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Abstract

Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the
study and thus require the analyst to specify a fixed sample size in advance. However,
in many online learning applications, it is advantageous to continuously produce
inference on the average treatment effect (ATE) between arms as new data arrive
and determine a data-driven stopping time for the experiment. Existing work on
continuous inference for adaptive experiments assumes that the treatment assignment
probabilities are bounded away from zero and one, thus excluding nearly all standard
bandit algorithms. In this work, we develop the Mixture Adaptive Design (MAD), a
new experimental design for multi-armed bandits that enables continuous inference
on the ATE with guarantees on statistical validity and power for nearly any bandit
algorithm. On a high level, the MAD “mixes” a bandit algorithm of the user’s choice
with a Bernoulli design through a tuning parameter δt, where δt is a deterministic
sequence that controls the priority placed on the Bernoulli design as the sample size
grows. We show that for δt = o

(
1/t1/4

)
, the MAD produces a confidence sequence

that is asymptotically valid and guaranteed to shrink around the true ATE. We
empirically show that the MAD improves the coverage and power of ATE inference
in MAB experiments without significant losses in finite-sample reward.

Keywords: Adaptive Experimental Design, Multi-armed Bandit, Online Learning, Sequen-
tial Analysis, Always-valid inference, Asymptotic Confidence Sequence, A/B Test

1 Introduction

1.1 Motivation

Multi-armed bandits (MABs) are one of the most widely used frameworks for sequential
decision making, with applications in clinical trial design (Villar et al. 2015; Durand et al.
2018), network anomaly detection (Ding et al. 2019), recommendation systems (Mary et al.
2015), and various other online learning applications (Dimakopoulou et al. 2018; Kohavi
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et al. 2020; Zhang et al. 2020; Bojinov and Gupta 2022). In many modern online decision-
making settings, MABs are often favored over traditional randomized control trials (or A/B
tests) as they reduce the risk of experimentation by dynamically updating the assignment
probabilities, thereby decreasing the proportion of units exposed to sub-par treatments.
However, it is often desirable, even vital, for decision-makers to conduct statistical infer-
ence on the average treatment effect (ATE) between arms, not just to minimize risk. For
example, additive features in software often come with a monetary cost, e.g., maintenance
from engineers and higher CPU demands. To drive product innovation and augment man-
agerial decision-making, it is often necessary to understand how much an additive feature
moved some user metric, not just whether it did or not (Moe et al. 2012). Another ex-
ample is in clinical trials for drug testing. As drugs often come with side effects or have
interactions with other medications, having statistical inference on the treatment effect be-
tween the various drugs and/or doses being compared is important to guide policies around
which drug and/or dose should be prescribed given different patient histories (Böttiger et al.
2009).

However, simultaneously conducting inference on the ATE while minimizing regret is par-
ticularly challenging because MABs determine treatment assignments adaptively; most sta-
tistical guarantees of ATE estimation methods for independent and identically distributed
(i.i.d.) data no longer hold in the MAB setting. For instance, the difference in sample av-
erages between a treatment arm and a control arm is no longer unbiased for the true ATE
of these arms (Xu et al. 2013) and may no longer be asymptotically normal Dimakopoulou
et al. (2021); Zhang et al. (2020). While Inverse Propensity Weighting (IPW) estimators
are often unbiased in the MAB setting (Horvitz and Thompson 1952; Hadad et al. 2021),
their variance can explode, thus making any subsequent hypothesis testing on the ATE
essentially powerless. The variance explodes because the probability that a bandit algo-
rithm pulls a sub-optimal arm rapidly approaches zero (Russo et al. 2020). For instance,
the well-known Thompson Sampling (TS) algorithm (Agrawal and Goyal 2012) and varia-
tions of the Upper Confidence Bound (UCB) algorithm (Garivier and Cappé 2011; Ménard
and Garivier 2017; Kaufmann 2018) achieve a regret bound of O(log T ) and are said to be
asymptotically optimal as the regret of any algorithm must have at least a log(T ) rate (Lai
and Robbins 1985). Hence, we expect the number of draws from sub-optimal arms to be
on the order of log(T )/T in the long run (Kasy and Sautmann 2021).

Therefore, the design objective of this work is to develop an experimental design for MABs
which provides statistical guarantees on ATE estimation while simultaneously allowing for
regret minimization via adaptive assignment.

1.2 Background and Existing Work

As MABs can be viewed as an adaptive experimental design, various works on the design
of MABs have proposed adaptations of existing bandit algorithms to be more amenable to
ATE estimation. For instance, Kasy and Sautmann (2021) proposes a variation of Thomp-
son sampling which re-weights the estimated mean reward of each arm to enforce addi-
tional exploration of sub-optimal arms. Simchi-Levi and Wang (2023) first formulates the
trade-off between mean squared estimation error and regret via a minimax multi-objective
optimization problem, then proposes a variation of the EXP3 algorithm (Auer et al. 2002)
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which takes draws from the estimated sub-optimal arms via a specified rate and shows
that this adaptation satisfies this characterization of optimality. Intuitively, it is sensible
that some degree of exploration must be imposed to produce inferential guarantees, as the
precision of ATE inference essentially depends on the variance of the treatment arm which
has the fewest number of observations. However, these works focus on adapting specific
bandit algorithms, thus restricting the analyst to a specific algorithm. Additionally, these
works propose designs that do not allow the user to tune the degree of exploration in the
algorithm (Kasy and Sautmann 2021) or have limitations on when during the experiment
this tuning can take place (Simchi-Levi and Wang 2023). Hahn et al. (2011) proposes
a two-stage adaptive design and proves an asymptotic normality result for ATE estima-
tion in this setting, but requires the adaptive assignment algorithm to have assignment
probabilities bounded away from zero and one, which is not satisfied by most common ban-
dit algorithms such as UCB (a deterministic algorithm) and Thompson sampling. Works
such as Zhang et al. (2020, 2021) develop CLT results for a general class of estimators for
adaptively collected data without significantly altering the design of the bandit algorithm,
but requires certain assumptions on the outcome distributions, such as moment bounds
or independently and identically distributed outcomes. Most importantly, all of the above
approaches are designed for the setting where the analyst is conducting inference at the
end of an adaptive experiment with a pre-specified time horizon.

However, since the fundamental idea behind MABs and adaptive experiments in general
is to use existing data to inform future decisions, a more natural inferential framework
would be to allow the analyst to continuously produce inference on the ATE between
arms as new data arrive. Such a framework would allow analysts to “peek” at the data
in their experiment without invalidating the subsequent statistical inference. Therefore,
experiments would not require the analyst to specify a sample size in advance, but determine
a data-dependent stopping time in response to running inferential results (e.g., stop the
experiment once statistically significant results are achieved), further minimizing harm to
experimental units and reducing the opportunity cost of running long experiments.

Such a continuous monitoring setting requires statistical tests that uniformly control Type
I error at every time point, i.e., are anytime-valid. As classical tests do not satisfy this
condition, prior works have proposed using confidence sequences to enable valid inference
(Waudby-Smith et al. 2023). A confidence sequence (CS) is a set of confidence intervals
{Ct}∞t=1 at level α ∈ (0, 1) such that, for a true (non-zero) treatment effect τt,

P (∀t, τt ∈ Ct) ≥ 1− α.

However, non-asymptotic confidence sequences often require specific assumptions on the
data such as known bounds on the random variables and/or tail behavior assumptions
such as sub-Gaussianity (Waudby-Smith and Ramdas 2020; Howard et al. 2021; Howard
and Ramdas 2022). In particular, such assumptions prevent non-asymptotic CSs from
being applicable or even possible to construct in many real-world settings. To address
this restriction, (Waudby-Smith et al. 2023) first introduced the notion of an asymptotic
confidence sequence and derived a universal asymptotic CS that requires only CLT-like
assumptions.

Definition 1 (Asymptotic Confidence Sequence). (µ̂t±V̂t) is an asymptotic 1−α confidence
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sequence for a target parameter µt if there exists some (unknown) exact 1 − α confidence
sequence (µ̂t ± Vt) for µt such that

V̂t

Vt

a.s.→ 1.

The assumptions necessary for generating asymptotic CSs are comparatively much weaker,
and hence, asymptotic CSs expand the utility of CSs to a wider array of settings. For
instance, Ham et al. (2022) proposes a framework for continuous design-based causal in-
ference for time series and panel experiments utilizing asymptotic CSs. However, existing
work on continuous inference for adaptive or MAB experiments is rather limited. While
Ham et al. (2022) and Howard et al. (2021) discuss extensions to adaptive experiments,
their proposed CSs require probabilistic treatment assignment, i.e., they assume there exists
0 < pmin ≤ 1/2 s.t. pt|t−1(w) ∈ [pmin, 1 − pmin] almost surely. This restriction excludes
many commonly used bandit algorithms such as UCB, which has deterministic treatment
assignments, and Thompson Sampling. Without this treatment assignment assumption,
the asymptotic confidence sequences of Ham et al. (2022) are not guaranteed to decrease
with the sample size or even be asymptotically valid (Waudby-Smith et al. 2023). The
non-asymptotic confidence sequences of Howard et al. (2021) may be inapplicable since
their CS requires the analyst to input pmin. Thus, naively applying such approaches in
MAB settings without any adjustment to the experimental design provides no guarantees
on validity and hence, cannot be used to reliably generate inference on the ATE.

1.3 Our Contributions

In this work, we develop the Mixture Adaptive Design (MAD), a new approach to the ex-
perimental design of multi-armed bandit experiments that enables anytime-valid inference
on the ATE in MAB experiments with guarantees on validity and power. Intuitively, the
MAD “mixes” any bandit algorithm with a Bernoulli design through a tuning parameter
δt, where δt ∈ (0, 1] is a deterministic, i.e., non-random, sequence that controls the priority
placed on the Bernoulli design as the sample size grows. For δt = o

(
1

t1/4

)
, we provide

a confidence sequence that is asymptotically valid and guaranteed to shrink around the
true ATE, for nearly any choice of bandit algorithm. This confidence sequence is, to our
knowledge, the first confidence sequence for ATE estimation in bandit settings that does
not require the treatment assignment probabilities to be bounded away from zero and one.
Thus, the MAD expands the utility of confidence sequences to nearly any bandit algorithm
while providing guarantees on the validity and power of the ATE estimation. From a prac-
tical perspective, the Mixture Adaptive Design guarantees that an analyst with the goal
of stopping her experiment once the confidence sequence suggests a non-zero treatment
effect is guaranteed to see statistically significant results in finite time. The condition that
δt = o( 1

t1/4
) provides the user great flexibility to tune the experimental design based on the

problem specifics. For instance, setting δt = 1 would recover a Bernoulli design. We provide
recommendations for setting δt based on the user’s priorities; see Section 3.2. Finally, we
show empirically that the MAD generates confidence sequences that shrink quickly around
the true ATE and achieves the correct coverage in finite samples without major losses in
reward compared to a standard bandit design.
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2 Problem Statement

In this section, we formalize the multi-armed bandit problem setting and define the causal
estimands of interest. Throughout, we adopt a design-based causal inference framework
(Neyman and Iwaszkiewicz 1935; Fisher 1936; Ding et al. 2016); thus, instead of treating the
outcomes as random variables, we condition on the set of potential outcomes and treat only
the assignment as random. Our estimand of interest is the sample average treatment effect,
rather than the population average treatment effect for some hypothetical super-population.
This design-based framework allows us to make relatively few assumptions on the outcome
distribution of our bandit algorithm, i.e., we do not assume any parametric form on the
outcome distribution or that our outcomes are independent and identically distributed
(i.i.d.) from some distribution (Dimakopoulou et al. 2018; Zhang et al. 2020; Hadad et al.
2021; Banerjee et al. 2023). In many real-world settings for bandit experiments, we expect
that the outcomes will be dependent or non-stationary (Besbes et al. 2014; Allesiardo et al.
2017; Wu et al. 2018). In such settings, incorrectly assuming i.i.d. outcomes can result in
effective sample sizes that are much smaller than assumed and cause variance estimation
to be highly conservative (Meng 2018).

Assume that we observe a sequence of t units {Wi, Yi}ti=1 where Wi ∈ {0, ..., K − 1} and
Yi are the treatment assignment and outcome respectively for unit i. In the MAB litera-
ture, {Wi, Yi}ti=1 are analogous to the sequence of actions and rewards commonly notated
{Ai, Ri}ti=1. Although we will ultimately show that our method applies more broadly, we
first assume that we observe a single unit at each time and that we have binary treatment
assignments, i.e., Wi ∈ {0, 1}. In Sections 3.3 and 3.4, we generalize our results to any
K ≥ 2 number of treatments and the batched bandit setting, respectively.

In our binary treatment setting, each unit i has a pair of potential outcomes {Yi(1), Yi(0)}.
In the design-based framework, we implicitly condition on these observed potential out-
comes, i.e., we treat {Yi(1), Yi(0)} as fixed. Since Yi, our observed response for unit i, is a
function of its treatment assignment Wi, we can write

Yi = WiYi(1) + (1−Wi)Yi(0).

Since we implicitly condition on the potential outcomes Yi(1), Yi(0), Yi is random only via
the treatment assignments Wi. Let τi = Yi(1)−Yi(0). Then, the Average Treatment Effect
(ATE) at time t is:

Definition 2 (Average Treatment Effect (ATE) at time t).

τ̄t :=
1

t

t∑
i=1

τi.

Our objective is to generate a confidence sequence for τ̄t in MAB experiments with guar-
antees on statistical power.
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3 The Mixture Adaptive Design

3.1 The Mixture Adaptive Design for Binary Treatments

In this section, we formalize our proposed experimental design and state our main result.

As in the MAB literature, we assume that the treatment assignment probabilities at a
given time t can depend on previously observed data up to time t − 1. Formally, let
Ht := {Wi, Yi}ti=1. For any arbitrary adaptive assignment algorithm, even one that does
not satisfy probabilistic treatment assignments, define padapti|i−1 (w) := P (Wi = w | Hi−1) . For

instance, if the user wanted to use Thompson sampling for their experiment, padapti|i−1 (w)
would be the assignment probability that Thompson sampling would assign treatment w
to unit i, given the history of the i − 1 previous units. We can now define the Mixture
Adaptive Design for the binary treatment setting.

Definition 3 (Mixture Adaptive Design (MAD) for Binary Treatments). For a real-valued
sequence δi ∈ (0, 1], w ∈ {0, 1},

pMAD
i|i−1 (w) := P (Wi = 1 | Fi−1) =

{
1/2 w/p δi

padapti|i−1 (w) w/p 1− δi.

On a high level, the MAD “mixes” a bandit algorithm with a Bernoulli design. The intuitive
idea is that if we can balance these two designs via δt, we can gain the ATE precision of a
Bernoulli design while maintaining some of the regret minimization of the bandit algorithm.

We now define our ATE estimators. Let Ft,n be the sigma-algebra that contains all pairs
of potential outcomes {Yi(1), Yi(0)}ti=1 and all observed data {Wi, Yi}ni=1 where n ≤ t.

Based on the estimator for τi proposed in Bojinov and Shephard (2019); Bojinov et al.
(2021) for adaptive experiment settings, we set

τ̂i :=
1{Wi = 1}Yi

pMAD
i|i−1 (1)

− 1{Wi = 0}Yi

pMAD
i|i−1 (0)

, (1)

which is an unbiased estimator for τi:

E [τ̂i | Fi,i−1] = τi.

Hence,

1

t

t∑
i=1

E [τ̂i | Fi,i−1] = τ̄t,

and we define our estimator of the Average Treatment effect at time t as:

ˆ̄τt :=
1

t

t∑
i=1

τ̂i,
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which is an unbiased estimator for τ̄t. Additionally, we have that

V ar(τ̂i | Fi,i−1) ≤ σ2
i , where σ2

i :=
Yi(1)

2

pMAD
i|i−1 (1)

+
Yi(0)

2

pMAD
i|i−1 (0)

, (2)

and thus, a natural unbiased estimator for σ2
i is

σ̂2
i :=

Yi(1)
2
1{Wi = 1}

(pMAD
t|t−1 (1))

2
+

Yi(0)
2
1{Wi = 0}

(pMAD
t|t−1 (0))

2
. (3)

Equations (2) and (3) follow from Bojinov and Shephard (2019); Bojinov et al. (2021),
which propose the estimator of Equation (3) because the closed form does not admit a
natural unbiased estimator. Let St :=

∑t
i=1 σ

2
i and Ŝt :=

∑t
i=1 σ̂

2
i .

We now state the assumptions necessary for our main results.

Assumption 1 (Bounded (Realized) Potential Outcomes). There exists M ∈ R such that

lim sup
t→∞

|Yt(w)| ≤ M < ∞

for all w ∈ W.

This assumption is used in existing work on CSs for the ATE (Howard et al. 2021; Ham
et al. 2022) and commonly assumed in design-based causal inference settings (Bojinov and
Shephard 2019; Bojinov et al. 2021; Lei and Ding 2021). Note, this is an assumption on
the realized potential outcomes. While this assumption may seem limiting, the realized
outcomes in any real-world experiment are almost always bounded, as the limitations of
computing precision guarantee that any realized outcome collected using existing comput-
ing resources will be bounded by, e.g., the highest floating point number via IEEE-754
standards. Hence, even if Yt(w) were drawn from a Gaussian distribution using existing
computing resources, the realized potential outcomes will never exceed this upper limit on
floating point precision, and therefore we can argue that this assumption is satisfied.

We also require that the average conditional variance of our estimator 1
t

∑t
i=1 V ar(τ̂i |

Fi,i−1) is not vanishing. Specifically, we need that the cumulative conditional variances∑t
i=1 V ar(τ̂i | Fi,i−1) are growing at at least a linear rate in t. Define Ω(t) such that if

f(t) = Ω(t), there exists k > 0, t0 such that for all t ≥ t0, f(t) ≥ kt.

Assumption 2 (At Least Linear Rate of Cumulative Conditional Variances).

t∑
i=1

V ar(τ̂i | Fi,i−1) = Ω(t).

Assumption 2 states that the sums of the conditional variances go to infinity at least as
fast as a constant rate. Existing works such as Ham et al. (2022) and Waudby-Smith
et al. (2023) require that

∑t
i=1 V ar(τ̂i | Fi,i−1) → ∞, but do not assume a specific rate.

For instance, they allow for the average conditional variance to vanish superlinearly, which
would violate Assumption 2. Although Assumption 2 is slightly stronger, this assumption
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should be easily satisfied in most realistic bandit settings. For instance, we expect the
assumption would be satisfied with a Bernoulli design since all V ar(τ̂i | Fi,i−1) would be
equal and constant. Intuitively, adaptive assignment should only make V ar(τ̂i | Fi,i−1)
larger, so as long as we also don’t have an adversarial sequence (Yi(1), Yi(0))

∞
i=1 which

“cancels out” the rate of these variance terms, this assumption should be satisfied. For
instance, if there existed some time t such that beyond t, Yi(1), Yi(0) are constantly 0, this
assumption may not hold. However, such scenarios would be unusual in practice and/or
may indicate practical issues with the experiment. Importantly, this assumption is the only
condition we impose on the user-chosen bandit algorithm (the padapti|i−1 (w) in pMAD

i|i−1 (w)), and
therefore, we expect our result to be valid for nearly any bandit algorithm.

Finally, for a ≥ 0, define δt = o(1/ta) to mean that 1/δt = o(ta).

Theorem 1. Let {τ̂i}∞i=1 be the sequence of random variables where Wi = w with probability
pMAD
i|i−1 (w) as in Definition 3 with δi = o

(
1

i1/4

)
. Assume Assumptions 1 and 2 hold. Then

(ˆ̄τt ± V̂t) where

V̂t =

√√√√√2(Ŝtη2 + 1)

t2η2
log


√

Ŝtη2 + 1

α


is a valid (1− α) asymptotic CS for τ̄t and V̂t

a.s.→ 0.

The proof is provided in Appendix A. Intuitively, Theorem 1 holds because a Bernoulli
Design provides this guarantee (simply set δi = 1 above), so a design that stochastically
injects a Bernoulli design into a MAB experiment will maintain the same guarantee as long
as the experiment does not deviate from the Bernoulli design too quickly, i.e., the rate at
which δi approaches 0 is controlled.

At a high level, proving the validity of Theorem 1 proceeds by showing that δi = o
(

1
i1/4

)
along with Assumptions 1 and 2 ensure that the ATE estimator of Equation (1) satisfies
a Lindeberg-type uniform integrability (see Lemma A.1 in Appendix A), thus allowing
us to apply the universal asymptotic CS of Waudby-Smith et al. (2023) in this setting.
The shrinking variance result proceeds by showing that δi = o

(
1

i1/4

)
and Assumption 1

guarantees that Ŝt log Ŝt = o(t2) almost surely, and hence, V̂t is shrinking towards 0 almost
surely. Note, this CS is not a function of M in Assumption 1; M is only used to ensure
the Lindeberg-type uniform integrability result and to control the asymptotic rate of Ŝt.
Therefore, M can be set arbitrarily large to satisfy Assumption 1 without affecting the
width of our CS.

Practically, Theorem 1 enables analysts to perform bandit experiments using the MAD
and, as long as Assumptions 1 and 2 hold, be guaranteed both valid and powerful infer-
ence. While Ham et al. (2022) and Howard et al. (2021) propose CSs for the ATE which
allow for adaptive assignment, their CS requires probabilistic assignment assumption for
their validity guarantees. Both Ham et al. (2022) and Howard et al. (2021) also require
Assumption 1, so Theorem 1 removes the probabilistic assignment assumption entirely
while only requiring a slightly stronger assumption on the cumulative conditional variances
(which should be easily satisfied in most practical settings, as discussed above). Addition-
ally, we prove the novel result that the width of our asymptotic CS is shrinking by deriving
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the rate of Ŝt for the MAD. While Ham et al. (2022) discusses how their asymptotic CS
scales with the variance of the estimator and state that they expect it to shrink in many
adaptive settings, they do not prove that Ŝt has the correct rate to ensure a shrinking CS,
even with probabilistic assignments.

As discussed in Ham et al. (2022), analysts at companies such as Netflix often use the first
time zero is outside of a CS as a stopping rule for their online experiments. We show that
as long as τ̄t is truly non-zero in the long term, such a stopping rule will occur in finite
time.

Let TMAD := inft

{
t : 0 /∈ (ˆ̄τt ± V̂t)

}
, i.e., this is the first time 0 is not within the confidence

sequence specified in Theorem 1.

Theorem 2. Let {τ̂i}∞i=1 be the sequence of random variables where Wi = w with probability
pMAD
i|i−1 (w) =

1
2
δi + (1 − δi)p

adapt
i|i−1 (w), w ∈ {0, 1}, and δi = o

(
1

i1/4

)
. Assume Assumptions 1

and 2 hold. Assume τ̄t → c for some |c| > 0 as i → ∞. Then,

P (TMAD < ∞) = 1.

The proof is provided in Appendix B. As part of the proof for Theorem 2, we show that
τ̄t → c implies that ˆ̄τt

a.s.→ τ̄t (and hence, to c) and use the fact that V̂t is converging almost
surely to zero. So intuitively, the CS of Theorem 1 is shrinking around the true ATE, so if c
is non-zero, the CS will at some point exclude zero. Note, existing work such as Ham et al.
(2022) have no coverage guarantees in general bandit settings. As we exhibit empirically
in Section 4, the CS of Ham et al. (2022) can severely undercover if naively applied to a
bandit setting, i.e., the percentage of times that the true ATE is included in their CS is far
below 1− α.

The assumption that τ̄t → c is satisfied immediately in stationary outcome settings, e.g., if

we assume τi = c for all i or if τi
i.i.d.∼ D for some distribution D with finite expectation. In

non-stationary settings, this assumption intuitively says that the non-stationarity should
be limited (e.g., at the beginning of the experiment) such that the long-term behavior of
τ̄t stabilizes towards some value.

3.2 Recommendations for Setting δi

Theorems 1 and 2 hold for any δi = o( 1
i1/4

), therefore, the MAD provides flexibility to
select δi ∈ (0, 1] based on the specifics of the problem. In this section, we provide a few
recommendations of δi based on the analyst’s priorities.

Example 1: δi = 1/i0.24; such a δi would allow the analyst to aggressively prioritize the
bandit design (and hence regret minimization) while still maintaining validity and shrinking
width guarantees.

Example 2: δi = c for some c ∈ (0, 1]; such a δi would maintain a constant rate of priority
in the Bernoulli design. Such a δi can be valuable in settings where the analyst may want
to stop the experiment as soon as possible (e.g., due to an external deadline, limited or
expensive resources, etc.) via some stopping rule (e.g. when 0 is outside the interval),
and so, would like to generate precise inferential results as quickly as possible while still
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allowing for some regret minimization. Note that choosing c = 1 reduces to a Bernoulli
design.

Example 3: δi = max{δ̃i, c} for some c ∈ (0, 1], δ̃i a sequence in (0, 1]; such a δi would
prioritize the bandit design up until a point, then maintain a constant rate of priority on the
Bernoulli design in the long run, thus never fully prioritizing the bandit over the Bernoulli
design. For instance, since analysts often have an upper bound N in mind for the maximum
time they would ideally like to run the experiment (e.g., due to an external deadline, limited
or expensive resources, etc.), they could set δ̃i = i0.24 and c = 1/N0.24. Such a δi can be
valuable in settings where the analyst primarily prioritizes regret minimization, and hence,
initially chooses an aggressive δ̃i to see if they can achieve statistically significant results
before the N samples/time steps. If such results are not achieved by N samples, then the
experimenter will maintain a constant rate of Bernoulli assignment from that point onward
to sharpen the inference further.

Thus, analysts can flexibly determine a δi that balances the trade-off between regret min-
imization and statistical power throughout the experiment. Recall from Section 1.2 that
most existing works in bandit experimental design prescribe specific algorithms that do
not allow for user tuning at all (Kasy and Sautmann 2021) or limitations on when during
the experiment the user can tune the exploration (Simchi-Levi and Wang 2023). Although
potentially useful as out-of-the-box algorithms, such approaches provide the user less flex-
ibility to tune the algorithm based on their specific priorities or experimental constraints.

3.3 Extension to K ≥ 2 Treatments

We formalize the Mixture Adaptive Design for K ≥ 2 treatments. Assume Wt ∈ W =
{0, ..., K − 1} for all t, where K ≥ 2.

Definition 4 (Generalized Mixture Adaptive Design (MAD)). For a real-valued sequence
δt ∈ (0, 1], for w ∈ {0, ..., K − 1},

pMAD
t|t−1 (w | Ft−1) =

{
1/K w/p δt

padaptt|t−1 (w) w/p 1− δt.

For any pair of treatments w,w′ where a non-zero treatment effect exists, the analogous
result of Theorem 1 holds for the Generalized Mixture Adaptive Design and follows almost
exactly from the proof of Theorem 1 for the binary treatment setting; see Appendix C for
proof and a full formalization of the problem setting for K ≥ 2.

In particular, the K > 2 case showcases the advantages of our anytime valid guarantees,
as the analyst can iteratively exclude “unpromising” treatments from consideration after
observing sufficient inferential evidence, thus reducing harm to the experimental units. For
example, assume the analyst has K − 1 total treatments, w1, ..., wK−1 under consideration
and one control, w0. At each time step t, the analyst can compute the CS of Theorem 1 for
each of the K − 1 treatment-control pairs (wj, w0), j = 1, .., .K − 1. Then, if the analyst
observes sufficient evidence of strong treatment effects between certain treatments and the
control (e.g., the confidence sequence excludes 0 and/or seems to be centered around a non-
zero value) while others seem to have weak or possibly no treatment effects, the analyst can
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decide to remove these “weak” treatments from consideration and continue the experiment
with only the most promising treatments.

3.4 Extension to Batched Bandits

In many applications, it is more practical to update the treatment assignment probabilities
of an adaptive/bandit algorithm after observing a batch of experimental units. In this
section, we show that an analogous result of Theorem 1 also holds in a batched bandit
setting.

First, we formalize the problem setting and Mixture Adaptive Design for batched bandits.
Assume we observe a sequence of batches, where for each batch j, we have a (non-random

and finite) batch size of B. So, for each batch j, we observe Hbatch
j :=

{
W

(j)
i , Y

(j)
i

}B

i=1
,

where W
(j)
i ∈ W = {0, ..., K − 1} and Y

(j)
i are the treatment assignment and outcome for

unit i in batch j, respectively. We assume the treatment assignment probabilities are fixed
within a batch, i.e., the treatment assignment probabilities are only (adaptively) updated
after observing a batch of B units.

Let pbatch-adaptj|j−1 (w) := P(W (j)
i = w | Hbatch

j−1 ) be the assignment probability to treatment w
for unit i in the jth batch for any user-provided batched bandit algorithm. We define the
Mixture Adaptive Design for Batched Bandits as:

Definition 5 (Mixture Adaptive Design for Batched Bandits). For a real-valued sequence
δj ∈ (0, 1], for w ∈ W, the assignment probability to treatment w in batch j is:

pB−MAD
j|j−1 (w) =

{
1/K w/p δj

pbatch-adaptj|j−1 (w) w/p 1− δj.

The above looks very similar to the standard Generalized MAD. The primary difference
is that the MAD assignment probabilities now update after each batch of B units rather
than after every individual observation. Hence, in this setting, treatments within a batch
are assigned independently, i.e., for each unit i in batch j, we assign treatment by rolling
a K-sided dice where each treatment w ∈ W has probability pB−MAD

j|j−1 (w) of appearing,

and pB−MAD
j|j−1 (w) is fixed within the batch j. Let {(Y (j)

i (w))w∈W} be the set of all potential

outcome for unit i in batch j. Given a pair of treatments w,w′ ∈ W , we can define the
Average Treatment Effect within a batch j as:

τbatchj (w,w′) =
1

B

B∑
i=1

Y
(j)
i (w)− Y

(j)
i (w′),

and the corresponding unbiased estimator as:

τ̂batchj (w,w′) =
1

B

B∑
i=1

τ̂
(j)
i (w,w′).

where

τ̂
(j)
i (w,w′) =

Y
(j)
i (w)1{W (j)

i = w}
pMAD
j|j−1 (w)

− Y
(j)
i (w′)1{W (j)

i = w′}
pMAD
j|j−1 (w

′)
.
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Thus, our target estimand, the Batched-Average Treatment Effect up to batch b, is:

τ̄batchb (w,w′) =
1

b

b∑
j=1

τbatchj (w,w′).

and the corresponding unbiased estimator is:

ˆ̄τbatchb (w,w′) =
1

b

b∑
j=1

τ̂batchj (w,w′).

Hence, we define Fbatch
b,b−1 as the filtration generated by all potential outcomes for all units

up to and including the bth batch {{(Y (j)
i (w))w∈W}Bh

i=1}bj=1 and all observed history up to

batch b− 1, {Hbatch
j }b−1

j=1.

Then, for each i = 1, ..., B, V ar
(
τ̂
(j)
i (w,w′) | Fbatch

j,j−1

)
≤ σ

(j)2
i (w,w′) where

σ
(j)2
i (w,w′) =

Yi(w)
2

pMAD
j|j−1 (w)

+
Yi(w

′)2

pMAD
j|j−1 (w

′)
.

So, σ̂
(j)2
i (w,w′) = Yi(w)21{Wi=w}

(pMAD
j|j−1

(w))2
+ Yi(w

′)21{Wi=w′}
(pMAD

j|j−1
(w′))2

.

Hence,

V ar
(
τ̂batchj (w,w′) | Fbatch

j,j−1

)
=

1

B2

B∑
i=1

V ar
(
τ̂
(j)
i (w,w′) | Fbatch

j,j−1

)
≤ 1

B2

B∑
i=1

σ
(j)2
i (w,w′).

Hence, we define

Sbatch
b (w,w′) :=

∑b
j=1

1
B2

∑B
i=1 σ

(j)2
i (w,w′) and Ŝbatch

b (w,w′) :=
∑b

j=1
1
B2

∑Hj

i=1 σ̂
(j)2
i (w,w′).

Finally, we state the analogous assumptions as Assumptions 1 and 2 for the batched bandit
setting.

Assumption 3 (Bounded Potential Outcomes for Batched Bandits). There exists M ∈ R
such that

|Y (j)
i (w)| ≤ M < ∞

for all j, i ∈ N+, w ∈ W.

Assumption 4 (At Least Linear Rate of Cumulative Conditional Variances for Batched
Bandits). For all w,w′ ∈ W,

b∑
j=1

V ar
(
τ̂ batchj (w,w′) | F batch

j,j−1

)
= Ω(b).

Theorem 3. For w,w′ ∈ W, let {τ̂ batchj (w,w′)}∞j=1 be the sequence of random variables

where W
(j)
i = w with probability pB−MAD

j|j−1 (w) = 1
K
δj + (1 − δj)p

adapt
j|j−1(w), w ∈ W, and
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δj ∈ (0, 1] such that δj = o
(

1
j1/4

)
. Assume Assumptions 3 and 4 hold. Then (ˆ̄τ batchb (w,w′)±

V̂ batch
b (w,w′)) where

V̂ batch
b (w,w′) :=

√√√√√2(Ŝbatch
b η2 + 1)

t2η2
log


√
Ŝbatch
b η2 + 1

α


is a valid (1− α) asymptotic CS for τ̄ batchb and V̂ batch

b (w,w′)
a.s.→ 0.

For w,w′ ∈ W , , define TB-MAD(w,w
′) := inft

{
b : 0 /∈ (ˆ̄τbatchb (w,w′)± V batch

b (w,w′))
}
.

Theorem 4. For w,w′ ∈ W, let {τ̂ batchj (w,w′)}∞j=1 be the sequence of random variables

where W
(j)
i = w with probability pB−MAD

j|j−1 (w) = 1
K
δj + (1 − δj)p

adapt
j|j−1(w), w ∈ W, and δj ∈

(0, 1] such that δj = o
(

1
j1/4

)
. Assume Assumptions 3 and 4 hold. Then, if ˆ̄τ batchb (w,w′) → c

as b → ∞ for some |c| > 0,

P (TB−MAD(w,w
′) < ∞) = 1.

Hence, Theorems 3 and 4 show that the MAD provides the same validity, shrinking width,
and stopping time guarantees in the batched bandit setting.

4 Simulation Study

Empirically, we find that MAD improves both the precision and efficiency of ATE infer-

ence in bandit experiments. Consider a two-arm bandit with Yi(1)
i.i.d.∼ Bern(0.8) and

Yi(0)
i.i.d.∼ Bern(0.6), so τ̄t = 0.2 for all t. We implemented a Thompson sampler with

uniform priors on both arms and computed the CS of Theorem 1 for the Mixture Adaptive
Design with δi =

1
i0.24

. As baselines, we implement the same CS under a Bernoulli design
and under a Standard design, which naively applies the CS of Ham et al. (2022) to the
bandit setting. Note, since we make no adjustment to the assignment probabilities, there
are no validity and coverage guarantees for the Standard design. We set α = 0.05. At
each time step, the Thompson sampler pulls a single arm and observes the outcome. Con-
fidence sequences are computed over T = 10, 000 time steps for 100 random seeds. We set

η =
√

−2 log(α)+log(−2 log(α)+1)
t∗

≈ 0.028 for t∗ = 10, 000; we choose this value following the

recommendations in Appendix B.2 of Waudby-Smith et al. (2023) on setting η to optimize
the width of the CS for a specific time t∗, where we take t∗ to be the end of the time horizon
we set for this experiment.

As shown in Figure 1a, both Bernoulli and MAD confidence sequences are contained within
[−1, 1] by ≈ 100 samples while 59% of the Standard design confidence sequences still in-
cluded [−1, 1] at 10, 000 samples. In Figure 1b, all Bernoulli and MAD confidence sequences
excluded zero by 10, 000 samples, while 22% of Standard design confidence sequences still
included zero by 10, 000 samples. Figure 2a shows that the MAD has the correct coverage
in finite samples, while the Standard design can severely undercover. Figure 2b shows that
the time-averaged reward under the MAD approaches that of the Standard design and is
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generally only slightly smaller at any given point in time. Thus, the MAD empirically
makes notable gains with respect to coverage, statistical power, and early stopping without
a significant loss of finite-sample reward. We repeat this experiment varying the true ATE
and find similar results; see Appendix E for details.

(a) Confidence sequences plotted over 105 sam-
ples/timesteps across 100 random replicates.
59% of the Standard design confidence se-
quences still included [−1, 1] at 10, 000 sam-
ples.

(b) Histogram of the first time zero was ex-
cluded from the CS across 100 random repli-
cates. 22% of Standard design confidence se-
quences still included zero by 10, 000 samples,
and hence, we did not observe a stopping time.

Figure 1

(a) Coverage of confidence sequences across 100
random replicates. Error bars represent 2SEs.
The dashed line represents 1− α = 0.95.

(b) Time averaged reward of the confidence se-
quences across 100 random replicates. Error
bars represent 2SEs.

Figure 2

In the setting where all Yi(w) ∈ [0, 1], w = 0, 1 and there exists some pmin such that all treat-
ment assignment probabilities are bounded within [pmin, 1 − pmin], Corollary 2 of Howard
et al. (2021) provides a nonasymptotic CS for the ATE with width shrinking towards 0.
In the same Thompson sampler setting as above, we explore the performance of the MAD
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when using this CS, setting δ̃i = max{ 1
i0.24

, 1
100

} to ensure the pmin condition is satisfied.

Practically, we can interpret δ̃i as imposing our adaptive algorithm to assign treatment ac-
cording to a Bernoulli design every 1 out of 100 samples in the long run. By Corollary 2 of
Howard et al. (2021), the confidence sequences produced are exactly valid and guaranteed
to be shrinking over time. Hence, using the MAD with this CS provides an approach for
performing nonasymptotic continuous inference on the ATE. As baselines, we also imple-
ment a Bernoulli design with this CS, and the analogous “Standard” design, which naively
calculates this CS for the bandit experiment without any adjustment to the assignment
probabilities. Since this CS requires pmin as input to the CS, we use pmin = 1/10, 000
as a conservative lower bound. 1 However, since no true pmin exists in this setting, the
validity of the CS is not guaranteed for the standard bandit setting. We find that the MAD
improves the width of this CS while achieving comparable reward to the standard bandit
design; see Appendix E for details. The MAD and Bernoulli designs produce confidence
sequences that begin to shrink around 1000 samples while none of the confidence sequences
generated using the Standard bandit design shrunk below [−1, 1]. Hence, even as a heuris-
tic, using this CS on a standard bandit experiment is rather impractical. Though this CS
is non-asymptotic, it tends to be much wider than the asymptotic CS of Theorem 1. For
instance, even the confidence sequences produced using the Bernoulli design only excluded
0 once out of the 100 random replicates; see Appendix E for details. In practice, we recom-
mend using the asymptotic CS of Theorem 1 as it empirically achieves the correct coverage
and produces thinner confidence sequences. The script used to reproduce all simulation
results is provided at https://github.com/biyonka/mixture_adaptive_design.

5 Conclusion

The Mixture Adaptive Design (MAD) provides a framework for anytime-valid design-based
causal inference on the ATE in MAB experiments with guarantees on statistical validity and
power. By controlling the rate of a bandit algorithm’s adaptive assignment probabilities via
“mixing” with a Bernoulli design, the MAD provides a confidence sequence for the ATE
that is asymptotically valid and guaranteed to shrink around the true ATE under mild
conditions and thus holds for nearly any choice of bandit algorithm. As existing approaches
do not guarantee validity in general bandit settings, the MAD provides a practical tool for
online and anytime valid causal inference in both standard and batched bandit settings.
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SUPPLEMENTARY MATERIAL

A Proof of Theorem 1

To prove Theorem 1, we must first show that (τ̂i)
∞
i=1 satisfies a Lindeberg-type uniform

integrability condition (Condition L-2 of Waudby-Smith et al. (2023)).

Recall, τ̂i :=
1{Wi=1}Yi

pi|i−1(1)
− 1{Wi=0}Yi

pi|i−1(0)
, padaptt|t−1 (w) := P (Wt = w | Ft−1), and pMAD

i|i−1 (w) = δi
1
2
+

(1− δi)p
adapt
i|i−1 (w) for w = 0, 1. Recall, we write δt = o(1/ta) to mean that 1/δt = o(ia).

Lemma A.1. Let {τ̂i}∞i=1 be a sequence of random variables where Wi = w with probability
pMAD
i|i−1 (w) = 1

2
δi + (1 − δi)p

adapt
i|i−1 (w) for w ∈ {0, 1} and δi ∈ (0, 1] such that δi = o

(
1

i1/4

)
.

Assume Assumptions 1 and 2 hold. Then, {τ̂i}∞i=1 satisfies a Lindeberg-type uniform inte-
grability condition, i.e., then there exists κ ∈ (0, 1) such that

∞∑
t=1

E [(τ̂t − τt)
2
1{(τ̂t − τt)

2 > (Bt)
κ}]

(Bt)κ
< ∞ a.s.

where Bt =
∑t

i=1 V ar(τ̂i | Fi,i−1).

Proof. By Assumption 1,

|τ̂t| =

∣∣∣∣∣Yt(1)1{Wt = 1}
pMAD
t|t−1 (1)

− Yt(0)1{Wt = 0}
pMAD
t|t−1 (0)

∣∣∣∣∣ ≤ 2M

min(pMAD
t|t−1 (0), p

MAD
t|t−1 (1))

and |τt| ≤ 2M for all t.

Hence,

(τ̂t|t−1 − τt)
2 ≤

(
2M

min(pMAD
t|t−1 (0), p

MAD
t|t−1 (1))

)2

+ (2M)2 + 2

(
2M

min(pMAD
t|t−1 (0), p

MAD
t|t−1 (1))

)
2M

≤ 24M2

(min(pMAD
t|t−1 (0), p

MAD
t|t−1 (1)))

2

First, note that for all w, pMAD
t|t−1 (w) ≥ δt(1/2) and so 1

pMAD
t|t−1

(w)
= o(t1/4). So, (τ̂t|t−1 − τt)

2 =

o(t2a) almost surely.

By Assumption 2, Bt = Ω(t). Therefore, Bκ
t = Ω(tκ). Set κ > 2a. Then, there exists some

t̃ such that for all t ≥ t̃, Bκ
t > (τ̂t|t−1 − τt)

2 a.s.. Hence, for all t ≥ t̃, 1{(τ̂t|t−1 − τt)
2 >

(Bt)
κ} = 0, and so,

t∑
i=1

E
[
(τ̂t|t−1 − τt)

2
1{(τ̂t|t−1 − τt)

2 > (Bt)
κ}
]

(Bt)κ
< ∞ a.s..
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Theorem 1. Let {τ̂i}∞i=1 be the sequence of random variables where Wi = w with probability
pMAD
i|i−1 (w) as in Definition 3 with δi = o

(
1

i1/4

)
. Assume Assumptions 1 and 2 hold. Then

(ˆ̄τt ± V̂t) where

V̂t =

√√√√√2(Ŝtη2 + 1)

t2η2
log


√

Ŝtη2 + 1

α


is a valid (1− α) asymptotic CS for τ̄t and V̂t

a.s.→ 0.

Proof. By Assumptions 1 and 2 imply that Lemma A.1 holds. Lemma A.1 and Assump-
tion 2 satisfy Conditions L-1 and L-2 of Theorem 2.5 in Waudby-Smith et al. (2023), so,
by Steps 1 and 2 of the proof of Theorem 2.5 in Waudby-Smith et al. (2023),

(ˆ̄τt ± V ∗
t ) where

V ∗
t =

√√√√2(Btη2 + 1)

t2η2
log

(√
Btη2 + 1

α

)

is a valid (1− α)asymptotic CS and Bt =
∑t

i=1 V ar(τ̂i | Fi,i−1).

As noted in Equation (2),

V ar(τ̂i | Fi,i−1) ≤ σ2
i , where σ2

i :=
Yi(1)

2

pi|i−1(1)
+

Yi(0)
2

pi|i−1(0)
. (4)

Hence, (ˆ̄τt ± Ṽt) where

Ṽt =

√√√√2(Stη2 + 1)

t2η2
log

(√
Stη2 + 1

α

)

is still a valid (1 − α)asymptotic CS where recall, St =
∑t

i=1 σ
2
i . This holds because

replacing Bt with St only makes the CS wider since St ≥ Bt.

As noted in Equation (3), an unbiased estimator for σ2
i is

σ̂2
i :=

Yi(1)
2
1{Wi = 1}

p2i|i−1(1)
+

Yi(0)
2
1{Wi = 0}

p2i|i−1(0)
. (5)

and we define Ŝt =
∑t

i=1 σ̂
2
i .

To establish the validity of the CS in Theorem 1, we must show that 1
t
Ŝt − 1

t
St

a.s.→ 0.
Then, Condition L-3 of Theorem 2.5 of Waudby-Smith et al. (2023) is satisfied and we can
conclude that (ˆ̄τt ± V̂t) where

V̂t =

√√√√√2(Ŝtη2 + 1)

t2η2
log


√

Ŝtη2 + 1

α
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is still a valid (1− α) asymptotic CS.

First, note that

(σ̂2
i )

2 ≤

(
M2

pMAD
i|i−1 (1)

2
+

M2

pMAD
i|i−1 (0)

2

)2

=
M4

pMAD
i|i−1 (1)

4
+

M4

pMAD
i|i−1 (0)

4
+ 2

M2

pMAD
i|i−1 (1)

2pMAD
i|i−1 (0)

2

≤ M4

(δi/2)4
+

M4

(δi/2)4
+ 2

M2

(δi/2)4

= M4

(
24

1

δ4i
+ 24

1

δ4i
+ 25

1

δ4i

)
= o(i)

where the last line follows because 1
δi
= o

(
i1/4
)
. Define Xi = σ̂2

i − σ2
i and note that Xi is

a martingale difference sequence. Hence,

E[Xi] = E[(σ̂2
i )

2]− (σ2
i )

2

≤ E[(σ̂2
i )

2]

= o(i)

So,
E[X2

i ]

i2
= o(i)

i2
and hence,

∑∞
i=1

E[X2
i ]

i2
< ∞. For instance, if δi =

1
ia

for some 0 ≤ a < 1/4,

then
E[X2

i ]

i2
≤ Ci4a−2 for some constant C < ∞, and since 4a − 2 < −1,

∑∞
i=1

E[X2
i ]

i2
≤

C
∑∞

i=1 i
4a−2 < ∞ by the p-series test.

Then, by the SLLN for martingale difference sequences (Theorem 1 of (Csörgő 1968)), we
can conclude that

1

t

t∑
i=1

Xi
a.s.→ 0.

Hence, Condition L-3 of Waudby-Smith et al. (2023) is satisfied and by Step 3 of the proof
for Theorem 2.5 of Waudby-Smith et al. (2023), we can conclude that (ˆ̄τt ± V̂t) where

V̂t =

√√√√√2(Ŝtη2 + 1)

t2η2
log


√

Ŝtη2 + 1

α


is still a valid (1− α) asymptotic CS.
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To show V̂t
a.s.→ 0, note that

σ̂2
i ≤ M2

pMAD
i|i−1 (1)

2
+

M2

pMAD
i|i−1 (0)

2

≤ M2

(δi/2)2
+

M2

(δi/2)2

=
4M2

δ2i
+

4M2

δ2i

= 8M2 1

δ2i
= 8M2o(i1/2)

So, Ŝt ≤ 8M2
∑t

i=1 o(i
1/2) a.s..

So, there exists positive real numbers N and x0 such that for all t ≥ x0, Ŝt ≤ N
∑t

i=1 i
1/2 <

N
∑t

i=1 t
1/2 = Nt1+1/2, and hence, we can conclude that Ŝt = O(t1+

1
2 ).

We can show that log
(
Ŝt

)
= o(t1/2) a.s.. For t ≥ x0,

log
(
Ŝt

)
t1/2

≤
log
(
Nt3/2

)
t1/2

=
log(N) + (3/2) log(t))

t1/2

and log(N)+(3/2) log(t))

t1/2
→ 0 as t → ∞. Therefore, log

(
Ŝt

)
= o(t1/2) a.s. and Ŝt log

(
Ŝt

)
=

o(t2) a.s.. Hence, V̂t =
2(Ŝtη2+1)

t2η2
log

(√
Ŝtη2+1

α

)
= o(1) a.s..

Note, if 1/δi was increasing at a rate faster than i1/4 asymptotically, we are not guaranteed
that V̂t = o(1) a.s..

B Proof of Theorem 2

Theorem 2. Let {τ̂i}∞i=1 be the sequence of random variables where Wi = w with probability
pMAD
i|i−1 (w) =

1
2
δi + (1 − δi)p

adapt
i|i−1 (w), w ∈ {0, 1}, and δi = o

(
1

i1/4

)
. Assume Assumptions 1

and 2 hold. Assume τ̄t → c for some |c| > 0 as i → ∞. Then,

P (TMAD < ∞) = 1.

Proof. We will first show that 1
t

∑t
i=1 τ̂i

a.s.→ c. Let ui := τ̂i − τi.

Note that

E[u2
i ] = E[τ̂ 2i ]− τ 2i
≤ E[τ̂ 2i ]
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where

τ̂ 2i =

(
Yi(1)1{Wi = 1}

pMAD
i|i−1 (1)

− Yi(0)1{Wi = 0}
pMAD
i|i−1 (0)

)2

≤ Yi(1)
2

(δi/2)2
+

Yi(0)
2

(δi/2)2

= 8M2 1

δ2i
= 8M2o(i1/2)

Hence,

t∑
i=1

E[u2
i ]

i2
≤

t∑
i=1

8M2o(i1/2)

i2
< ∞

by the p-series test.

Hence, by the SLLN for martingale difference sequences (Theorem 1 of (Csörgő 1968)), we
can conclude that

1

t

t∑
i=1

ui
a.s.→ 0.

By Theorem 1, we have that V̂t
a.s.→ 0.

Therefore, applying Slutsky’s Theorem, we conclude that

ˆ̄τt + V̂t
a.s.→ c,

and

ˆ̄τt − V̂t
a.s.→ c.

So,

P
(
0 /∈

(
ˆ̄τt ± V̂t

))
= P

(
0 < ˆ̄τt − V̂t

)
+ P

(
0 > ˆ̄τt + V̂t

)
→ 1,

where the last line follows because P
(
0 > ˆ̄τt + V̂t

)
→ 0 and P

(
0 < ˆ̄τt − V̂t

)
→ 1.

Let pt = P
(
0 ∈ (ˆ̄τt ± V̂t)

)
. Since pt → 0 as t → ∞, there exists a subsequence tk such

that ptk ≤ 1
k2
, for all k ≥ 1. Let Atk be the event {0 ∈ ( 1

tk

∑tk
i=1 τ̂i ± V̂tk)}. Then,∑∞

k=1 P (Atk) < ∞, and by the Borel-Cantelli lemma,

P
(
lim sup
k→∞

Atk

)
= 0.
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Hence,

P (TMAD = ∞) ≤ P
(
lim sup
k→∞

Atk

)
= 0.

C ATE Inference for K ≥ 2 Treatments

We first formalize the problem setting forK ≥ 2 treatments and prove more general versions
of Theorems 1 and Theorem 2 for K ≥ 2 treatments. Assume Wt ∈ W := {0, ..., K − 1}.

Let Ft,n be the sigma-algebra that contains all potential outcomes {(Yi(w))w∈W}ti=1 and all
observed data {Wi, Yi}ni=1 where n ≤ t.

As before, let the assignment probabilities for any user-chosen adaptive algorithm be de-
noted as padapti|i−1 (w) = P(Wt = w | Ht−1) where Ht−1 = {Wi, Yi}t−1

i=1. Hence, the Generalized

Mixture Adaptive Design has assignment probabilities pMAD
i|i−1 (w) = δi

1
K
+ (1− δi)p

adapt
i|i−1 (w),

for all w ∈ W .

For any pair of treatments w,w′ ∈ W , let τi(w,w
′) = Yi(w)−Yi(w

′) and define the Average
Treatment Effect (ATE) between w and w′ up to t as τ̄t(w,w

′) := 1
t

∑t
i=1 τi(w,w

′). So,
using the Generalized Mixture Adaptive Design, our corresponding estimator for the ATE
is:

ˆ̄τt(w,w
′) =

1

t

t∑
i=1

τ̂i(w,w
′),

where τ̂i(w,w
′) := 1{Wi=w}Yi(w)

pMAD
t|t−1

(w)
− 1{Wi=w′}Yi(w

′)

pMAD
i|i−1

(w′)
. We also have the corresponding upper

bound on the variance:

V ar(τ̂i(w,w
′) | Fi,i−1) ≤ σ2

i (w,w
′), where σ2

i (w,w
′) :=

Yi(w)
2

pMAD
t|t−1 (w)

+
Yi(w

′)2

pMAD
i|i−1 (w

′)
,

and the analogous unbiased estimator of σ2
i (w,w

′):

σ̂2
i (w,w

′) :=
Yi(w)

2
1{Wi = w}

(pMAD
t|t−1 (w))

2
+

Yi(w
′)21{Wi = w′}

(pMAD
i|i−1 (w

′))2
.

Finally, let St(w,w
′) :=

∑t
i=1 σ

2
i (w,w

′) and Ŝt(w,w
′) :=

∑t
i=1 σ̂

2
i (w,w

′).

Define TMAD(w,w
′) := inft

{
t : 0 /∈ (ˆ̄τt(w,w

′)± V̂t(w,w
′))
}

where the treatment assign-

ments are generated via the Generalized Mixture Adaptive Design in Definition (4).

Though an analogous result of Theorem 1 for this setting follows almost directly from the
fact that we still have 1/δt = o(t1/4), we provide a full statement of the result and its proof
here for completeness.

For precision, we need to state our cumulative conditional variance condition for the K ≥ 2
setting.
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Assumption 5 (At Least Linear Rate of Cumulative Conditional Variances for All Pairs
of Treatments). For all w,w′ ∈ W,

∑t
i=1 V ar(τ̂i(w,w

′) | Fi,i−1) = Ω(t).

Lemma A.2. Let w,w′ ∈ W. Let {τ̂i(w,w′)}∞i=1 be a sequence of random variables where
Wi = w with probability pMAD

i|i−1 (w) =
1
K
δi + (1− δi)p

adapt
i|i−1 (w) for w ∈ W and δi ∈ (0, 1] such

that δi = o
(

1
i1/4

)
. Assume Assumptions 1 and 5 hold. Then, {τ̂i(w,w′)}∞i=1 satisfies the

Lindeberg-type uniform integrability condition of Waudby-Smith et al. (2023), i.e., there
exists κ ∈ (0, 1) such that

∞∑
t=1

E [(τ̂t(w,w
′)− τt(w,w

′))21{(τ̂t(w,w′)− τt(w,w
′))2 > (Bt(w,w

′))κ}]
(Bt(w,w′))κ

< ∞ a.s.

where Bt(w,w
′) =

∑t
i=1 V ar(τ̂i(w,w

′) | Fi,i−1).

Proof. By Assumption 1, for all t, w, w′,

|τ̂t(w,w′)| =

∣∣∣∣∣Yt(w)1{Wt = w}
pMAD
t|t−1 (w)

− Yt(w
′)1{Wt = w′}
pMAD
t|t−1 (w

′)

∣∣∣∣∣ ≤ 2M

min(pMAD
t|t−1 (w

′), pMAD
t|t−1 (w))

and |τt(w,w′)| ≤ 2M .

Hence,

(τ̂t(w,w
′)− τt(w,w

′))2

≤

(
2M

min(pMAD
t|t−1 (w), p

MAD
t|t−1 (w

′))

)2

+ (2M)2 + 2

(
2M

min(pMAD
t|t−1 (w), p

MAD
t|t−1 (w

′))

)
2M

≤ 24M2

(min(pMAD
t|t−1 (w), p

MAD
t|t−1 (w

′)))2
.

First, note that for all w ∈ W , pMAD
t|t−1 (w) ≥ δt(1/K) and so 1

pMAD
t|t−1

(w)
= o(t1/4). So, (τ̂t(w,w

′)−

τt(w,w
′))2 = o(t1/2) almost surely.

By Assumption 2, Bt(w,w
′) = Ω(t). Therefore, Bκ

t (w,w
′) = Ω(tκ). Set κ > 1/2. Then,

there exists some t̃ such that for all t ≥ t̃, Bκ
t (w,w

′) > (τ̂t(w,w
′)− τt(w,w

′))2 a.s.. Hence,
for all t ≥ t̃, 1{(τ̂t(w,w′)− τt(w,w

′))2 > (Bt)
κ(w,w′)} = 0, and so,

∞∑
t=1

E [(τ̂t(w,w
′)− τt(w,w

′))21{(τ̂t(w,w′)− τt(w,w
′))2 > (Bt(w,w

′))κ}]
(Bt(w,w′))κ

< ∞ a.s.

Theorem 1∗. For w,w′ ∈ W, let {τ̂i(w,w′)}∞i=1 be the sequence of random variables where
Wi = w with probability pMAD

i|i−1 (w) = 1
K
δi + (1 − δi)p

adapt
i|i−1 (w), and δi ∈ (0, 1] such that

δi = o
(

1
i1/4

)
. Assume Assumptions 1 and 5 hold. Then (ˆ̄τt(w,w

′)± V̂t(w,w
′)) where

V̂t(w,w
′) =

√√√√√2(Ŝt(w,w′)η2 + 1)

t2η2
log


√

Ŝt(w,w′)η2 + 1

α
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is a valid (1− α) asymptotic CS for τ̄t(w,w
′) and V̂t(w,w

′)
a.s.→ 0.

Proof. By Assumptions 1 and 5 imply that Lemma A.2 holds. Lemma A.2 and Assump-
tion 5 satisfy Conditions L-1 and L-2 of Theorem 2.5 in Waudby-Smith et al. (2023), so,
by Steps 1 and 2 of the proof of Theorem 2.5 in Waudby-Smith et al. (2023),

(ˆ̄τt(w,w
′)± V ∗

t (w,w
′)) where

V ∗
t (w,w

′) =

√√√√2(Bt(w,w′)η2 + 1)

t2η2
log

(√
Bt(w,w′)η2 + 1

α

)

is a valid (1− α)asymptotic CS and Bt(w,w
′) =

∑t
i=1 V ar(τ̂i(w,w

′) | Fi,i−1).

As noted in Equation (2),

V ar(τ̂i(w,w
′) | Fi,i−1) ≤ σ2

i , where σ2
i :=

Yi(w)
2

pMAD
t|t−1 (w)

+
Yi(w

′)2

pMAD
i|i−1 (w

′)
. (6)

Hence, (ˆ̄τt(w,w
′)± Ṽt(w,w

′)) where

Ṽt(w,w
′) =

√√√√2(St(w,w′)η2 + 1)

t2η2
log

(√
St(w,w′)η2 + 1

α

)

is still a valid (1 − α)asymptotic CS where recall, St(w,w
′) =

∑t
i=1 σ

2
i (w,w

′). This holds
because replacing Bt(w,w

′) with St(w,w
′) only makes the CS wider since St(w,w

′) ≥
Bt(w,w

′).

As noted in Equation (3), an unbiased estimator for σ2
i (w,w

′) is

σ̂2
i (w,w

′) :=
Yi(w)

2
1{Wi = w}

(pMAD
t|t−1 (w))

2
+

Yi(w
′)21{Wi = w′}

(pMAD
i|i−1 (w

′))2
. (7)

and we define Ŝt(w,w
′) =

∑t
i=1 σ̂

2
i (w,w

′).

To establish the validity of the CS in Theorem 1, we must show that 1
t
Ŝt(w,w

′)−1
t
St(w,w

′)
a.s.→

0. Then, Condition L-3 of Theorem 2.5 of Waudby-Smith et al. (2023) is satisfied and we
can conclude that (ˆ̄τt(w,w

′)± V̂t(w,w
′)) where

V̂t(w,w
′) =

√√√√√2(Ŝt(w,w′)η2 + 1)

t2η2
log


√

Ŝt(w,w′)η2 + 1

α


is still a valid (1− α) asymptotic CS.
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First, note that

(σ̂2
i (w,w

′))2 ≤

(
M2

pMAD
i|i−1 (w)

2
+

M2

pMAD
i|i−1 (w

′)2

)2

=
M4

pMAD
i|i−1 (w)

4
+

M4

pMAD
i|i−1 (w

′)4
+ 2

M2

pMAD
i|i−1 (w)

2pMAD
i|i−1 (w

′)2

≤ M4

(δi/K)4
+

M4

(δi/K)4
+ 2

M2

(δi/K)4

= M4

(
K4 1

δ4i
+K4 1

δ4i
+K5 1

δ4i

)
= o(i)

where the last line follows because 1
δi
= o

(
i1/4
)
as shown in Lemma A.1. Define Xi(w,w

′) =

σ̂2
i (w,w

′)− σ2
i (w,w

′) and note that Xi(w,w
′) is a martingale difference sequence. Hence,

E[Xi(w,w
′)] = E[(σ̂i(w,w

′)2]− (σi(w,w
′)2

≤ E[(σ̂i(w,w
′)2]

= o(i)

So,
E[X2

i (w,w′)]

i2
= o(i)

i2
and hence,

∑∞
i=1

E[X2
i (w,w′)]

i2
< ∞. For instance, if δi =

1
ia

for some

0 ≤ a < 1/4, then
E[X2

i (w,w′)]

i2
≤ Ci4a−2 for some constant C < ∞, and since 4a − 2 < −1,∑∞

i=1
E[X2

i (w,w′)]

i2
≤ C

∑∞
i=1 i

4a−2 < ∞ by the p-series test.

Then, by the SLLN for martingale difference sequences (Theorem 1 of (Csörgő 1968)), we
can conclude that

1

t

t∑
i=1

Xi(w,w
′)

a.s.→ 0.

Hence, Condition L-3 of Waudby-Smith et al. (2023) is satisfied and by Step 3 of the proof
for Theorem 2.5 of Waudby-Smith et al. (2023), we can conclude that (ˆ̄τt(w,w

′)±V̂t(w,w
′))

where

V̂t(w,w
′) =

√√√√√2(Ŝt(w,w′)η2 + 1)

t2η2
log


√

Ŝt(w,w′)η2 + 1

α


is still a valid (1− α) asymptotic CS.
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To show V̂t(w,w
′)

a.s.→ 0, note that

σ̂2
i ≤ M2

pMAD
i|i−1 (w)

2
+

M2

pMAD
i|i−1 (w

′)2

≤ M2

(δi/K)2
+

M2

(δi/K)2

=
K2M2

δ2i
+

K2M2

δ2i

= 2K2M2 1

δ2i
= 2K2M2o(i1/2)

So, Ŝt(w,w
′) ≤ 8M2

∑t
i=1 o(i

1/2) a.s..

So, there exists positive real numbers N and x0 such that for all t ≥ x0, Ŝt(w,w
′) ≤

N
∑t

i=1 i
1/2 < N

∑t
i=1 t

1/2 = Nt1+1/2, and hence, we can conclude that Ŝt(w,w
′) =

O(t1+
1
2 ).

We can show that log
(
Ŝt(w,w

′)
)
= o(t1/2) a.s.. For t ≥ x0,

log
(
Ŝt(w,w

′)
)

t1/2
≤

log
(
Nt3/2

)
t1/2

=
log(N) + (3/2) log(t))

t1/2

and log(N)+(3/2) log(t))

t1/2
→ 0 as t → ∞. Therefore, log

(
Ŝt(w,w

′)
)

= o(t1/2) a.s. and

Ŝt(w,w
′) log

(
Ŝt(w,w

′)
)
= o(t2) a.s.. Hence, V̂t(w,w

′) = 2(Ŝt(w,w′)η2+1)
t2η2

log

(√
Ŝt(w,w′)η2+1

α

)
=

o(1) a.s..

Note, if 1/δi was increasing at a rate faster than i1/4 asymptotically, e.g., δi = O(i1/2), we
are not guaranteed that V̂t(w,w

′) = o(1) a.s..

Theorem 2∗. For w,w′ ∈ W, let {τ̂i(w,w′)}∞i=1 be the sequence of random variables where
Wi = w with probability pMAD

i|i−1 (w) =
1
2
δi + (1 − δi)p

adapt
i|i−1 (w) for w ∈ W and δi = o

(
1

i1/4

)
.

Assume Assumptions 1 and 5 hold. Assume τ̄i(w,w
′) → c for some |c| > 0 as i → ∞.

Then,
P (TMAD(w,w

′) < ∞) = 1.

Proof. We will first show that 1
t

∑t
i=1 τ̂i(w,w

′)
a.s.→ c. Let ui(w,w

′) := τ̂i(w,w
′)− τi(w,w

′).

Note that

E[ui(w,w
′)2] = E[τ̂i(w,w′)2]− τi(w,w

′)2

≤ E[τ̂i(w,w′)2]
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where

τ̂i(w,w
′)2 =

(
Yi(w)1{Wi = w}

pMAD
i|i−1 (w)

− Yi(w
′)1{Wi = w′}
pMAD
i|i−1 (w

′)

)2

≤ Yi(w)
2

(δi/K)2
+

Yi(w
′)2

(δi/K)2

= 2K2M2 1

δ2i
= 2K2M2o(i1/2)

Hence,

t∑
i=1

E[ui(w,w
′)2]

i2
≤

t∑
i=1

8M2o(i1/2)

i2
< ∞

by the p-series test. Hence, by the SLLN for martingale difference sequences (Theorem 1
of (Csörgő 1968)), we can conclude that

1

t

t∑
i=1

ui(w,w
′)

a.s.→ 0.

By Theorem 1∗, we have that V̂t(w,w
′)

a.s.→ 0.

Therefore, applying Slutsky’s Theorem, we conclude that

ˆ̄τt(w,w
′) + V̂t(w,w

′)
a.s.→ c,

and

ˆ̄τt(w,w
′)− V̂t(w,w

′)
a.s.→ c.

So,

P
(
0 /∈

(
ˆ̄τt(w,w

′)± V̂t(w,w
′)
))

= P
(
0 < ˆ̄τt(w,w

′)− V̂t(w,w
′)
)
+ P

(
0 > ˆ̄τt(w,w

′) + V̂t(w,w
′)
)

→ 1,

where the last line follows because P
(
0 > ˆ̄τt(w,w

′) + V̂t(w,w
′)
)
→ 0 and

P
(
0 < ˆ̄τt(w,w

′)− V̂t(w,w
′)
)
→ 1.

Let pt = P
(
0 ∈ (ˆ̄τt(w,w

′)± V̂t(w,w
′))
)
. Since pt → 0 as t → ∞, there exists a subsequence

tk such that ptk ≤ 1
k2
, for all k ≥ 1. Let Atk be the event {0 ∈ ( 1

tk

∑tk
i=1 τ̂i(w,w

′) ±
V̂tk(w,w

′))}. Then,
∑∞

k=1 P (Atk) < ∞, and by the Borel-Cantelli lemma,

P
(
lim sup
k→∞

Atk

)
= 0.
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Hence,

P
(
T̃MAD(w,w

′) = ∞
)
≤ P

(
lim sup
k→∞

Atk

)
= 0.

D ATE inference for Batched Bandits

We restate Theorems 3 and 4 here.

Theorem 3. For w,w′ ∈ W, let {τ̂ batchj (w,w′)}∞j=1 be the sequence of random variables

where W
(j)
i = w with probability pB−MAD

j|j−1 (w) = 1
K
δj + (1 − δj)p

adapt
j|j−1(w), w ∈ W, and

δj ∈ (0, 1] such that δj = o
(

1
j1/4

)
. Assume Assumptions 3 and 4 hold. Then (ˆ̄τ batchb (w,w′)±

V̂ batch
b (w,w′)) where

V̂ batch
b (w,w′) :=

√√√√√2(Ŝbatch
b η2 + 1)

t2η2
log


√
Ŝbatch
b η2 + 1

α


is a valid (1− α) asymptotic CS for τ̄ batchb and V̂ batch

b (w,w′)
a.s.→ 0.

Proof. Note, the above result is equivalent to Theorem 1∗ except we replace τ̂i(w,w
′)

with τ̂batchj (w,w′), Bt(w,w
′) with Bbatch

b (w,w′) =
∑b

j=1 V ar
(
τ̂batchj (w,w′) | Fbatch

j,j−1

)
, and

Ŝt(w,w
′) and St(w,w

′) with Sbatch
b (w,w′) :=

∑b
j=1

1
B2

∑B
i=1 σ

(j)2(w,w′)
i and Ŝbatch

b (w,w′) :=∑b
j=1

1
B2

∑Hj

i=1 σ̂
(j)2(w,w′)
i respectively. Assumption 4 ensures

∑b
j=1 V ar

(
τ̂batchj (w,w′) | Fbatch

j,j−1

)
=

Ω(b) and, because pB−MAD
j|j−1 (w) ≥ 1

K
δj, we have that (τ̂

batch
j (w,w′)−τbatchj (w,w′))2 = o(j1/2)

and following the steps of the proof of Lemma A.2, we establish that {τ̂batchj (w,w′)}∞j=1 sat-
isfies the Lindeberg-type uniform integrability condition of Waudby-Smith et al. (2023),
i.e., there exists κ ∈ (0, 1) such that

∞∑
b=1

E
[
(τ̂batchb (w,w′)− τbatchb (w,w′))21{(τ̂batchb (w,w′)− τbatchb (w,w′))2 > (Bbatch

b (w,w′))κ}
]

(Bbatch
b (w,w′))κ

< ∞ a.s.

Hence, the remainder of the proof follows directly from Theorem 1∗, replacing the corre-
sponding terms for the batched bandit setting, because the fact that pB−MAD

j|j−1 (w) ≥ 1
K
δj

ensures that all analogous terms have the same rates as in Theorem 1∗.

For w,w′ ∈ W , , define TB-MAD(w,w
′) := inft

{
b : 0 /∈ (ˆ̄τbatchb (w,w′)± V batch

b (w,w′))
}
.

Theorem 4. For w,w′ ∈ W, let {τ̂ batchj (w,w′)}∞j=1 be the sequence of random variables

where W
(j)
i = w with probability pB−MAD

j|j−1 (w) = 1
K
δj + (1 − δj)p

adapt
j|j−1(w), w ∈ W, and δj ∈

(0, 1] such that δj = o
(

1
j1/4

)
. Assume Assumptions 3 and 4 hold. Then, if ˆ̄τ batchb (w,w′) → c

as b → ∞ for some |c| > 0,

P (TB−MAD(w,w
′) < ∞) = 1.
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Proof. Having established Theorem 3, the remainder of the proof follows from Theorem 2∗,
replacing the corresponding terms for the batched bandit setting, because the fact that
pB−MAD
j|j−1 (w) ≥ 1

K
δj ensures that all analogous terms have the same rates as in Theorem 2∗.

E Additional Simulation Results

(a) Confidence sequences of Howard et al.
(2021) plotted over 105 samples across 100 ran-
dom replicates with α = 0.05 and Yi(1) ∼
Bern(0.8), Yi(0) ∼ Bern(0.6).

(b) Time averaged reward of the confidence se-
quences of Howard et al. (2021) plotted across
100 random replicates with α = 0.05 and
Yi(1) ∼ Bern(0.8), Yi(0) ∼ Bern(0.6).

Figure 3

(a) Confidence sequences from Theorem 1 plot-
ted over 105 samples across 100 random repli-
cates with α = 0.05, Yi(1) ∼ Bern(0.8), Yi(0) ∼
Bern(0.4).

(b) Histogram of the first time zero was ex-
cluded from the CSs of Theorem 1 across
100 random replicates, α = 0.05, Yi(1) ∼
Bern(0.8), Yi(0) ∼ Bern(0.4). In this setting,
all experiments stopped for all designs.

Figure 4
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(a) Coverage of confidence sequences of Theo-
rem 1 across 100 random replicates, α = 0.05,
Yi(1) ∼ Bern(0.8), Yi(0) ∼ Bern(0.4). Error
bars represent 2SEs. The dashed line repre-
sents 1− α = 0.95.

(b) Time averaged reward of the confidence se-
quences of Theorem 1 across 100 random repli-
cates, α = 0.05, Yi(1) ∼ Bern(0.8), Yi(0) ∼
Bern(0.4). Error bars represent 2SEs.

Figure 5

(a) Confidence sequences from Theorem 1 plot-
ted over 105 samples across 100 random repli-
cates with α = 0.05, Yi(1) ∼ Bern(0.8), Yi(0) ∼
Bern(0.7).

(b) Histogram of the first time zero was ex-
cluded from the CSs of Theorem 1 across
100 random replicates, α = 0.05, Yi(1) ∼
Bern(0.8), Yi(0) ∼ Bern(0.7). 35% of Standard
design CSs did not stop, 29% of MAD CSs did
not stop, and all Bernoulli design CSs stopped.

Figure 6
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(a) Coverage of confidence sequences of Theo-
rem 1 across 100 random replicates, α = 0.05,
Yi(1) ∼ Bern(0.8), Yi(0) ∼ Bern(0.7). Error
bars represent 2SEs. The dashed line repre-
sents 1−α = 0.95. Note, that compared to the
other experiments where the ATE is larger, the
coverage of the Standard approach is closer to
the desired level. Since the bandit is not as able
to easily distinguish between the two arms in
this setting, intuitively, we would expect it to
draw more often from the suboptimal arm and
thus, have a more stable IPW estimator.

(b) Time averaged reward of the confidence se-
quences of Theorem 1 across 100 random repli-
cates, α = 0.05, Yi(1) ∼ Bern(0.8), Yi(0) ∼
Bern(0.7). Error bars represent 2SEs.

Figure 7
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