impact of new
technology adoption.

In this sense, our findings also relate to the large and growing literature on the importance of
managerial quality in determining team performance. In particular, we build on recent empirical
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results showing the value of personnel management skills (Adhvaryu et al., 2021b, 2022; Frederiksen
et al., 2020; Hoffman and Tadelis, 2021). Recent studies have shown that the effectiveness of some
practices may vary across workers and teams (Friebel et al., 2023), while others have argued that the
identity of the manager may matter in addition to the practices they use (Metcalfe et al., 2023). Our
results provide evidence of one way in which these mechanisms and features interact. That is, the
gender identity of the manager may affect their ability to successfully execute people management
tasks, but heterogeneously by the identity of the workers they manage.

Finally, our results add to the large empirical literature documenting gender differences in work-
related preferences across skill-levels and incomes (see, e.g., Mas and Pallais (2017)).5 Several
studies have established the role of competing domestic demands on time and safety concerns in the
labor decisions of women (Ashraf et al., 2022; Buchmann et al., 2023), particularly in developing
country contexts. We build on these results in showing that managers who identify with the same
gender as their workers are better able to navigate these preferences and constraints when scheduling
workers to meet varying workloads.

2 Background and Context

2.1 Quick Service Restaurant (QSR) Industry in Latin America

Latin America and the Caribbean is the fourth-largest global region in consumer food industry
sales, with a population of 646 million and sales over $243 billion (Reinhardt et al., 2021). A
growing middle class, rising disposable incomes, surging urban populations, and an increasing
female labor force participation rate have combined to create a thriving environment for convenience
food (Smith et al., 2014).

Large quick service restaurant (QSR) chains in Latin America have also contributed to the
steady incorporation of fast food into urban life. Over time, these chains have added healthier and
more sustainable options in an attempt to broaden their consumer base and as the number of delivery
platforms (e.g., Uber Eats, Rappi, Glovo, iFood) in Latin America quadrupled between 2014 and
2019 (Euromonitor, 2019), these QSR chains took advantage of the popularity of these platforms to
add or augment their delivery offerings. This additional sales channel enabled these chains to widen
their appeal in suburban areas (Reinhardt et al., 2021).

5Mas and Pallais (2017) find in a discrete choice experiment for call center jobs that women are more likely than
men to select flexible work arrangements and have higher valuations for avoiding irregular work schedules, and Wiswall
and Zafar (2018) find the same among high-ability undergraduates attending a highly selective university.
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2.2 Firm Partner

Our firm partner, one of the leading QSR franchise operators in Latin America, owns and
operates nearly 2000 stores across 20 countries in Latin America and the Caribbean, which employ
more than 90,000 workers. Both because these stores are franchise units of a leading global brand
and because all of these stores are fully owned and operated by the same firm (a few hundred more
stores are sub-franchised to other operators), the operations are quite standardized across the region
and any findings of analyses like those we undertake below are fairly generalizable to the broader
portfolio of stores. Indeed, the firm has expressed particular interest in our research to inform the
(re)adoption of delivery platforms across their operations.

The firm operated 76 restaurants across 9 cities in Colombia during the span of our data. It
averaged monthly sales of nearly 3 million units (items) sold through approximately 400,000
transactions–serving an average of 50,000 customers each day. Given the franchise structure, each
branch’s data systems are regulated by the global QSR brand which helps ensure that reporting of
the performance and training indicators we rely on is standard across stores.

Equipment, suppliers, menus, pricing, and training curricula are also standardized by the global
brand, but all hiring and staffing is handled by store managers. Employees at each branch receive a
base salary comparable to what they could earn elsewhere within the Colombian QSR industry, but
they also have the opportunity to receive short-term monetary incentives contingent upon individual
and branch performance. This pay structure ensures that both managers and crew members care
about the performance of the store.

2.3 Delivery Platform

The proliferation of delivery service platforms in recent years made it feasible for Colombian
companies like our partner to successfully add a delivery sales channel. In fact, Colombia is a global
leader for the percentage of restaurant sales driven by online channels. In 2018, the proportion of
restaurant sales made online was 31% in Colombia, compared to 8% in Latin America and 11%
globally (Euromonitor, 2019).

Our partner implemented online ordering via a delivery app after a third-party delivery company
approached corporate leadership and brokered a deal to be the sole delivery service for all restaurant
locations in Colombia as it expanded across the country. This partnership was established before
the delivery platform was widely available in Colombia. Accordingly, after the partnership was
established, the delivery company spread its coverage in stages across cities (and in large cities
across neighborhoods) by hiring and training drivers, recruiting other restaurants, uploading their
menus and prices, etc. Our partner firm’s stores joined the delivery platform as soon as the service
was available in their area. Accordingly, the roll-out of the app across store locations mirrored
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the expansion of the third-party food delivery platform across cities in Colombia. That is, store
managers had no control over the timing of service availability, indicating that the roll-out was
exogenous to the stores’ operations.

Figure 1a shows the order in which restaurants implemented the delivery service as the app’s
reach expanded to their cities. All our partner’s stores in areas where the app was available partnered
with the third-party delivery service. Accordingly, both whether a store implemented and when it
implemented are plausibly exogenous.6 Since each store implemented the app delivery service at
different times, we can measure the app’s impact on different store performance indicators before
and after the implementation. Figure 1b shows the month in which each store implemented the
delivery service. The roll-out was spread across eight consecutive months in 2018 and 2019. The
number of implementations peaked in January 2019, with the last stores implementing in July 2019.7

Table A.1 in the Appendix presents balance checks between early and late implementations of the
delivery app, and shows no significant differences in store performance, scheduling, or training
measures.

2.4 Managers’ Responsibilities

Each branch has a store manager and several shift managers. Some stores have station managers,
assistant managers, or even second assistant managers. While it can be useful in some contexts to
acknowledge differences in the duties of each type of manager, the responsibilities we study in this
paper are shared across most or all levels of management. Consequently, we refer to the set of all
managers in each store in our sample as a unit.

Managers are trained in most or all of a store’s stations, but generally spend their time supporting
crew members instead of preparing food. Keeping a restaurant running efficiently requires significant
preparation. During slower hours, managers spend considerable amounts of time scheduling and
rescheduling workers as well as preparing and implementing trainings. Appropriate scheduling is
crucial to a restaurant’s success since too few workers results in lost revenue and frustration (for
both customers and crew), while too many workers results in inflated labor costs.

Scheduling workers is particularly complicated in the quick service restaurant context due to
highly variable demand across hours of the day and days of the week. Composition of products
demanded also shifts within and across days, resulting in changes to the required composition

6Our main results use only not yet treated stores as controls, but we also explore using never treated stores for
robustness.

7We note that our partner did have a delivery sales channel before partnering with a third-party delivery service.
Despite early investment to develop an in-house delivery application, our partner’s efforts were unsuccessful, and
delivery sales did not comprise a significant proportion of sales until the third-party delivery app was implemented.
Almost immediately after implementation, more than 80% of delivery sales came from the third-party app. The data we
use for our analysis uses all store sales both in-store and delivery, with delivery including those via the third-party app
as well as the partner firm’s own service.
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Figure 1: Delivery App Implementation

(a) Panel A: App Implementation by City in Colombia

(b) Panel B: Implementation of The Delivery Service by Month

Notes: Panel A of Figure 1 shows the month in which the first store(s) within each major Colombian city implemented
the third-party delivery app. Panel B shows the month in which each store in our sample implemented the delivery
service.
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of skills for different stations of the production process. However, workers must be trained and
certified for a given station before they can be assigned to it. The process of training and certifying
a worker on a particular station is personally costly to both the manager and the worker, involving
a substantial amount of one-on-one face-time between the two. Accordingly, on average in our
sample, a given worker is only trained and certified on roughly 4-5 of the 37 stations.

Note that managers’ training and scheduling responsibilities are connected. When scheduling
workers to shifts, the manager must take into account on which stations each worker is certified to
work, how many workers are needed on each station given predicted demand for different products,
and the workers’ own idiosyncratic availabilities or preferences across shifts. The confluence of
these constraints makes staffing an extremely complex and time-consuming process, especially in
the presence of shocks which result in the need for changes. Of course, how many workers are
trained in each skill will impact how constrained are the possible allocations of workers to shifts,
and therefore, how difficult is the task of scheduling. Accordingly, each manager will choose how
much time and effort to devote to training her workers in different stations, trading off the gains in
scheduling flexibility with the personal costs of conducting the training.

2.5 Colombian Labor Regulations

Labor laws governing the minimum and maximum number of hours an employee can work
greatly affect the way managers in our sample schedule employees. Work completed in excess of
48 hours per week8 is considered “extra time,” and employers must pay 125% of the regular wage,
or 175% of the regular wage if the extra hour is worked after 9 p.m., on Sunday, or another holy
day.9 Moreover, labor laws cap overtime at a maximum of 12 extra hours per week or two hours per
day, meaning that even if a manager is willing to pay overtime to cover labor shortages, they can
cover a maximum of two extra hours per worker per day.

Perhaps, the most significant constraints on a manager’s ability to optimize scheduling are the
minimum shift length and minimum hours per day requirements. No shift may be shorter than 5
hours and employees cannot work multiple shifts in a day, and full-time workers must be given at
least 4 hours per day.10 As a result, the laws governing maximum shift length restrict a manager’s
ability to ask employees to stay late or come early to cover variable demand, since such a request
either requires higher wages or is illegal (if it gives an employee more than 2 extra hours in a day
or 12 extra hours in a week). However, managers’ inability to schedule shifts shorter than five

8In 2021 the maximum number of regular hours an employee could work per week was updated to 42, but during
the period of analysis, 48 hours per week was considered the maximum number of regular hours an employee could
work per week.

9Extra hours on holidays not considered holy days are paid at 125% of the regular wage.
10Substantial recruitment and training costs make maintaining a roster of a large number of part-time workers also

inefficient.
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hours and requirement to give each full-time worker at least four hours a day, taken together, mean
that adequately staffing a store during peak hours frequently results in chronic overstaffing during
nonpeak hours.

3 Data

3.1 Performance Data

The dataset we use to study performance contains granular transaction-level data. It covers 88
million transactions for 76 restaurants in Colombia from July 2018 to October 2019. Our main
results below exclude the never-treated stores (13 out of 76), as well as one additional store which
had incomplete data over the observation window; so our main sample covers 62 stores. Each
transaction includes details such as the point of sale in which the ticket (order) was processed (e.g.,
in-store or delivery), all items on each ticket, and their prices. This allows us to use sales, units
sold, and number of tickets as our primary measures of performance. Table 1 presents summary
statistics for each of these measures, aggregated at the biweekly period for each store. During the
pre-implementation period of analysis, stores sold an average of 37,512 units on 14,903 tickets
for a total sales of $59,410 USD per bi-weekly period. Throughout the analysis, we report sales
results in thousands of USD, cumulative over bi-weekly periods. However, the granular nature of
the raw data also enables us to construct versions of these and other outcomes that leverage hourly
and shift-level variation.

3.2 Personnel Data

We also have access to granular personnel data at the individual level for all restaurants that
implemented the delivery app. The personnel data includes demographic characteristics (age, store,
position, and gender) and date of hiring and termination for each worker and is available for all
stores and employees from January 2019 to October 2019. Table 1 shows that approximately 70%
of employees within a store are crew members. The other group of store employees are managers of
some sort (store manager, shift manager, assistant manager, station manager, or equipment manager).
On average during the period of our analysis, stores hired 1.25 and lost 0.60 employees during a
bi-weekly period.

3.2.1 Manager-Worker Gender Balance

Table 1 also shows that the share of crew members in a store that are female is 54% on average
and the share of managers who are female is 52%. The gender identity of both managers and
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Table 1: Pre-Implementation Summary Statistics on Performance Measures and Personnel Data

Mean Stand. dev.

Performance Measures
Sales 60.11 27.10
Units sold 37,965 17,058
Number of tickets 15,087 7,053

Personnel and Scheduling
Number of workers per store 23.09 13.7
Number of workers working per hour 8.16 4.43
Number of hours per worker per week 30.70 6.64
Length of the shift 6.72 0.39
Number of shifts 11.49 6.15
Hiring 1.15 2.01
Turnover 0.71 1.41
Absenteeism 1.81 3.00
Reschedules 58.66 47.59

Gender balance
Share of female managers 51.6% 0.26
Share of female crew members 54.1% 0.10

Training
New skills 10.36 12.98
Refresher 5.31 6.60

Notes: All results presented in Table 1 are biweekly averages at the store level from the pre-implementation period for
the 62 stores that implemented the delivery app. We use sales data from July 2018 to October 2019 and training and
personnel data from January 2019 to October 2019. Sales is presented in thousands of US dollars. Units sold is the
number of items sold. Number of tickets is the number of separate orders fulfilled. Absenteeism refers to the number
of employees who fail to show up for a scheduled shift. Reschedules refers to any changes logged to an employee’s
schedule after the initial schedule has been set. New skills training refers to all post-onboarding trainings that teach a
skill for which an employee has not yet been trained. Refresher trainings include all subsequent trainings after a new
skill training.
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workers in each store feature heavily in our hypotheses and empirical analyses below. We take the
gender of all managers and workers in the store from the personnel records described above and
construct measures of gender “balance” at the store level. We differentiate between imbalanced
stores in which the share of female managers exceeds the share of female crew by at least 25%
(denoted as “Female-heavy Management” or “FHM” in graphs and tables) and stores in which the
share of male managers exceeds the share of male crew by at least 25% (denoted as “Male-heavy
Management” or “MHM” in graphs and tables).11 For example, a store with 70% female managers
but 20% female crew would be a female-heavy management (FHM) store while a store with 20%
female managers and 70% female crew would be a male-heavy management (MHM) store. We
assign stores to one of these categories using the store’s personnel records from before the store
gained access to the delivery platform.

3.2.2 Training

The training data is available during the same period as the personnel data (January 2019 to
October 2019). The dataset includes every training for every worker and specifies when the training
occurred. This lets us see the days and times of day when managers choose to conduct these
trainings. Because crew members cannot work at a station for which they are not trained, we are
also able to see the specific stations at which a crew member is certified to work at any moment.12

The number of certifications an employee has or does not have greatly affects a manager’s ability
to schedule that employee, since every shift should have employees certified to work each station.
Some stations require more training than others but all trainings are time-consuming, so managers
need to be judicious when deciding when to train employees on new stations versus when to
schedule already certified employees to cover demand (see Appendix Table A.2 which presents the
average weekly certifications by station). Table 1 provides summary statistics for the number of
new skill and refresher trainings conducted in each of the stores in our sample. During the period of
analysis, the average employee completes 10.31 new skill trainings and 5.26 refresher trainings.

3.2.3 Scheduling

The scheduling data is available at individual-shift level from June 2018 to October 2019. This
dataset includes information on the shifts worked by every worker in each of the restaurants our
partner operated in Colombia during this time. Importantly, we can see the exact time every shift was

11Justification for the 25% threshold is provided in B.2.1. We also replicate the findings in this section using several
different gender-balance thresholds which we present in B.2.2. The figures in this section show that our findings are
robust across different definitions of gender balance.

12These are complete records for any employee who joined after the start of our observation window, but are truncated
for pre-existing workers. To analyze a more complete record of average certifications of all store employees we use a
survey measure obtained from the store managers.
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scheduled to start, whether the manager changed the start or end time of a shift, whether a worker
showed up for their shift, as well as how many employees are working at any point throughout the
day. Table 1 provides summary statistics on the number of shifts and hours worked, and number
of reschedules at each store during a bi-weekly period. The average store had 23 workers who
worked approximately 6.72 hours per shift for an average of 32 hours a week. The stores in our
sample averaged 46 reschedules during a bi-weekly period, such that each worker has one of their
scheduled shifts adjusted each week. This regular adjustment is in part in response to 1.8 workers
being absent, 0.7 workers quitting, and 1.2 new workers being hired every two weeks.

Effective scheduling of crew members is an important feature of managerial quality, a primary
responsibility of the managers in our sample, and one of the most important mechanisms managers
used to respond to the implementation of the delivery app (as we document below). Managers
prepare weekly schedules for all crew members but can ask to reschedule shifts based on unexpected
changes in demand or availability of other crew members. Despite having some flexibility to change
weekly schedules, a manager faces several constraints.

First, Colombian labor laws (see Section 2.5) prevent managers from keeping just a small set of
workers and overworking them. These same laws make it illegal for managers to ask employees to
work shifts shorter than five hours or to send employees home early when sales are slow. While
these laws protect employers and workers, they also contribute to frustrations for both managers
and crew members. Managers may have difficulty deciding how many employees to schedule at a
given hour to meet demand, and crew members may be asked to change their schedules on short
notice if managers have predicted demand and/or worker absenteeism incorrectly.

Second, the firm’s own procedures prohibit managers from scheduling employees to work
stations on which they are not yet certified. On average, crew members are certified to work only
4–5 stations even though stores has as many as 37 different stations. This means that even supposing
that each worker could handle several of a store’s stations at one time, covering 25 stations would
still require at least 5 workers if each worker were certified in exactly 5 mutually exclusive stations.

Third, managers are dealing with real people who have variable schedules and idiosyncratic
preferences that affect the hours they are willing and able to work. Younger employees may be
enrolled in university courses during the day, parents may need to take children to or from school,
and women may prefer to be home before dark due to safety concerns. Figure 2a, for example,
shows that the share of female employees starting work at a given hour drops markedly after the sun
goes down.
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Figure 2: Schedule Management

(a) Share of Female Employees Working by Hour

(b) Employees per $1000 of Sales by Timeband

Notes: Figure 2a presents the difference of the percent share of female employees whose shifts start during each
hour of the day respect the percent share of female employees at 8 am. We present results from 7 am to 10 pm
because these are the hours during which a majority of stores are open, but we note that some stores are open during
late-night/early-morning hours. The sample consists of pre-implementation data for the 62 stores that implemented the
app between July 2018 and October 2019. The vertical gray bar corresponds to the time that the sun sets in Bogotá. The
earliest sunset during the year occurs at 5:39 pm and the latest at 6:10 pm. Figure 2b shows the ratio of employees to
$1000 USD of sales. The start and end times for each timeband were set by the partner firm, so we simply adopt their
nomenclature. Breakfast includes the hours from 7:00 am to 10:59 am, lunch from 11:00 am to 1:59 pm, afternoon
from 2:00 pm to 5:59 pm, and dinner from 6:00 pm until 11:59 pm.
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Finally, non-uniform fluctuations in demand for specific products require some stations to
be doubled or tripled up at some times of the day. While managers and employees across many
sectors face these issues, they are particularly intense in the QSR industry where demand is so high
during certain hours of the day (afternoon and dinner time) and so low at other times (breakfast
or graveyard hours). Accordingly, we see employee schedules start and end at different times
throughout the day, leaving a variable number of employees working during any one hour of the day.
Taken together, the manager must then both maintain and dynamically allocate – subject to workers’
idiosyncratic personal schedules and preferences and in the presence of worker absenteeism and
turnover – enough workers certified on each station to meet not only modal demand across stations
but also peak demand for some stations at some times.

3.3 Survey of Managerial Style and Practices

We surveyed the universe of current managers of all stores in Colombia in March 2023 on their
management styles and practices, including how they approach their responsibilities and decisions
regarding training and scheduling. Given the amount of time which has elapsed between the roll-out
of the delivery platform we study and the fielding of this survey, some managers have left the firm
in the interim and others have been promoted to higher levels of management. We keep only the
survey responses from the managers who match to our study sample. This matched sample includes
117 managers across 58 of the 62 stores in the analysis sample. The 4 unmatched stores are no
longer managed by the same managers who oversaw the implementation of the delivery platform.13

Table A.3 in the Appendix presents summary statistics of survey measures across stores by the
gender of the manager.

We hypothesize that stores that are more gender-balanced will exhibit better communication and
rapport between managers and workers and more collaborative or inclusive management practices.
Accordingly, we asked managers about different ways in which they interact with workers, for
example: act without consulting their workers; treat employees as their equals and look out for the
welfare of employees; whether they involve all team members in goal-setting and if they achieved
the goals they set; and how often they discuss key performance indicators (KPIs) with their workers.

Given that the training and certification process is personally costly to both workers and
managers and relies heavily on these worker-manager relationships, we hypothesize that managers
who share a common gender identity with their workers will invest more time and effort in training
and that their workers will be more willing to be trained in more stations. As a result, we would

13We note that the gender balance of the stores at the time of the delivery platform roll-out also may not correspond
perfectly to that during the time of the survey. Nevertheless, since any mismatch should simply attenuate any
relationships between survey measures of management practices and the gender composition of the stores, we still
analyze these data and discuss patterns here and below.
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expect that workers in these stores would be more easily reallocated across stations and shifts.
Accordingly, we ask managers several questions regarding their training preferences and

practices, for example: whether they prefer that workers are trained broadly or are specialized in
particular stations; and how many stations on which the average worker in their team is trained.14

Figure 3a plots some preliminary comparisons showing that managers of gender-balanced stores are
44% more likely to prefer having workers who they can shift across stations.

Figure 2b documents that the ratio of employees to sales is significantly higher during breakfast
hours than any other time of the day, suggesting that stores are chronically overstaffed in the morning
relative to other times of the day. This pattern suggests that managers may be able to respond to
the delivery app implementation by harvesting workers from less busy hours and scheduling them
to work during hours in which the new delivery demand is concentrated.15 This reallocation of
workers may be reflected in last-minute reschedules or in permanent changes to the modal shift to
which a worker is assigned, so we study both in our analysis.

Finally, previous studies have documented that women often prefer to work different hours
than men due to competing demands on their time at home (Ashraf et al., 2022) or safety concerns
(Jaitman, 2020; Kondylis et al., 2020; Martinez et al., 2018); and that they have higher valuations
for control over which shifts they work and greater disutility from having their hours changed (Mas
and Pallais, 2017). We hypothesize that managers who share a common gender identity with their
workers will be more likely to understand these types of preferences among their workers and, as
a result, be more successful at adjusting worker shift scheduling to meet changes in demand than
will gender mismatched managers. Accordingly, we ask managers about scheduling, for example:
how important is scheduling for store performance. Figure 3b plots some preliminary comparisons
showing that managers of gender-balanced stores are 59% more likely to list scheduling as the most
important of their responsibilities for store performance than are managers of MHM stores.

Note that in these preliminary comparisons managers of FHM stores look more like gender-
balanced stores than MHM stores. This likely reflects that female managers may be in general
more aware of or sympathetic to scheduling constraints and preferences than are male managers.
Consistent with this notion, we find that female managers are 13% more likely to both report
spending more time on scheduling than any other task and report assigning workers preferred shifts
to prevent turnover. Taken together, these patterns in survey responses validate the idea that both
the gender of the manager and the gender match between managers and workers might determine
the manager’s approach to and success in reallocating workers across shifts in response to the
introduction of the delivery platform. Accordingly, as discussed above, we continue to separate the

14We collected this to complement the administrative training records we have, since any trainings that workers
complete prior to the start of our observation window will not be counted toward any cumulative training certifications
measure we calculate using these records.

15Figure A.3 in the Appendix confirms that impacts on sales are not uniform throughout the day.
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Figure 3: Survey Questions

(a) Better to Have Workers Who Can Shift Across Stations

(b) Scheduling Most Important Task for Store Performance

Notes: Figure 3a shows the share of managers who report that it is better to have employees able to shift across stations
by store gender balance i.e., female-heavy management (FHM), gender-balanced, or male-heavy management (MHM).
The difference between MHM and gender-balanced stores is significant at 95% (p-value 0.026). Figure 3b shows the
share of managers that list scheduling shifts as the most important task by gender balance of the store. The difference
between MHM and gender-balanced stores is significant at 90% (p-value 0.097).
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gender imbalanced stores into FHM and MHM to allow for detecting both of these patterns.

4 Empirical Analysis

First, we aim to compare different store performance indicators before and after the introduction
of the online food ordering and delivery platform across restaurants. We leverage the expansion
of the food delivery platform to almost all the cities where our partner firm restaurants are located
during 2019. Thus, our identification strategy relies on spatiotemporal variation in platform roll-out
at the municipality level, which is plausibly exogenous to the decision-making and performance of
stores and the larger firm. We present evidence in support of this below.

4.1 Baseline Specification

We estimate an event study model (Freyaldenhoven et al., 2021; Roth, 2019), which allows us to
test for differential pre-trends across stores before the implementation, and to trace out the dynamic
impacts over the post-introduction period. We estimate the following baseline specification:

Ys,t = α0 + ∑
C≤k≤C,k ̸=−1

Dk
stδk +Φs +θt + εs,t (1)

where Ys,t is the performance measure of store s at biweekly period t, Dk
st is a relative time-to-

treatment indicator for whether the food delivery platform had introduced the app in (biweekly)
period t−k where store s is located, defined as Dk

st = 1[t = τs+k] for k ∈ (C,C), DC
st = 1[t ≤ τs+C],

and DC
st = 1[t ≥ τs +C], where 1[·] is the indicator function, k indexes the set of time indicator

variables, and τs is the first biweekly period when store s get orders through the app delivery
platform. The parameter δk measures the impact of the introduction of the platform before, during
and after the event. We normalize δ−1 = 0 and set C =−8 and C = 8.

We control for store fixed effects Φs and time (biweekly period) fixed effects θt , and cluster
standard errors at the store level for inference. Our parameters of interest are δk for k ∈ [C,C]. Our
main specification excludes the never-treated stores (13 out of 76).

4.2 Identification

The panel data structure allows us to interpret the statistical significance of these coefficients
as evidence of the causal relationship between the introduction of the food delivery platform
and performance measures, provided that the roll-out of the platform varies over time and is
uncorrelated with store-specific shocks that affect the performance measures (Blundell and Dias,
2009). Specifically, identification relies on two features of the roll-out of the food delivery platform.
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First, the introduction of the platform was unanticipated by the managers of the stores. Second,
the introduction of the platform in a city is uncorrelated with manager- and worker-specific
characteristics. Both assumptions are validated by the anecdotal evidence: a) the expansion
of the food delivery platform across the country was executed by the platform, not our partner firm,
and b) due to technological and operational limitations, the expansion of the app implementation
was performed city by city. To the best of our knowledge the delivery platform did not announce
much in advance which cities would be added to the platform nor when they would be added.
Accordingly, managers of our partner firm could not have anticipated the app’s roll-out. The lack of
pre-trends in our analysis validates these assertions.

We showed in Figure 1a in Section 2, that there are no systematic geographic patterns in
the order in which restaurants implemented the delivery service as the app’s reach expanded to
other cities. Moreover, Appendix Table A.1 presents the mean and standard deviation of different
outcomes studied in the paper for the pre-implementation period for early (before March 2019) and
late (after March 2019) implementers of the app. The table shows no significant difference between
early and late implementing stores, confirming the exogeneity of the roll-out of the platform. Given
this context behind the app roll-out across Colombia, we believe that stores yet to implement food
delivery platform form a credible counterfactual for stores that implement the technology earlier,
after accounting for time-invariant differences between stores and biweekly period fixed effects.

4.3 Effects on main performance measures

We begin by implementing the baseline event-study specification (1). Panels (a) to (c) of Figure
4 present the event-study coefficients for sales, units sold, and number of tickets. The figures show
no evidence of selection into the app implementation based on past store performance indicators;
i.e., we do not see any evidence of divergent pre-trends in any of these outcomes. Rather, it is
only after stores implement the new technology that we observe a positive effect on sales, units
sold, and the number of tickets. In panels (a) to (c) of Figure 4 we observe some effects beginning
during the same biweekly period of the event and persisting even eight biweekly periods after the
implementation of the food delivery platform.

Because the event studies show sharp onsets and persistent effects in the post period for
each performance measure, we also estimate a difference-in-difference regression to recover a
single average treatment effect estimate. We replace the full set of time-to-treatment and time-
since-treatment indicators with a post treatment dummy (indicating before and after the app
implementation). We control for store and biweekly period fixed effects, and cluster the standard
errors at the store level. Table 2 shows that the implementation of the food delivery platform
increased overall sales by 4.74%, or $2,848 USD per biweekly period per store from the pre-

20



Figure 4: Effects of delivery app implementation on performance measures

(a) Event study estimates on sales (b) Event study estimates on units sold

(c) Event study estimates on number of tickets

Notes: Panels (a), (b) and (c) of Figure 4 show the event-study coefficients and 95 percent confidence intervals from the
estimation of equation (1) on the key performance measures. Treatment is defined as having implemented the food
delivery app. Control stores are those not yet treated. The sample consists of store-biweekly panel data for the 62 stores
that implemented the app between July 2018 to October 2019. Panel (a) shows the impact on sales, Panel (b) shows the
impact on units sold and Panel (c) shows the impact on number of tickets (orders). The vertical line represents the time
of the treatment.

implementation mean; the total number of units sold by 6.62%; and the number of tickets by
5.64%. Note that the similar magnitude of effects across all of these performance measures indicate
that the transactions via the delivery platform did not reflect a quantity or value of items that
was systematically different from the average transactions prior to the introduction of the delivery
platform.16

16We confirm this in additional results on items/ticket and avg. ticket value, but do not present these null results for
the sake of brevity.
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Table 2: Effects of delivery app implementation on performance measures

(1) (2) (3)
Total Sales Units Sold No. Tickets

Post app implementation 2.848*** 2,515*** 851.3***
(0.357) (652.5) (265.4)

Mean of Dep. Var. 60.11 37,965 15,087
Relative effect 4.74% 6.62% 5.64%
Observations 2205
Number of stores 62

Notes: Table 2 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy. Treatment is defined as having implemented the food delivery app. The sample
consists of store-biweekly panel data for the 62 stores that implemented the app between July 2018 to October 2019.
Column 1 presents the estimations for total sales, Column 2 presents the estimations for units sold and Column 3
presents the estimations for the number of tickets. Numbers in parentheses are clustered standard errors at the store
level. * significant 10%, ** significant 5%, *** significant 1%

4.4 Managers’ Response

We now explore the different ways that managers responded to the changes in demand due to
the app’s implementation. The franchising model of our implementing partner ensures that store
and shift managers had a great deal of autonomy in the way they responded to the implementation
of the delivery app. For example, in response to increased demand at different times of the day,
managers were free to choose whether they would hire new staff, train the existing workers in more
skills to cover more stations, refresh the training of existing workers to increase their productivity,
or reallocate existing workers from non-peak to peak times. This variability in manager’s responses
is an important determinant of how well (or poorly) a given branch was able to take advantage of
access to a new sales channel.

The delivery service’s varied impacts on sales during different hours of the day makes a
manager’s response especially important. Figure A.1 in the Appendix shows mean sales by time of
day; while Figure A.3 shows treatment effects on sales by times of the day. We see that demand
for delivery follows demand via existing points of sale. That is, the implementation of the delivery
service amplified demand during peak hours, making the busiest hours even busier than before.
However, the effect lasted for only a few hours a day. Effects are largest in the hours of 5-7pm
(around 20,000 USD in each of those hours over the bi-weekly period, an order of magnitude larger
than the average treatment effect of 2.848). Effects are roughly half this peak magnitude in the
hours of 2-4pm and 8pm, and essentially null for other times of the day.
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This non-uniformity over the hours of the day creates an interesting dilemma: because managers
cannot schedule workers for just a few hours at a time, scheduling more workers during peak hours
frequently means having too many workers during non-peak hours. Thus, even if the delivery
service greatly boosted sales, a corresponding increase in costs due to over-hiring and/or poor
scheduling could offset this increase, resulting in small or even negative impacts on a store’s
profitability.17 Moreover, if the impact of higher-stress peak hours or the unpredictability due to
increased rescheduling impacts turnover and/or absenteeism, the way a manager responds becomes
even more important.

We first consider the impact of the delivery app implementation on the quantity of hired labor.
Column 1 of Table 3 explores effects on new hiring and shows no statistically significant impact.
Though the coefficient indicates a fairly large 9.3% increase from the pre-implementation mean, this
reflects more the small mean of hiring at the store-bi-week level than a large coefficient. Column
2 shows that managers also did not respond by extracting more hours of work from the existing
employees. That is, effects on hours per worker per week are small in magnitude (-0.19% of the
mean) and insignificant.

Next, given the quantity of workers and hours available did not change, we ask whether
increased demand during some hours necessitated that managers adjust employee schedules. That is,
did managers reallocate workers across hours more than they had before the app was implemented.
Columns 3 to 5 of Table 3 confirm that employee schedules were indeed adjusted. Column 3 shows
that on average, managers added 1.67 shifts in a biweekly period from a mean of 11.5 shifts before
the app implementation. Specifically, we see in Figure A.4 that shifts beginning during the busiest
hours (late afternoon and dinner time) were shortened to allow for more workers to be staffed during
these peak times without having to use more worker hours overall.

Columns 4 and 5 show the magnitude of these adjustments to employee schedules. On average,
managers made 11 more reschedules per bi-weekly period after implementing the app (from a pre-
implementation mean of 58). By definition, a reschedule occurs only if an employee’s shift is set and
then changed, making this more of a “last-minute” mechanism that managers use to meet unexpected
demand. Given the demand shock from joining the delivery platform was permanent and the effects
on sales were persistent as shown in Figure 4, we would expect that the permanent shift schedule of
workers may also change to adjust to the new demand pattern and staffing requirements. Because
reschedules exclude anticipated schedule changes, we also consider changes to an employee’s modal
shift.

17We do not have data on profits of the stores, but can analyze inputs like labor hours in comparison to sales, as well
as effects on waste. We find no effects on hours per worker nor number of workers in Table 3 and no evidence of effects
on waste in Table A.7 in the Appendix, so we believe profits scale proportionally with sales. The firm anecdotally
confirms that since inventory costs scale proportionally with sales and input waste is quite small compared to other costs
this interpretation that labor costs would be the main reason that effects on profits would differ from those on sales.
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Table 3: Effects of delivery app implementation on employees

(1) (2) (3) (4) (5)
Hiring Hours per Number of Reschedules Num. of Modal

worker/week shifts Shift Changes

Post app implementation 0.107 -0.0611 1.673*** 11.04** 6.528***
(0.154) (0.439) (0.548) (4.267) (0.941)

Observations 2,205 2,294 2,287 2,293 124
Mean of Dep. Var. 1.146 30.70 11.49 58.66 5.216
Relative Effect 9.3% -0.19% 14.60% 18.80% 125.15%
Stores 62

Notes: Table 3 show the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy. For the modal shift estimation we shows the results of a simple post-treatment
dummy regressed against the average number of modal shift changes at each store. Treatment is defined as having
implemented the food delivery platform. The sample consists of store-biweekly panel data for the 62 stores that
implemented the app between July 2018 to October 2019. Number of shifts is the number of shifts per worker per
bi-weekly period, Column 3 presents the estimations for reschedules. Hiring is the number of employees hired. Numbers
in parentheses are clustered standard errors at the store level. * significant 10%, ** significant 5%, *** significant 1%

We measure an employee’s modal shift by taking the mode of that employee’s start time over
each bi-week;y period. If an employee’s modal start time differs from that employee’s modal start
time in the bi-week before, we deem this a modal shift change in the current bi-week.18 Column 5
of Table 3 shows a large (125%) and significant increase in the share of employees whose shifts
changed as a result of the app implementation.

Figure 5a plots the treatment effect on the proportion of workers that experienced a modal
shift change in response to the platform adoption among those whose modal shift before the app
implementation was during the lean hours of Breakfast-Lunch, as compared to the same proportion
among those whose pre-implementation modal shift was during the peak hours of Afternoon-Dinner.
Figure 5b does the same exercise but using the timing of the worker’s model shift after the app
implementation. Taken together, the patterns across Figures 5a and 5b show that managers were
predominantly shifting workers from lean Breakfast-Lunch shifts toward peak Afternoon-Dinner
shifts. Figure 5d plots the analogous treatment effects on reschedules split by the timing of the
worker’s modal shift after the app implementation. Here we see again that workers are rescheduled
to work the Afternoon-Dinner shifts and actually less likely to be rescheduled to the Breakfast-Lunch
shifts.

Remember, our hypothesis is that managers who share the same gender as their workers will
have better rapport and be better able to elicit cooperation from their workers regarding the changing

18While columns 1-4 of Table 3 present results at the bi-weekly level, we measure modal shift changes at the store
level for the entire pre- and post-implementation taking the average of the number of modal shift changes at store level.
This change also results in a simpler regression specification in which we regress the average share of modal shift
changes at each store on a simple treatment dummy, defined as having implemented the food delivery platform.
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Figure 5: Effect of delivery app implementation by timeband

(a) Modal Shift Changes by Pre-App Timing (b) Modal Shift Changes by Post-App Timing

(c) Refresh training by Pre-App Timing (d) Re-schedules by Post-App Timing

Notes: Figure 5 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy and the interaction of the post-treatment dummy with another dummy equal to
1 when the modal shift of the employee falls during the Breakfast-Lunch or Afternoon-Dinner timeband. We define
Breakfast-Lunch timeband from 7am to 2pm and Afternoon-Dinner timeband from 3pm to 10pm. We also include a
dummy for high store productivity pre-implementation and interact this dummy with our post-treatment dummy. We
use the ratio of units sold to mean number of employees per store as a proxy for store productivity and define a high
productivity store as any store with above-median productivity during the pre-implementation period. The difference
between the effect at Breakfast-Lunch and Afternoon-Dinner Figures is significant at 99% for Figures 5a (p-value:
0.0001) and 5d (p-value: 0.0001), but is not significant at conventional levels for Figures 5b (p-value: 0.198) and 5c
(p-value: 0.131). The sample consists of store-biweekly panel data for the 62 stores that implemented the app between
July 2018 to October 2019. Standard errors are clustered at the store level.

of shifts. If so, we would expect that realized modal shift changes and reschedules are concentrated
among workers who are the same gender as the majority of the managers in the store. In Figure
A.2 in the Appendix, we plot treatment effects on modal shift changes and reschedules split by
whether workers identify with the same or different gender as a majority of the managers. Indeed,
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the treatment effect on reschedules is larger among same-gender workers and the effect on modal
shift changes among same-gender workers is more than twice as large as that for different-gender
workers.

One final lever which managers could have used to meet the new demand is training. That
is, managers could have mostly left workers in their usual shifts but trained some workers to be
able to contribute in part to bottleneck stations during peak hours in addition to their usual station
assignments. Alternatively, managers could have left workers in their usual shifts and stations and
used refresher training to try to improve their productivity so as to prevent or relieve bottlenecks
created by increased demand. Indeed, Adhvaryu et al. (2022) find in a similar setting that managers
respond to information they receive from a new performance monitoring technology primarily by
employing both of these training-related levers. Table A.5 presents estimates of effects on training
split into new skills and refresher training. We do not find any evidence that managers are training
workers in new skills, but we see that they do increase refresher training by 26%.

However, when we split these effects by the modal shift of the worker being trained before

the app implementation, we find in Figure 5c that these refresher trainings are not being allocated
to workers who were already working the peak shifts, but rather to workers who were reallocated
toward the peak shifts and workers who are left behind in the shifts from which managers are
harvesting workers to reallocate. That is, these refresher trainings are not being used to avoid the
need for more workers at peak times, but more to enable the reallocation of more workers to peak
shifts. Taken together, the results in Table 3 and the patterns depicted in Figures 5a through 5d
indicate that the reallocation of workers was the primary mechanism that managers used to achieve
the sales gains in the face of the demand shock, rather than increasing the number of workers or
hours per worker or using training to increase workers’ breadth of skills or the productivity of
workers already working peak shifts.

4.4.1 Turnover and Absenteeism

One might imagine that this adjustment of workers’ schedules may not be well-received by all
workers. In this sense, we may expect effects on turnover and absenteeism to reflect this tension.
However, Appendix Table A.4 shows no statistically significant effects on turnover or absenteeism
on average. Absenteeism reflects a small rise of 1.1% from the pre period mean of 1.8; while
turnover reflects a small drop of .05 compared to the pre period mean of .7. We note that, at first
glance, the insignificant fall in turnover may seem surprising considering that the app amplified
demand, added to employee responsibility, and disrupted employee schedules. However, the firm’s
variable compensation structure which rewards higher sales with higher pay is a likely explanation.
On average, higher pay appears to have been enough to offset any frustrations brought on by the
additional work and schedule disruptions.
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4.5 Management Styles and Practices by Gender

In the previous section, we documented that managers responded to the delivery app implementation
primarily by reallocating workers across shifts to meet the increased demand at particular times
of the day. To motivate the hypothesis that managers of gender-balanced stores may be more
able to accomplish these worker reallocations, we now explore to what extent the shared gender
identity between managers and workers enables better communication and rapport, and if these
more cooperative relationships are reflected in managerial practices.

We begin in Panel A of Table 4 by studying survey measures reflecting the rapport between
managers and lower-level workers. From left to right, the columns of Panel A show that managers
of gender-balanced stores, as compared to managers of MHM stores, are 21% less likely to report
keeping to themselves; 33% less likely to report acting without consulting workers; 52% more likely
to report looking out for the welfare of their employees; and 38pp more likely to report treating
workers as their equals as compared to the MHM store mean of 8%. Managers of FHM stores also
differ in their reporting of these behaviors in the same direction as do managers of gender-balanced
stores, but the magnitudes of the differences are not as large in general.

In Panel B, we study specific practices with respect to performance metrics and goal-setting.
Compared to managers of MHM stores, managers of gender-balanced stores are 80% more likely to
report discussing KPIs with their workers very frequently; 42% more likely to set short-term goals
and 29% more likely to include their workers in the process; and 74% more likely to achieve these
goals. Once again, FHM stores look more like gender-balanced stores in terms of these practices
than like MHM stores.

Finally, in Panel C we study training related measures. Remember that workers who are more
broadly trained are more easily reallocated, but investing in training workers in additional skills
is costly for both managers and workers, particularly if manager-worker rapport is poor. We find
that managers of gender-balanced stores are 44% more likely to prefer having employees who are
trained across more stations over specialized workers, as compared to managers of MHM stores.
Consistent with this, workers in gender-balanced stores are certified on 50-80% more stations than
are workers in MHM stores. This pattern is reflected in both the manager reported average number
of station certifications per worker in Column 2 as well as stock of certifications calculated from
training records for all stations in Column 3 and for kitchen production stations in Column 4.19

19As noted earlier, stocks calculated from the training records will be attenuated because they do not reflect any
trainings before the start of our observation window. They will be accurate for short tenured workers but underestimates
for long tenured workers. The measure in Column 4 will be even smaller because it is restricted to kitchen production
stations. For robustness, we present results for the analogous survey measure in Column 2 of Panel C.
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Table 4: Relationships and Management Practices by Gender Balance of Stores

(1) (2) (3) (4)

I have Acted w/out Looked out Treated
Panel A: Rapport to kept consulting for welfare employees

to myself workers of employees as equals

Balance -0.213*** -0.271** 0.262* 0.379***
(0.046) (0.123) (0.154) (0.099)

FHM Store -0.120* -0.273* 0.060 0.117
(0.066) (0.148) (0.177) (0.114)

Mean for MHM Stores 1.000 0.833 0.500 0.0833

Observations 117 117 117 117
Stores 58 58 58 58

How frequently Set Team Achieved
Panel B: Practices discuss KPIs with short-term goal-setting short-term

your employees? goals goals

Balance 0.267* 0.283** 0.196 0.308**
(0.149) (0.140) (0.143) (0.153)

FHM Store 0.187 0.333** 0.293** 0.223
(0.171) (0.138) (0.143) (0.174)

Mean for MHM Stores 0.333 0.667 0.667 0.417

Observations 117 117 117 117
Stores 58 58 58 58

Better to have Avg number of Stock of Stock of Production
Panel C: Training employees stations Certifications/ Certifications/

who can shift certifications Employees Employees

Balanced Store 0.296** 2.973*** 0.216* 0.0716**
(0.140) (0.915) (0.120) (0.0350)

FHM Store 0.253* 1.113 -0.00911 0.0246
(0.148) (0.946) (0.0657) (0.0221)

Mean for MHM Stores 0.667 3.727 0.433 0.0902

Observations 117 117 1,198 1,198
Stores 58 58 62 62

Notes: Table 4 shows the result of managers’ responses to a survey regressed with the gender balance of the stores in
which those managers worked (i.e., gender-balanced, MHM, or FHM stores). The final two columns of Panel C show
the average number of certifications per employee in the period prior to the app implementation regressed with the
gender balance of each store. Standard errors are clustered at the store level. * significant 10%, ** significant 5%, ***
significant 1%.
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4.6 Effects of Store Gender Balance

Given the differences in rapport and practices discussed above, we investigate whether managers
of gender-balanced stores were more able to accomplish these potentially disruptive changes to
worker staffing. We hypothesize that female workers may react differently to managers’ attempts
to adjust schedules to meet the new demand patterns than do male workers, and managers of the
same gender as their workers may be more aware of and better able to navigate the preferences
of their workers regarding schedule changes. Accordingly, we now explore whether the effects
of the demand shock on both the movement of workers across shifts and the resulting sales are
heterogeneous across gender “balanced” and “imbalanced” (FHM or MHM) stores.

We use a modified version of Equation (1) to account for heterogeneity in the gender balance
of stores. The modified specification replaces the full set of time-to-treatment indicators with a
simple post-treatment dummy which we then interact with a dummy equal to 1 if the store is gender
balanced and a second dummy variable equal to 1 if the store is FHM (leaving MHM stores as the
excluded category). Finally, in order to account for the possibility that gender balance may correlate
with other dimensions of baseline productivity or skill of the store or manager, we add a control
for the pre-app productivity of stores. Specifically, we add a dummy for high store productivity
pre-implementation and interact this dummy with our post-treatment dummy. For this control we
follow Adhvaryu et al. (2022) and use the ratio of units sold to mean number of employees per
store as a proxy for store productivity. We define a “high productivity” store as any store with
above-median productivity.20

We use this specification to estimate heterogeneous effects on all the outcomes for which
we studied average treatment effects above, but we focus on interpreting effects on sales, modal
shift changes, and reschedules as the outcomes of primary interest. Figure 6a plots the treatment
effect on sales by gender balance of the store. The increase in sales for MHM stores after the
app implementation was only 2.3% from the baseline mean, though still significant at the 10%
level; while gender-balanced and FHM stores exhibited increases in sales 2.8 and 2.3 times the
size, respectively. Table A.6 in the Appendix presents full estimation results corresponding to the
effects plotted in Figure 6a and shows that the differences in these treatment effect coefficients are
significant at conventional levels.

20We also include results for all outcomes of interest without controlling for pre-app productivity in Appendix Table
B.1.
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Figure 6: Effect of App Implementation in Balanced and Imbalanced Stores

(a) Total Sales (b) Modal Shift Changes

(c) Reschedules

Notes: Figure shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy and the interaction of the post-treatment dummy with another dummy equal to 1
when the gender of a store’s managing team differs from the gender of the crew by more than 25% and 0 otherwise.
We replace the gender-imbalance dummy with one dummy equal to 1 when the share of female managers exceeds the
share of female crew members by more than 25% (i.e., female-heavy management or FHM), and another dummy equal
to 1 when the share of male managers exceeds the share of male crew members by more than 25% (i.e., male-heavy
management or MHM) and 0 otherwise. Treatment is defined as having implemented the food delivery platform. We
also include a dummy for high store productivity pre-implementation and interact this dummy with our post-treatment
dummy. We use the ratio of units sold to mean number of employees per store as a proxy for store productivity and
define a high productivity store as any store with above-median productivity during the pre-implementation period. The
sample consists of store-biweekly panel data for the 62 stores that implemented the app between July 2018 to October
2019. In Figure 6a total sales are measured for each biweekly period and each store. The difference between FHM and
MHM is significant at the 90% level. The difference between Balanced and MHM stores is significant at 95%. The
difference between FHM and Balanced stores is not significant at conventional levels. For Figure 6b we aggregate the
data at the store-time (before and after) level. The difference between FHM and MHM is not significant at conventional
levels, but the difference between Balanced and MHM stores is significant at the 90% level. The difference between
FHM and Balanced stores is not significant at conventional levels. For 6c the difference between FHM and MHM stores
is not significant at conventional levels, but the difference between Balance and MHM is significant at the 99% level.
The difference between FHM and Balanced stores is significant at the 90% level. Table A.6 presents the estimated
coefficients used to construct the figures and the test of the difference between coefficients. Standard errors are clustered
at the store level.
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We next investigate whether MHM stores derived so little benefit from the delivery app as
compared to balanced and FHM stores at least in part because they were less able to achieve the
reallocation of workers across shifts to meet demand. We do so by similarly estimating treatment
effect heterogeneity by gender balance of the store. Figure 6b shows that in gender-balanced
stores, employee schedules were changed far more in response to the platform than they were in
gender-imbalanced stores (i.e., the treatment effect is 30-40% larger in gender-balanced stores).
Figure 6c depicts analogous results for reschedules and once again shows that gender-balanced
stores achieved significantly more reschedules than did gender-imbalanced stores. In fact, MHM
stores saw a drop in reschedules, possibly reflecting a reduction in reschedules among workers
already working peak shifts. FHM stores see only a small and insignificant increase in reschedules,
though this is notably different from the significant reduction MHM stores exhibit and matches the
asymmetry in the sales effects by gender balance of the stores presented in Figure 6a.

4.7 Robustness

4.7.1 Never-treated Stores

We replicate the baseline event study analysis using a sample that includes stores which
implemented the app between December 2018 and October 2019, and stores that never implemented
the app during this period. Identifying the event study coefficients hinges on the assumption that
stores yet to implement the food delivery platform and stores that started to implement the app
in earlier months, form a credible counterfactual for stores that start implementing the app, after
accounting for time-invariant differences between stores and biweekly period shocks. Finally, we
cluster standard errors at the store level for inference.

Results are similar when we estimate the regressions including never-treated stores. Figure C.1
shows the event-study coefficients for sales, units sold, and number of tickets for the whole store.
We compare the patterns for this sample and outcomes with those from the baseline event-study
sample (Figure 4). Reassuringly, we see an absence of systematic pre-trends in these new event
studies as well. Moreover, the results display the same takeaways as those from the baseline sample.

4.7.2 Heterogeneous Effects

As our treatment timing is staggered, the recent literature in econometrics has raised concerns
about the possibility of negative weights in multiple-period difference-in-difference estimators
since there may exist heterogeneity in treatment effects within-unit over time or between groups
of units treated at different times (Athey and Imbens, 2021; De Chaisemartin and d’Haultfoeuille,
2020). The aforementioned issue may contaminate leads and lags in event studies where all treated
observations are pooled together across groups (Sun and Abraham, 2020). Goodman-Bacon (2021)
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shows that difference-in-differences models of the form in (1) yield a weighted average of all
possible permutations of pairwise difference-in-differences estimators, where, in our case, a pair is
a cohort of observations treated at time t paired with a cohort of observations treated at time t ′ > t.

We address these issues in three ways. First, we estimate the cohort-specific average treatment
effect suggested by Sun and Abraham (2020), which translates Callaway and Sant’Anna (2020)
group-time average treatment effect from calendar time into relative periods, allowing to compare
cohorts while holding their exposure to the treatment constant. Second, we estimate the group-time
average treatment effect, where a group is defined by the time period when stores are first treated.
The key assumption in our main sample excluding “never-treated” stores is the conditional parallel
trends between stores treated in period g and groups that are “not-yet-treated” by time t. The
results of these robustness checks are presented in Figures C.2 and C.3 in the Appendix and yield
remarkably similar results to those from our baseline event-study specification and sample.

5 Discussion

Managers’ abilities to establish and maintain strong communication and rapport with their
workers contribute to the dramatic impact managers have on workplace outcomes such as worker
retention and productivity. These interpersonal relationships, in turn, are affected by the degree
to which managers and workers can identify with each other. Using rich personnel records and
granular productivity data from the universe of fast food restaurants of a leading chain in Colombia,
we study the degree to which mismatched gender identity between managers and workers affects
the managers’ ability to successfully allocate workers to shifts to meet demand.

We leverage the geographic expansion of a leading delivery platform across the country to study
how well managers are able to adjust worker staffing to match resulting non-uniform increases in
demand. We find that stores realize large and persistent gains in sales on average as a result of the
arrival of the delivery platform to their neighborhood, but that store managers do not hire more
workers to meet this demand. Rather, we find that in response to the increased demand after the
arrival of the delivery platform, managers harvest workers from overstaffed shifts like breakfast and
lunch and reallocate them to peak hours (both as temporary reschedules and as more permanent
changes to modal shift assignments of workers), often cutting the shifts into smaller segments.

Using a survey of the universe of current managers, we show that stores in which managers
and workers share predominantly the same gender identity have better communication and rapport
between managers and workers. As a result, these same stores have more broadly skilled workers
who are more easily reallocated across shifts. That is, the significant investment in face to face time
between the managers and workers required in the training and certification process means that
stores with better manager-worker rapport engage in more training. Since workers in these stores
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are trained and certified for a broader array of stations, their reallocation across shifts becomes more
feasible.

We find that gender-balanced stores exhibit the largest impacts on observed worker reallocation
following the delivery platform implementation and, in turn, the largest sales gains. Stores in
which women predominantly manage men achieve schedule adjustments and sales gains closer to
gender-balanced stores. We believe this reflects that female managers may have a greater awareness
of and empathy toward the scheduling constraints and preferences of their workers, as women are
more likely to have to navigate competing demands on their time and safety considerations when
setting work schedules. Stores in which men predominantly manage women achieved a third to
nearly one and a half times less worker reallocations and as a result realized only a third to a half
the sales gain from the introduction of the delivery platforms.

5.1 Alternative Interpretations

We interpret the full pattern of results to be consistent with the notion that gender matched
manager-worker pairs exhibit better rapport than do mismatched pairs such that the training
and scheduling responsibilities of the manager – which depend so heavily on this rapport – are
accomplished more successfully in gender matched stores. Also, the results support the notion
that female managers may be more sensitive to scheduling preferences of workers, given their own
constraints and considerations, as compared to male managers. We present survey evidence which
supports this interpretation; however, of course, there are potential alternative interpretations.

First, we might be concerned that the gender balance of the store correlates (perhaps even
incidentally) with other determinants of productivity. If so, the heterogeneity patterns we observe
in the results would not only reflect the role of gender balance but these other factors as well. To
address this concern, we follow the approach used in Adhvaryu et al. (2022), by controlling for a
measure of baseline productivity interacted with the platform introduction dummy in all of our main
results above. In the appendix we report estimates from specifications omitting this control (see
Table B.1). The results are qualitatively similar across both specifications, indicating this may not
have been a major concern, but our main results account for the possibility nonetheless.

In addition, we use the richness of the survey to investigate explicitly if any other style or
practice measure correlates with gender balance. To do so, we employ a LASSO regression analysis
in which we regress the gender-balanced dummy at the store level on the full set of survey variables
(evaluated at the mean across multiple managers in the store where necessary), excluding only
variables related to the training and scheduling practices highlighted in Table 4 and the underlying
variables related to rapport and communication. Of the more than 90 variables included in the
LASSO regression, only one (“The job is quite simple and repetitive”) was selected; the correlation

33



is negative and significant at the 5 percent level, but the R-squared is only .094. We interpret this as
further evidence that the gender balance measure is not picking up incidental correlations with other
managerial styles and practices which may themselves affect productivity.

Second, we may be concerned that managers purposefully select the gender of their workers
according to how well they believe they will be able to communicate and elicit cooperation from
them. Though this is of course a very reasonable concern, we are told anecdotally by the firm that
attracting and keeping workers for jobs like these is so difficult that managers must essentially hire
every willing and capable worker who applies, and cannot pass over some workers on the basis of
their gender. We also note that if indeed managers could choose their preferred gender of worker,
MHM stores should be very few or nonexistent in our sample, as the predominantly male managers
of these stores should prefer to hire men. Finally, we check explicitly if the arrival of a new male
or female manager changes the gender composition of new workers hired in the future. We also
repeat this exercise limiting attention to those arrivals which are “pivotal” in that they switch the
store from majority male managers to majority female or vice versa. We find small and insignificant
effects across all of these analyses (see Table B.2), consistent with the notion that managers have
little scope for preferentially selecting the gender of their workforce.

Along similar lines, we may be concerned that the introduction of the delivery platform may
affect hiring patterns or gender composition of workers as a response to changes in demand.
Accordingly, we fix the gender composition of each store in our sample at its pre-adoption value
for all of the analyses undertaken above. Nevertheless, we also check explicitly for whether the
share for female managers or workers, gender balance of the store, or hiring of managers responded
significantly to the introduction of the delivery platform. We once again find no evidence of
significant effects across all of these analyses (see Table B.3).

5.2 Policy Implications

Our findings emphasize an important driver of potential gains to advancing women to managerial
positions. Particularly in industries in which women dominate the frontlines – such as services,
retail, food processing, and light manufacturing – having predominantly or even disproportionately
male managers may significantly hinder productivity. In fact, our findings suggest that even in
settings in which men dominate the front lines, female managers are not substantially less able to
perform their responsibilities than are male counterparts. Taken together, interventions to increase
the presence of women at managerial levels in organizations could not only improve equality, but
actually yield higher productivity.
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A Additional Statistics

Table A.1: Balance Table between Early and Late App Implementations

Early implementers Late implementers Difference

Mean S.D. Mean S.D. Coef S.E.

Total Sales 62.939 25.081 55.278 22.709 7.661 (6.242)
Units Sold 37791.994 16577.856 36233.388 13415.482 1,559 (3,872)
No. Tickets 14345.891 6550.818 15004.246 6010.896 -658.4 (1,643)
Turnover 0.870 0.566 0.721 0.846 0.149 (0.200)
Hiring 1.273 0.754 1.810 3.882 -0.537 (0.831)
Re-schedules 70.059 41.330 63.446 39.709 6.614 (10.66)
Absenteeism 3.350 2.963 3.002 2.110 0.349 (0.649)
Hours per worker 31.835 1.817 32.175 2.738 -0.340 (0.647)
No. Shifts 11.866 6.218 11.195 4.722 0.671 (1.405)
Training New Skills 14.351 8.615 19.248 15.123 -4.898 (3.482)
Training Refresher 7.281 6.410 8.726 4.819 -1.445 (1.441)

Notes: Table A.1 shows the descriptive statistics of the main outcomes studied in the period prior to implementation for
early (before March 2019) and late (after March 2019) implementers of the delivery app. In the last column of the table
we show the difference in those characteristics between both type of stores. * significant 10%, ** significant 5%, ***
significant 1%.
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Table A.2: Number of approved training programs per station

Station Mean Std. Dev.

Host 1.48 1.03
Kitchen opening 1.45 1.25
Service opening 1.56 1.26
Service opening and closure 1.51 1.25
Ice cream machine 3.32 4.89
Drive-thru 1.77 1.67
Drinks 1.75 1.62
Cash register 1.77 1.55
Birthday party celebration 1.54 1.12
Kitchen closure 1.46 1.20
Assembly 1.62 1.37
Breakfast assembly 1.51 1.39
Trainer 1.73 1.27
Fryer 1.50 1.29
Hospitality 2.16 2.26
Hot cakes 1.53 1.37
Bun initiator 1.52 1.15
Cleaning 2.32 2.39
Lobby, parking and playground 1.66 1.43
Quality service 1.66 1.23
Coffee 1.49 1.00
Delivery 1.54 1.03
Fries and hash brown 1.68 1.43
Grid 1.52 1.14
Breakfast / Muffin grid 1.56 1.48
Fried chicken 1.46 1.12
Desserts 2.06 1.74
Vegetables 1.56 1.43
Fried products 1.50 1.22
Food and personal security 2.40 2.54
Teamwork 2.47 2.42
Seller 1.89 1.79

Notes: Number of certifications per week per store. The sample consists of data for the 62 stores that implemented the
app between July 2018 and October 2019.

40



Table A.3: Summary Statistics from Survey of Managers

Female Male Difference Female-Male
Mean S.D. Mean S.D. Coef. S.E.

I have kept to myself 0.891 0.315 0.774 0.422 0.117* (0.0683)
I have acted without consulting my employees 0.600 0.494 0.581 0.497 0.0194 (0.0918)
In the last 3 months, I set short-term goals e.g., daily and across days 0.927 0.262 0.935 0.248 -0.00821 (0.0473)
In the last 3 months, on average, I achieved some or most of the short-term goals 0.927 0.262 0.952 0.216 -0.0243 (0.0448)
I involve all my team members in the goal-setting process 0.818 0.389 0.903 0.298 -0.0850 (0.0647)
Discuss KPIs with the employees in your store/shift. (how frequently) 0.491 0.505 0.613 0.491 -0.122 (0.0923)
Scheduling shifts is most important task 0.691 0.466 0.597 0.495 0.0941 (0.0889)
Shift scheduling is more time consuming than most tasks 0.855 0.356 0.758 0.432 0.0965 (0.0729)
Prefer to train more employees on critical stations 0.891 0.315 0.887 0.319 0.00381 (0.0587)
Better to have employees able to shift across stations than a few specialized 0.927 0.262 0.919 0.275 0.00792 (0.0496)
I have looked out for the personal welfare of my employees 0.945 0.229 0.952 0.216 -0.00616 (0.0413)
I have treated all my employees as my equals 0.400 0.494 0.339 0.477 0.0613 (0.0901)
Preferred shifts to prevent turnover 0,091 0,290 0,081 0,275 0.0103 (0.0524)
How many stations is an employee trained on for on average? 6.509 5.754 5.574 4.068 0.935 (0.934)

Notes: Table A.3 shows the result of managers’ responses to a survey implemented in Colombia to capture management
styles and practices. * significant 10%, ** significant 5%, *** significant 1%.

Table A.4: Effect of delivery app implementation on turnover and absenteeism

(1) (2)
Turnover Absenteeism

Post app implementation -0.0548 0.0207
(0.0805) (0.107)

Observations 2,205 2,293
Mean of Dep. Var. 0.714 1.815
Relative Effect -7.7% 1.1%
Stores 62

Notes: Table A.4 show the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy. Treatment is defined as having implemented the food delivery platform. The
sample consists of store-biweekly panel data for the 62 stores that implemented the app between July 2018 to October
2019. Turnover is the number of workers who left the firm. Absenteeism is the number of unexcused worker absences
at the store-biweekly level. Numbers in parentheses are clustered standard errors at the store level. * significant 10%, **
significant 5%, *** significant 1%
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Table A.5: Effects of delivery app implementation on training

(1) (2)
New Skills Refresher

Post app implementation -1.324 1.381**
(1.115) (0.578)

Observations 2,329 2,329
Mean of Dep. Var. 10.36 5.31
Relative Effect -12.8% 26.2%
Stores 62

Notes: Table A.5 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment
indicators with a simple post-treatment dummy. Treatment is defined as having implemented the food delivery platform.
The sample consists of store-biweekly panel data for the 62 stores that implemented the app between July 2018 to
October 2019. Column 1 presents the estimations for number of workers with a new skill training and Column 2
presents the estimations for number of workers with a refresher, or follow-up training. New skills training refers to all
post-onboarding trainings that teach a skill for which an employee has not yet been trained. Refresher trainings include
all subsequent trainings after a new skill training. Standard errors are clustered at the store level. * significant 10%, **
significant 5%, *** significant 1%
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Table A.6: Effect of delivery app implementation by Gender-Balanced, FHM, and MHM Stores

Total Sales Units Sold Tickets Hiring Hours per Number of Reschedules Num. of Modal
worker/week shifts shift changes

(a) Post Treatment 1.36* 1,406.92* 256.27 0.11 -1.02 -1.07 -10.47* 4.893***
(0.81) (752.52) (319.55) (0.25) (0.75) (1.18) (5.52) (1.350)

(b) Post x Balanced Store 2.47** 1,704.58** 703.05** -0.26 0.69 2.52* 29.33*** 1.920*
(0.96) (838.02) (348.71) (0.26) (0.86) (1.28) (8.05) (1.118)

(c) Post x FHM Store 1.71* 1,566.67* 917.14** -0.20 1.17 1.77 12.80 0.137
(1.02) (804.76) (363.91) (0.29) (0.98) (1.25) (8.98) (1.594)

(a + b) TE for Balanced Stores 3.835*** 3111.503*** 959.313*** -0.150 -0.333 1.443* 18.863** 6.813***
(1.191) (942.72) (353.14) (0.237) (0.744) (0.856) (8.226) (1.274)

(a + c) TE for FHM Stores 3.075** 2973.588*** 1173.403*** -0.087 0.144 0.693 2.335 5.234***
(1.288) (905.507) (396.408) (0.245) (0.774) (0.909) (9.463) (1.671)

(b - c) TE for FHM - Balanced Stores -0.76 -137.914 214.09 0.064 0.477 -0.75 -16.528* -1.580
(1.232) (830.488) (350.1) (0.235) (0.908) (0.917) (9.527) (1.599)

Observations 2,205 2,205 2,205 2,205 2,293 2,287 2,293 124
Mean of Dv 60.11 37,965 15,087 1.146 30.70 11.49 58.66 5.31
Stores 62

Notes: Table A.6 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment
indicators with a simple post-treatment dummy and the interaction of the post-treatment dummy with another dummy
equal to 1 interacted with one dummy equal to 1 when the share of women on a store’s managing team exceeds the
share of female crew members by more than 25% (i.e., female-heavy management or FHM), and another dummy
equal to 1 when the share of males on a store’s managing team exceeds the share of male crew members by more
than 25% (i.e., male-heavy management or MHM) and 0 otherwise. Treatment is defined as having implemented
the food delivery platform. We also add a dummy for high store productivity pre-implementation and interact this
dummy with our post-treatment dummy. We use the ratio of units sold to mean number of employees per store as a
proxy for store productivity and define a high productivity store as any store with above-median productivity during the
pre-implementation period. For Number of Modal shift changes we also use as controls the direct effect of Balanced
stores and FHM stores, a dummy of high store employee’s tenure pre-implementation, and the month of implementation
of the delivery app in the store. The sample consists of store-biweekly panel data for the 62 stores that implemented
the app between July 2018 to October 2019. Standard errors are clustered at the store level. * significant 10%, **
significant 5%, *** significant 1%
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Table A.7: Effect of App Implementation on Waste measures

(1) (2) (3) (4) (5)
All Employee food Complete waste Incomplete waste Promo

Post Treatment 0.129 0.0877 -0.0181 0.0818 -0.0228
(0.245) (0.182) (0.0657) (0.101) (0.0768)

Observations 1,673 1,673 1,673 1,673 1,673
Mean of Dv 7.853 5.916 0.878 0.422 0.637
Stores 62

Notes: Table A.7 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy. Treatment is defined as having implemented the food delivery platform. We also
add a dummy for high store productivity pre-implementation and interact this dummy with our post-treatment dummy.
We use the ratio of units sold to mean number of employees per store as a proxy for store productivity and define a
high productivity store as any store with above-median productivity during the pre-implementation period. Column 1
presents the estimations for the whole sample. Column 2 presents the estimations for employee consumption proportion
– food consumed by the employees as part of their benefits during the shift. Column 3 presents the estimations for
complete waste proportion, which occurs when an item is wasted in its entirely. Column 4 shows the estimations for
incomplete waste proportion, which occurs when only an item component is wasted. Column 5 presents the estimations
for the promo proportion in the form of coupons or free products. The sample consists of store-biweekly panel data for
the 62 stores that implemented the app between July 2018 to October 2019. Standard errors are clustered at the store
level. * significant 10%, ** significant 5%, *** significant 1%
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Figure A.1: Sales and Employees by Timeband

(a) Sales by Timeband

(b) Employees by Timeband

Notes: Panels (a) and (b) of Figure A.1 show the average bi-weekly sales (in thousands of USD) and number of
employees working during each of the four periods of the day, respectively. The sample consists of pre-implementation
store-biweekly panel data for the 62 stores that implemented the app between July 2018 and October 2019. The start
and end times for each timeband were set by the partner firm, so we adopt their nomenclature. Breakfast includes the
hours from 7:00 am to 10:59 am, lunch from 11:00 am to 1:59 pm, afternoon from 2:00 pm to 5:59 pm, and dinner
from 6:00 pm until 11:59 pm.
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Figure A.2: Effect of App Implementation on Same and Different Gender outcomes

(a) Modal Shift Changes

(b) Re-schedules

Figure shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators with a
simple post-treatment dummy. We also include a dummy for high store productivity pre-implementation and interact
this dummy with our post-treatment dummy. We use the ratio of units sold to mean number of employees per store as a
proxy for store productivity and define a high productivity store as any store with above-median productivity during the
pre-implementation period. The sample consists of store-biweekly panel data for the 62 stores that implemented the
app between July 2018 to October 2019. Difference between coefficients for Reschedules is significant at 95% (p-value
0.047) and difference of the Modal Shift Changes is significant at 90% (p-value 0.090). Standard errors are clustered at
the store level.
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Figure A.3: Effects of delivery app implementation on sales by hour of the day

Notes: Figure shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy and the interaction of the post-treatment dummy with dummies of each hour of the
day. We also include a dummy for high store productivity pre-implementation and interact this dummy with our post-
treatment dummy. We use the ratio of units sold to mean number of employees per store as a proxy for store productivity
and define a high productivity store as any store with above-median productivity during the pre-implementation period.
The sample consists of 62 stores that implemented the app between July 2018 to October 2019. Standard errors are
clustered at the store level.
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Figure A.4: Effect of App Implementation on Shift Length by Timeband

Notes: Figure shows the results for the estimation of equation (1), replacing the full set of time-to-treatment indicators
with a simple post-treatment dummy and the interaction of the post-treatment dummy with another dummy equal to
1 when the modal shift of the employee falls during the Breakfast-Lunch or Afternoon-Dinner timeband. We define
Breakfast-Lunch timeband from 7am to 2pm and Afternoon-Dinner timeband from 3pm to 10pm. We also include a
dummy for high store productivity pre-implementation and interact this dummy with our post-treatment dummy. We
use the ratio of units sold to mean number of employees per store as a proxy for store productivity and define a high
productivity store as any store with above-median productivity during the pre-implementation period. The sample
consists of store-biweekly panel data for the 62 stores that implemented the app between July 2018 to October 2019.
Standard errors are clustered at the store level.
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B Additional Evidence

B.1 Tables

Table B.1: Effect of delivery app implementation by Gender-Balanced, FHM, and MHM Stores
without controlling by productivity

Total Sales Units Sold Tickets Hiring Hours per Number of Reschedules
worker/week shifts

(a) Post Treatment 1.18 1,282.89* 240.06 0.20 -0.96 -0.71 -10.31**
(0.72) (717.46) (317.07) (0.23) (0.74) (1.08) (5.09)

(b) Post x Balanced Store 2.17** 1,498.73* 676.15* -0.11 0.79 3.06** 29.56***
(0.95) (851.40) (342.20) (0.23) (0.78) (1.27) (6.91)

(c) Post x FHM Store 1.51 1,424.73* 898.59** -0.10 1.24 2.18* 12.98
(1.06) (828.60) (341.78) (0.28) (0.99) (1.22) (8.50)

(a + b) TE for Balanced Stores 3.355*** 2781.617*** 916.21*** 0.084 -0.17 2.353*** 19.253***
(0.950) (806.313) (318.799) (0.178) (0.560) (0.704) (5.283)

(a + c) TE for FHM Stores 2.688** 2707.622*** 1138.651*** 0.102 0.284 1.472** 2.668
(1.135) (766.969) (333.151) (0.225) (0.801) (0.736) (8.028)

(b - c) TE for FHM - Balanced Stores -0.667 -73.996 222.442 0.018 0.454 -0.881 -16.584*
(1.255) (867.423) (361.752) (0.239) (0.89) (0.944) (9.427)

Observations 2,205 2,205 2,205 2,205 2,293 2,287 2,293
Mean of Dv 60.11 37,965 15,087 1.146 30.70 11.49 58.66
Stores 62

Notes: Table B.1 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment
indicators with a simple post-treatment dummy and the interaction of the post-treatment dummy with another dummy
equal to 1 interacted with one dummy equal to 1 when the share of women on a store’s managing team exceeds the
share of female crew members by more than 25% (i.e., female-heavy management or FHM), and another dummy
equal to 1 when the share of males on a store’s managing team exceeds the share of male crew members by more than
25% (i.e., male-heavy management or MHM) and 0 otherwise. Treatment is defined as having implemented the food
delivery platform. The sample consists of store-biweekly panel data for the 62 stores that implemented the app between
July 2018 to October 2019. Standard errors are clustered at the store level. * significant 10%, ** significant 5%, ***
significant 1%

Table B.2: Effect of a new manager on hiring of female workers

New Managers New ”pivotal” Managers
Share Female’s Share Net Share Female’s Share Female’s Share Net Share Female’s

hiring Female’s hiring turnover hiring Female’s hiring turnover

A: New Female Manager
Post New Manager 0.0161 -0.0327 0.0147 0.0474 -0.0122 -0.0279

(0.0281) (0.0460) (0.0297) (0.0382) (0.0368) (0.0362)

B: New Male Manager
Post New Manager 0.0264 0.0128 0.0313 -0.00920 0.000653 -0.0111

(0.0257) (0.0336) (0.0338) (0.0389) (0.0511) (0.0448)

Observations 2,205 2,205 2,205 2,205 2,205 2,205
Stores 62

Notes: Table B.2 shows the effect of the arrival of a new manager on the hiring of female workers. We define a
pivotal manager as the manager that changes the gender-balanced composition after arriving. The sample consists of
store-biweekly panel data for the 62 stores that implemented the app between July 2018 to October 2019. Standard
errors are clustered at the store level. * significant 10%, ** significant 5%, *** significant 1%
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Table B.3: Effect of delivery app implementation on gender composition

(1) (2) (3) (4)
Share of female Share of female Gender-Balanced Hiring of

managers workers stores managers

Post Rappi 0.106 -0.0123 0.0141 -0.00604
(0.0661) (0.0188) (0.0588) (0.00963)

Observations 2,205 2,205 2,205 2,205
Stores 62

Notes: Table B.3 shows the results for the estimation of equation (1), replacing the full set of time-to-treatment
indicators with a simple post-treatment dummy. The sample consists of store-biweekly panel data for the 62 stores that
implemented the app between July 2018 to October 2019. Standard errors are clustered at the store level. * significant
10%, ** significant 5%, *** significant 1%

B.2 Figures

B.2.1 Locally Weighted Smoothing of Gender-balance Shares

Figure B.1: LOWESS regression for Total Sales in Balanced and Imbalanced Stores

Notes: Figure B.1 shows the estimation of a locally weighted smoothing regression of effect of gender balance (i.e., the
share of female managers minus the share of female crew members) within a store on average total sales in a bi-weekly
period in thousands of USD. The red vertical lines are drawn at positive and negative 0.25, the thresholds chosen in the
main paper to classify a store a gender-balanced or gender-imbalanced.
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Figure B.2: Robustness Across Gender-Balance Thresholds for performance outcomes

(a) Total Sales (b) Total Units

(c) Num. Tickets

Notes: Figure shows how change the estimated effect for Female-heavy Management, Gender-Balanced, and Male-heavy
Management Stores by different gender-balance thresholds.

B.2.2 Robustness Across Gender-Balance Thresholds
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Figure B.3: Robustness Across Gender-Balance Thresholds for Reschedules and Modal Shifts
Changes

(a) Re-schedules (b) Modal Shift Changes

Notes: Figure shows how change the estimated effect for Female-heavy Management, Gender-Balanced, and Male-heavy
Management Stores by different gender-balance thresholds.

C TWFE Robustness Results

C.1 Never-Treated Stores
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Figure C.1: Effects of delivery app implementation on performance measures for Never-Treated
Stores

(a) Total Sales (USD) (b) Units sold

(c) Number of tickets

Notes: Panels (a) to (c) of Figure C.1 show the event-study coefficients and 95 percent confidence intervals from the
estimation of equation (1) on the key performance measures. Treatment is defined as having implemented the food
delivery platform. Control stores are those not yet treated. The sample consists of store-biweekly panel data for the 62
stores implementing the app and 13 stores that never implemented the app between July 2018 to October 2019. Panel
(a) shows the impact on sales, Panel (b) on units sold, and Panel (c) on the number of tickets (orders). The vertical line
represents the time of the treatment.
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C.2 Sun and Abraham (2020)

Figure C.2: Effects of delivery app implementation on performance measures

(a) Sales (b) Units sold

(c) Number of tickets

Notes: Panels (a) to (c) of Figure C.2 show the event-study coefficients and 95 percent confidence intervals from the
estimation of equation (1) on the key performance measures in logs, after correcting for staggered treatment timing
per Sun and Abraham (2020). Treatment is defined as having implemented the food delivery platform. Control stores
are those not yet treated. The sample consists of store-biweekly panel data for the 62 stores that implemented the app
between July 2018 to October 2019. Panel (a) shows the impact on sales, Panel (b) on units sold, and Panel (c) on the
number of tickets (orders). The vertical line represents the time of the treatment.

C.3 Callaway and Sant’Anna (2020)
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Figure C.3: Effects of delivery app implementation on performance measures

(a) Sales (b) Units sold

(c) Number of tickets

Notes: Panels (a) to (c) of Figure C.3 show the event-study coefficients and 95 percent confidence intervals from the
estimation of equation (1) on the key performance measures in logs, after correcting for staggered treatment timing
per Callaway and Sant’Anna (2020). Treatment is defined as having implemented the food delivery platform. Control
stores are those not yet treated. The sample consists of store-biweekly panel data for the 62 stores that implemented the
app between July 2018 to October 2019. Panel (a) shows the impact on sales, Panel (b) on units sold, and Panel (c) on
the number of tickets (orders). The vertical line represents the time of the treatment.
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