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Abstract

This paper studies the role that limited attention and inefficient risk sharing play in stock price

deviations from the efficient prices at horizons from one day to one month. We expand the Duffie

(2010) slow-moving capital model to analyze multiple groups of investors who have varying levels

of attention. We test the model’s implications through an analysis of the joint dynamics of stock

price movements and trading by the different types of investors. The model is consistent with con-

temporaneous, lead, and lag correlations among returns and trading at daily, weekly, biweekly, and

monthly frequencies. We quantify limited attention’s economic effects on asset prices by estimating

a reduced form version of our model on New York Stock Exchange data. A one standard deviation

change in market maker inventories is associated with transitory price movements of 65 basis points

at a daily frequency and 159 basis points at a monthly frequency. 8% of a stock’s daily idiosyncratic

return variance and 25% of a its monthly idiosyncratic variance are due to transitory price changes

(noise) and the trading variables explain 32% of this noise.
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1 Introduction

This paper studies the day-to-day, week-to-week, and month-to-month role that investors’ limited

attention plays in a stock price deviations from the efficient (random walk) price. The paper develops

a theoretical model of investors with varying levels of attention, tests the model’s implications for price

changes and investors’ trading with empirical New York Stock Exchange (NYSE) data, and quantifies

the economic effects of limited attention on asset prices by estimating a reduced form version of

the theoretical model. The economic magnitude of the empirical estimation provides the paper’s

most significant results: 8% of a stock’s daily idiosyncratic return variance and 25% of a its monthly

idiosyncratic variance are due to transitory price changes (noise) and the trading variables explain

32% of this noise. The consistency between the theoretical model and empirical data of the lead-lag

and contemporaneous correlations among investors’ trading and price changes provides support for the

model’s impact of inattention in stocks’ return-generating process. Noise in prices of this magnitude

has important implications for asset pricing tests (Asparouhova, Bessembinder, and Kalcheva (2010)

and Asparouhova, Bessembinder, and Kalcheva (2013)).

Theoretical Framework: The first part of the paper generalizes the Duffie (2010) slow-moving

capital framework. Duffie’s model contains two types of market participants who trade with each

other after an aggregate supply shock. Market clearing in models with two investor types implies that

after any initial shock trades of one type are exactly equal and opposite to those from the other type.

Our model differs from Duffie’s most significantly by having more types of investors (individuals,

institutions, and market makers) and an infinite-date economy. The first two investor types want to

trade with each other in order to hedge an exogenous, evolving, and non-tradable endowment. The

third investor type, market makers, are not exposed to the endowment shocks, but are willing to pro-

vide liquidity to accommodate other investors’ trading needs. Market makers act as arbitrageurs and

require compensation for assuming inventory risk via a transitory price impact. Investors’ inattention

and limited arbitrage lead to negative autocorrelation in returns. Three types of investors allow us to

describe relations between observed equity returns and trades of the various investor types. We are

also able to characterize trading among the different investor types.

Like the Duffie (2010) model, our theoretical framework contains two main frictions. First, all

investors are risk-averse. Therefore, there is no risk-neutral agent to take an infinitely large position
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to eliminate mispricing. Second, and more importantly, some of the individual investors are not

fully attentive. That is, some individuals only periodically consider whether to trade at each possible

date. This partially-attentive behavior causes inefficient risk-sharing vis-a-vis the evolving endowment

process and the needs of the institutional investors who trade at each date. Specifically, following an

endowment shock, there are fewer individuals present than fully attentive institutions. Market makers

trade to inter-temporally smooth supply and demand. They subsequently offload their positions to

partially-attentive individuals participating in the market with delay.

The link between theory and empirical tests highlights the similarity and key differences between

our approach and Duffie’s. Price dynamics in our model work in much the same way as in Duffie

(2010). A shock initially induces a sharp price movement that is then slowly reversed. The duration

of a reversal is closely related to how inattentive investors are. The Duffie (2010) paper provides a

number of examples of a price response to a one-time, easily-identified event such as a S&P500 Index

deletion. In contrast, we study repeated, not clearly identified shocks on a daily basis. The goal is to

apply our model’s results to empirical price and trading data. We specifically include individuals and

market makers in our investor types to facilitate mapping the model’s results to available NYSE data.

Duffie (2010) cites papers using observable events to identify shocks to the trading environment. We

use empirical trading data to identify repeated shocks that cause investors to trade. Our approach

examines whether the limited attention framework is consistent with the data and the impact of

inattention in the overall return-generating process.

Tests of the Model’s Implications: The second part of this paper describes the NYSE data and

tests multiple implications of our model. For a given equity, our model produces implications related

to the joint dynamics of three data series at four frequencies (daily, weekly, biweekly, and monthly)

for three time-shifts (one-period lag, contemporaneous, and one-period lead.) The three data series

consist of equity returns, market makers’ inventories, and individuals’ aggregate net trades.1

To test implications regarding dynamic relations among different time series, the second part of

the paper focuses on the direction of correlations (positive, zero, or negative). For example, one of our

1All of our empirical tests exclude institutions’ aggregate net trades due to the adding-up constraints from market
clearing that aggregate net trading equals zero and aggregate holdings equal supply of the asset. If one knows the
aggregate holdings of market makers and individuals, then the aggregate holdings of institutions are also known. Likewise,
if one knows the aggregate net trades of market makers and individuals, then aggregate net trades of institutions are
known. Note that in our data, there is one dedicated market maker for each stock.
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model’s predictions is that market maker inventories this period are positively related to individuals’

aggregate net trades next period. Another prediction is that individuals’ aggregate net trades this

period are positively related to returns over the following period. In total, we test predictions related

to 12 correlations at four different frequencies. The empirical relations among return and trading data

are consistent with all of the predictions.

A calibration exercise examines whether our model can, in addition to correlation signs mentioned

above, match the economic magnitudes found in NYSE data. We choose 6 properties (moments)

related to risk-sharing trades at daily, weekly, biweekly, and monthly horizons. We find model pa-

rameters of the limited attention framework that generate a reasonable quantitative fit of the joint

dynamics of stock price movements and trades.

While the results are supportive of a limited attention framework, we note that we cannot directly

“test” limited attention per se. Instead, we make predictions that are related to the joint dynamics

of equity returns and risk sharing trades.2 The strength of our results, and ultimately a contribution

of this paper, lies in the breadth of confirmed predictions.

Quantifying Economic Effects with a State-Space (Statistical) Model: The third part of our

paper quantifies the economic effects of limited attention on asset prices with a state-space (statistical)

model or “SSM”. The SSM approach captures the transitory component of prices from the theoretical

framework as well as the efficient price. The Kalman filter separates an equity’s observed price into

these two unobservable components. The SSM allows the NYSE trading data variables to affect the

evolution of both the efficient component and the transitory component of prices.3

The final part of our paper pays particular attention to transitory price movements. How large

are the deviations from efficient values? How long does a typical deviation last?

Coefficients from the statistical model quantify the magnitude and duration of transitory price

movements. Our results apply to a typical NYSE stock over a typical day, week, or month. We find

transitory price effects last at least a month and are economically and statistically significant. A

2Our model and empirical focus is on risk-sharing trades. We do, however, allow for information-based trading to
affect prices in our empirical work.

3One can also think of the SSM as a linear, reduced form of the non-linear theoretical model. In addition, the NYSE
data may also include information-based trading strategies. Therefore, the state-space model to allows for this possibility.
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one standard deviation change in individuals’ net trades is associated with 12 basis points (bps) of

transitory price movement in daily data and 151 bps of transitory price movement in monthly data.

Similarly, a one standard deviation change in market makers inventories is associated with 65 bps of

transitory price movement in daily data and 159 bps of transitory price movement in monthly data.

An important and final contribution of our paper is the ability to study the “term structure” of

transitory price movements. It is well known that most individual stocks experience negative return

auto-correlation at a daily horizon. We show how limited attention provides the answers to questions

such as: i) Why doesn’t return autocorrelation go to zero as one moves from daily, to weekly, to

longer (monthly) horizons? ii) Why does return auto-correlation actually become more negative at

longer horizons (up to monthly)? iii) Does the ratio of a stock’s transitory variance to its idiosyncratic

variance decrease, stay the same, or increase as one moves from daily to monthly data? The theoretical

model with inattention answers the first two questions as the auto-correlation in returns becomes more

negative up to the inattentive horizon. The SSM addresses the third question with estimates of the

unobservable efficient and transitory prices. Transitory variance represents 8% of a typical stock’s

idiosyncratic variance at a daily frequency and 25% of a typical stock’s idiosyncratic variance at a

monthly frequency. To our knowledge, we are one of the first papers to examine such a term structure

of transitory stock price movements.

1.1 Links to Existing Studies

The paper attempts to better understand how investors’ limited attention can affect asset prices

through a risk-sharing channel, as opposed to through an information (or pseudo-information) channel.

While the second channel plays a role in markets, it has been previously studied in papers such as

Rashes (2001) and Huberman and Regev (2001). Thus, one goal of our paper is to show how frequent

and i.i.d. shocks can translate into large and long-lasting movements in a stock’s transitory price. The

same shocks also lead some types of investors to have highly auto-correlated (aggregate) trades. In

these ways, our paper expands an older literature that includes papers such as Poterba and Summers

(1988), Roll (1988), and Cochrane (1994). A key difference is that papers such as Poterba and

Summers (1988) assume the transitory component of prices evolves as a specific AR process while we

use empirical NYSE data to identify the timing and dynamics of transitory price movements.
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Because we study the aggregate trades of individual investors, our work is related to attention

studies including Barber and Odean (2008). These papers study events that catch individuals’ atten-

tions and induce trades. The authors present results that a sudden influx of buy orders (for example)

can cause prices to be pushed temporarily higher. Our paper takes a quite different approach. Rather

than using liquidity-demanding trades to link attention and transitory prices, we focus on risk sharing

issues that arise when some investors have limited attention. In addition, and in NYSE data, individ-

uals sell in aggregate when prices are rising (as in Kaniel, Saar, and Titman (2008) who use shorter

sample period of the same NYSE data).

Non-participation in the stock market is an extreme form of limited attention. Such behavior

has been shown to affect consumption patterns as well as economists’ estimates of quantities such

as the equity premium and the inter-temporal marginal rate of substitution. For examples from

this literature, see Mankiw and Zeldes (1991), Brav, Constantinides, and Gezcy (2002), and Vissing-

Jorgensen (2002). Our paper differentiates itself by considering different levels of limited attention

with a focus on transitory price movements.

Finally, we note that our paper provides a single, unified framework tying together a number of

existing empirical studies. Financial economics has a long history of studying the relations between

an investor type’s aggregate net trades and price movements. For example, Lakonishok, Shleifer, and

Vishny (1992) find that pension funds tend to buy and sell together. The observed buying and selling

behavior is correlated with price movements.4 There are two main take-aways from these papers:

i) Institutions tend to buy stocks that recently went up and sell stocks that recently went down;

ii) Adding up constraints are often assumed such that individual investors’ net trades are set equal

and opposite to institutions’ net trades—see Cohen, Gompers, and Vuolteenaho (2002). Our results

confirm that market makers and individuals sell stocks that recently went up (i.e., institutions buy at

these times).

Our unified framework provides additional empirical results link institutional and individual trad-

4The list of papers that study institutional trades and price movements is too long to include here. Representative
papers include Nofsinger and Sias (1999) and Griffin, Harris, and Topaloglu (2003).
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ing5 to price movements with the literature on market makers.6 Our theoretical framework is consistent

with existing empirical regularities from these literatures. In addition, our model makes predictions

about relations between a stock’s returns, market maker inventories, and individual investors’ net

trades. For example, market maker inventories today are positively correlated with individual net

buying over the following day, week, and month. We are able to test and confirm the model’s predic-

tions with our NYSE data.

2 Theoretical Model

This paper’s model is inspired by the Duffie (2010) framework. As in Duffie (2010), we focus on a

market with frictions—specifically, frictions associated with limited attention and risk aversion. We

consider an infinite-date economy with t = {0, 1, 2, 3, . . .} .

Assets. There are two types of assets in the economy. The first asset is riskless and has a constant

per-period gross return of r ≥ 1. The second asset pays a stochastic dividend of Xt at each date t and

is in zero net supply. The dividend is i.i.d. with mean zero and variance σ2
x.

Participants. The model contains three types of market participants: individual investors, insti-

tutional investors, and market makers. Each investor maximizes his or her expected utility of final

wealth and has a CARA exponential utility function. Individuals are labeled with a subscript of 1 and

institutions with a subscript of 2. Of all investors have a harmonic mean of their absolute risk-aversion

coefficients of φ.

Institutions: Institutional investors trade at each date t and are a fraction 0 < q2 < 1 of all

investors.

Market Makers: Market makers trade at each date t. A fraction 1 − q1 − q2 of all investors are

market makers.

5The literature on individuals’ net trades is also far too large to mention here. Kaniel, Saar, and Titman (2008) is
arguably the closest such paper to ours. The authors show that individuals’ net trades this week are positively related
to returns the following week. Our model predicts this result and we confirm it empirically.

6Papers on market makers date back to Hasbrouck and Sofianos (1993) and Madhavan and Smidt (1993). More
recent papers include Hendershott and Seasholes (2007) and Hendershott and Menkveld (2013). Briefly, market makers
are found to trade against (contemporaneous) price movements. This strand of literature tends to focus on the relations
between market maker inventories and price movements. Our current paper studies these relations at different and
longer frequencies as well as relations between market maker aggregate inventories and the net aggregate trades of other
investor types.
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Individuals: Individual investors in our model are not homogeneous and consist of three subtypes.

The first subtype is referred to as the “least-attentive” individuals. A single member of this subtype

trades (participates) once every k1 dates. During the time between two participation dates, the investor

does not actively rebalance his/her portfolio. Of all investors in our model, a fraction 0 < q11 < 1

is the least-attentive individuals. The second subtype are “partially-attentive” individuals since they

trade (participate) once every k2 dates with k1 > k2. There is a fraction q12 of these investors. The

third subtype are referred to as the “most-attentive” individual investors because they trade at each

date t (e.g., retail day traders.) There is a fraction q13 of these investors in the economy. We define

q1 ≡ q11 + q12 + q13 to be the total fraction of all individual investors in the economy with 0 < q1 < 1.

Individuals’ Life Cycles: Individual investors live a multiple number of their inattentive period.

Upon death an individual consumes his or her wealth and is replaced by an arriving investor of the

same type. Therefore, in a stationary state the fractions of investor-types at different life stages remain

constant. At each date t, we assume 1/k1 of the least-attentive individuals participate (trade) and 1/k2

of the partially-attentive individuals participate. Thus, analogous to Duffie (2010), the individuals’

“participation frequencies” of 1/k1, 1/k2, and 1, and not their total life spans, play a role in the aggregate

demand functions in our model.

Individuals’ Reinvestment Policies: For simplicity, we assume a least-attentive or partially-attentive

individual re-invests his dividends at the riskless rate until his next investment decision date. We use

Rt+k1 to denote the payout (value) at date t + k1 associated with one unit of investment made at

date t. For a least-attentive individual, the gross payout Rt+k1 can be written as the sum of the

reinvested dividends, plus a possible “extra” or transitory component (St+k1) that is associated with

the future price of the risky asset: Rt+k1 =
(∑k1

i=1 r
k1−iXt+i

)
+ St+k1 . There is a similar expression,

Rt+k2 =
(∑k2

i=1 r
k2−iXt+i

)
+ St+k2 , for a partially-attentive individual.7

Exogenous Endowment Shocks. In the model, individual investors and institutions want to trade

with each other in order to hedge exogenous endowment shocks. The payoff of this non-tradable

endowment is perfectly correlated with the payoff of the risky asset.8 Each institutional investor has

7The value of the transitory components (St+k1 and St+k2) result from solving this model and these components are
discussed further in Section 2.1.

8The use of non-tradeable endowments with payoffs correlated with the payoffs of the risky asset are used in models
such as Vayanos and Wang (2012) and Lo, Mamaysky, and Wang (2004). Note that the market makers are not exposed
to the endowment shock, but may be willing to trade to help balance supply and demand.
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the same exogenous endowment of −Nt at time t, while each individual investor has an endowment

+ q2
q1
Nt such that the aggregate endowment is zero. For simplicity at t = 0 the per-capital endowment

is N0 = 0. For t > 0 the per-capital endowment Nt follows a random walk and the per-capital

endowment shock is ∆Nt ∼ N(0, σ∆N ).

Nt = Nt−1 + ∆Nt (1)

Definitions for variables in our model are given in Appendix A. A detailed description of the model’s

setup and solution is in the Internet Appendix.

[Insert Table 1]

Table 1 compares and contrasts our model’s set-up to that in Duffie (2010). Duffie’s paper has two

types of investors, while our model has three (individuals, institutions, and market makers). Our

individuals can further be classified into three sub-types based attentiveness. The Duffie (2010) model

uses an exogenous aggregate supply shock to generate trades, while our model has exogenous (non-

tradeable) endowment shocks. Thus, there is a difference in how noise is modeled which leads the

Duffie (2010) model to have time-varying aggregate risk while our model does not.

A key difference between the two models is not readily apparent in Table 1. In Duffie’s model,

the supply Zt is constant after t=1 such that σz=0 for all t > 0. Therefore, prices and investors’

holdings are not stationary. We focus on a stationary solution (directly below) which can be linked to

stationary empirical data on returns and trading.

2.1 Stationary Solution

Each investor maximizes the utility of his or her final wealth. Because the risky asset is in zero

net supply and its dividend are mean of zero and distributed i.i.d., the expected value of all future

dividends is also zero. Therefore, the risky asset’s “price” in this model (denoted “St”) can be thought

of as transitory deviations around the present value of future dividends. As such, St may be less than,

equal to, or greater than zero based on supply and demand.

Market clearing at a given date t is influenced only by investors who are present. These investors

include the institutions, market makers, most-attentive individuals, 1/k2 of the partially-attentive
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individuals, and 1/k1 of the least-attentive individuals. The strategy to identify equilibrium closely

follows Duffie (2010). The associated Internet Appendix provides details about each investor-type’s

demand function and the market clearing conditions. The risky asset’s transitory price takes the form

shown below where c is a (k1 + k2)× 1 solution vector:

St = cT · Yt (2)

g = a1(c) + a2(c) + b1(c) + b2(c) + b3(c).

Similar to Duffie (2010), a1, a2, b1, b2, and b3 are defined from the demand equations and g is a

(k1 +k2)×1 vector of constants. The g vector is derived from market clearing conditions—see equation

IA.9 in the Internet Appendix. Yt is a (k1 + k2) × 1 vector of the current endowment process (Nt),

the current dividend (Xt), the holdings of the “cohort” of least-attentive individuals who are active,

the vector of holdings for the k1-1 cohorts of least-attentive individuals who are not participating, the

holdings of the cohort of partially-attentive individuals who are active, and the vector of holdings for

the k2-1 cohorts of partially-attentive individuals who are not currently participating. As in Duffie

(2010), there are no closed-form expressions for the transitory prices, but we can numerically solve for

price and holdings given a set of values for the model’s parameters.

2.2 Numerical Example

A numerical example illustrates the trading and price dynamics in our model and compares and

contrasts those with Duffie (2010). The example is based on an exogenous endowment shock of size

σ∆N/q2 at t=1. The parameters are chosen based on NYSE data and further discussed in Section 3.6.

In our model, we set the fractions of least-attentive, partially-attentive, and most-attentive individuals

to: q11 = 0.24; q12 = 0.24; and q13 = 0.12 respectively.9 The fraction of institutional investors is set

to q2 = 0.20 and the remaining fraction of market makers is 0.20. We set the inattentive frequencies

to k1 = 42 days and to k2 = 10 days, respectively. The gross riskless rate is r = 1.0001, which equals

the daily average 1-month T-bill rate from 1999 to 2005. Also, σ2
∆N = 2.00 and σ2

x = 0.0005. For the

Duffie (2010) results we set k = 42, σ2
x = 0.0005, r = 1.0001, and q = 0.48 in his model to generate

results that we can compare to our model. In both models the the absolute risk-aversion coefficients

9In this example, the exogenous endowment shock occurs at t=1 and is equal to ∆N1 = σ∆N/q2 with N1 = N2 =
· · · = Nt = σ∆N/q2. Therefore, the aggregate shift for institutional investors is −σ∆N and the aggregate demand shift
of individual investors is +σ∆N . This formulation is equivalent to a standardized impulse response function.
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φ equal 1.00.

[Insert Figure 1]

The top graphs in Figure 1 (Panel A and Panel B) show that our stock price’s impulse response

function is qualitatively similar to the one produced by the Duffie (2010) model. In our example,

equilibrium (transitory) prices initially decline sharply (at t=1) before rising back to zero by t ≥ 40.

Figure 1’s middle-left and bottom-left graphs show the aggregate asset holdings and net trades of

our three investor types. Clearly, the price deviation is negatively associated with the market makers’

inventory levels. In addition, the price deviation is also negatively associated with the individuals’

net trades. Conversely, price deviation is positively related with the net trades of the institutional

investors.10 Notice that in the Duffie framework there is an aggregate supply shock of size
√

2 (see

the graphs in Panel B). The middle-right and bottom-right panels show that, in the Duffie framework,

aggregate holdings increase by 1.41 units (for all dates), net trades sum to 1.41 at date t=1, and net

trades sum to zero for t >1.

Much of our model’s economic intuition can be seen in Figure 1’s middle-left and bottom-left

graphs. Market maker inventories spike up at t=1 and have a half life of approximately six days. The

inventories are negatively correlated with contemporaneous and lagged returns (changes in log prices),

but positively correlated with future returns. In this panel, institutions sell and market makers buy

at t=1. Individuals with limited attention show up and want to buy at future dates (t+1, t+2, . . .)

Market makers liquidate their positions to these individuals. Interestingly, institutions also sell to

these individuals causing Corr(∆Instt,∆Indvt+1 < 0).

To conclude this section: The top row of Figure 1 shows the Duffie (2010) framework is sufficient

to describe the shape of transitory price movements. Rows 2 and 3 highlight our paper’s contributions.

Specifically, our paper makes numerous predictions about the joint dynamics of returns and trading

variables that can be tested with NYSE data.

10We focus more on individuals’ and institutions’ net trades instead of their holding levels due to non-stationarity of
the level series. In all of our empirical work, we focus on three data series: i) Stock returns; ii) Market makers’ inventory
levels; and iii) Individuals’ net trades. Institutional investors’ trading activity is omitted due to the adding-up constraints
from market clearing requires that aggregate net trading equals zero and aggregate holdings equal supply of the asset.
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3 Data and Tests of the Model’s Predictions

3.1 Data Description

Our data start in January 1999 and end in December 2005. Throughout this section, all tests are

carried out at four frequencies (daily, weekly, biweekly, and monthly). Thus, our sample consists of

1,760 days, 365 weeks, 182 two-week periods, and/or 84 months of data. Four sources provide the

data used in this paper.

• An internal New York Stock Exchange (“NYSE”) database called the Specialist Summary File

(or “SPETS”) contains specialists’ closing inventory positions for each stock at the end of each

month. The NYSE assigns one specialist per stock and a given specialist is responsible for

making a market in approximately ten stocks. See Hasbrouck and Sofianos (1993) for further

discussion of the SPETS database.

• An internal NYSE database called the Consolidated Equity Audit Trail Data (or “CAUD”)

contains the number of shares bought and sold by individual investors, for each stock, over each

month. In addition, the CAUD database provides trading volume. See Kaniel, Saar, and Titman

(2008) for further discussion of the CAUD database.

• The Trades and Quotes (“TAQ”) database provides closing midquotes prices. Prices and returns

in this paper are measured at the midquote to avoid bid-ask bounce. All prices are adjusted to

account for stock splits and dividends.

• The Center for Research in Security Prices (“CRSP”) provides the number of shares outstanding

(used to calculate market capitalizations) and information necessary to adjust prices for stock

splits/dividends.

We start with the 2,357 common stocks that can be matched across the NYSE, TAQ, and CRSP

databases. We construct a balanced panel of data to ensure results are comparable throughout time.

There are 1,037 stocks that exist for the entire sample period. Stocks with an average share price of

less than $5 or larger than $1,000 are removed from the sample. The final sample consists of 1,019

stocks.
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The trading variables are for market-makers and individuals. We convert market makers’ inventory

positions and individual net trades to US dollars (both variables are originally in number of shares.)

For each stock, we multiply the number of shares by the stock’s sample average price so as not to

introduce price changes directly into the trading variables.

To ensure stationarity, our empirical work uses market makers’ inventories (levels) and individuals’

net trades (changes in levels). The Internet Appendix provides formal Dickey-Fuller tests to support

the choice of market maker inventory levels and individuals’ net trades (changes in levels) in our

empirical work.

3.2 Summary Statistics

Table 2, Panel A presents summary statistics for seven “raw” variables. Over our sample period,

the average company market capitalization is $8.10 billion, the average daily trading volume is 0.71

million shares, and the average closing midquote price is $34.56.

Panel A also shows trading variables including market makers’ inventories (in both thousands of

shares and in dollars) and individuals’ net trades. On average, market makers hold $168,590 dollars

of inventory per stock.

[Insert Table 2]

Individuals’ average net trades are negative across all frequencies indicating that individuals’ di-

rect holdings decline over our sample period. Individual investors, in aggregate and on average, sell

$177,990 per stock-day, $857,770 per stock-week, $1.7 million per stock-two weeks, and $3.75 per

stock-month.

3.3 Idiosyncratic Variables

Risks associated with market-wide return shocks can be hedged with highly-liquid index products.

Therefore, our empirical analysis focuses on the idiosyncratic components of our variables. For each

return and trading variable, we construct a common factor equal to the market capitalization weighted

average of the underlying variable. We regress each variable on its common factor and save the residual

as the corresponding idiosyncratic variable. This procedure is detailed in Appendix A. For notational
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simplicity, we omit any subscripts or superscripts referring to “idiosyncratic,” and use MMi,t (for

example) to denote the idiosyncratic portion of the market maker’s dollar inventory in stock i.

Table 2, Panel B provides summary statistics for idiosyncratic trading variables used in this paper.

Since the idiosyncratic variables are defined as residuals from a market model regression, means are

zero. The panel focuses on standard deviations at each of four frequencies. For market makers,

the standard deviations of their positions range from $565,700 (daily) to $618,500 (monthly). For

individuals, the standard deviations of their net trades range from $872,200 (daily) to $7.79 million

(monthly).

3.4 Correlations of Price and Trading Variables (NYSE Data)

From our NYSE data we calculate the correlations of the market maker inventories, individuals’

aggregate net trades, and the idiosyncratic part of returns. The correlations are calculated at daily,

weekly, biweekly, and monthly frequencies contemporaneously as well as for one lag and one lead at

each of the four frequencies. Calculations are first done on a stock-by-stock basis and then averaged

across stocks. Table 3 presents the correlations with t-statistics based on double-clustered standard

errors (stock and time). See Petersen (2009) for a discussion of clustered standard errors.

[Insert Table 3]

The autocorrelation of returns is -0.01 at a daily frequency and -0.06 at a monthly frequency, indicating

that deviations from the efficient price may be long-lived. Each autocorrelation appears twice in the

table as Corr(Xt−1, Xt) = Corr(Xt, Xt+1) for any variable Xt. The -0.01 daily return autocorrelation,

therefore, appears in the top-left box (rows=“Daily” and columns=“Lag”) and in the top-right box

(rows=“Daily” and columns=“Lead”).

Market maker inventory levels are positively autocorrelated, though relations decrease monotoni-

cally as the horizon gets longer. The values declines from 0.60 (daily) to 0.17 (monthly). Individual

investors’ net trades are also positively autocorrelated (daily = 0.27 and monthly = 0.32). As one can

see, these values do not go to zero at longer horizons.
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Persistent relations can also be seen in some cross-autocorrelations. For example Corr(MMt−1,

∆Indvt) goes from 0.06 (daily) to 0.08 (monthly) as can be seen in the lag columns. Also, the

Corr(MMt−1, rt) goes from 0.01 (daily) to 0.05 (monthly) also in the “Lag” column group. Both

of these persistent cross-autocorrelations are consistent with our model of limited attention. Market

makers take long (short) positions at date t-1 when they can be compensated via future price rises

(falls). Market makers unwind positions from date t-1 by trading with individuals at date t.

3.5 Model’s Predicted Relations Between Returns and Trading Variables

We assess the model’s ability to predict relations between returns and trading variables by comparing

model-generated and empirical (NYSE) correlations’ signs, i.e., positive or negative. The first step is

to choose parameter values. For most of the parameters, we consider a range of values. The coefficient

of absolute risk aversion is set to one of four values φ ∈ {0.001, 0.010, 0.100, 1.000}. The fraction of

individual investors in the market is q1 ∈ {1/5, 2/5, 3/5}. The fraction of institutional investors in the

market is q2 ∈ {1/5, 2/5, 3/5} with the restriction that q1 and q2 cannot both be 3/5. The least-attentive

individuals’ inattentive frequency is set to k1 ∈ {42, 63} and expressed in days, while the partially-

attentive individuals’ inattentive frequency is set to one of four values k2 ∈ {2, 5, 10, 21} and expressed

in days−1. Finally, the variance of the exogenous endowment shock is σ2
∆N ∈ {1, 2, 10, 100, 1000}. In

total, there are 2,052 parameter combinations and numerically solving the model for these combina-

tions takes approximately 5 days of computation time.

For a given parameter combination, the model is solved numerically to create moving average

(MA) representations of prices and quantities. Correlations are generated from the impulse response

functions (IRF) following an endowment shock at t=0. For an IRF in the form yt = εt + θ1εt−1 +

θ2εt−1 + . . ., the autocorrelation of yt can be derived as a function of the θ’s. As in Table 3 results

are shown for four frequencies (daily, weekly, biweekly, and monthly) as well as three time shifts (one

period lagged, contemporaneous, and one period lead).

[Insert Table 4]

Table 4 presents the predominant correlation signs across the 2,052 parameter combinations. Below

each “+” or “-” sign is the fraction of parameter combinations with the same sign as the predominant
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sign. For example, in the top left of the table (rows=‘Daily’ and columns=‘Lag’), our model predicts

that the autocorrelation of market-makers’ daily inventories (holdings) is positive with 99.7% of the

2,052 parameter combinations produce positively autocorrelated market maker inventories at a daily

frequency.

In the rows=‘Daily’ and columns=‘Lag’, we see that individuals net purchases (∆Indvt) are posi-

tively correlated with market maker inventories from yesterday (MM t−1). This prediction is new and

unique to our model and 100% of the parameter combinations produce this positive correlation. Eco-

nomically, when institutions want to sell at the time of a shock, not enough individuals are “attentive”

and market makers step in to buy. As shown in Figure 1, as the partially-attentive and least-attentive

individuals eventually come to trade, market makers are able to unwind their positions. Market

makers sell, individuals buy, and our model predicts there is a positive correlation between lagged

market-maker inventories and individuals’ net trades. Panel A, shows that this positive correlation

exists at daily, weekly, biweekly, and monthly frequencies.

There are two main take-aways from Table 4. First, the model-predicted correlation signs in Table 4

match the empirically-calculated correlation signs in Table 3 for all relations and at all frequencies.

Second, Table 4 shows that for 96.5% to 100% of the 2,052 parameter combinations, the correlation

between two model-generated data series produces a consistent sign. For example, the model predicts

individuals’ net trades are positively autocorrelated at a weekly frequency for 99.3% of the 2,052

parameter combinations. The similarly signed correlations (empirical data and model-generated data)

provide evidence that the limited-attention framework can describe the joint dynamics of prices and

trading variables.

3.6 Model Calibration

Beyond the qualitative comparison of Tables 3 and 4 we next examine whether our model can replicate

the economic magnitudes observed in the empirical data. In other words, we grid-search through the

2,052 parameter combinations to identify a “best fit” set of parameters. The calibration exercise is

based on 24 properties (i.e., moments) related to risk-sharing and the joint dynamics of returns and

trading. In models of informed trading with risk neutral market makers, e.g., Glosten and Milgrom

(1985) and Kyle (1985), informed order flows cause contemporaneous relations between themselves and
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returns. Informed trading induces no autocorrelation in returns as lagged total order flow and lagged

returns are uncorrelated with subsequent returns. If individuals are adversely selected by informed

traders, then their trading is negatively correlated with future returns. Therefore, we exclude the

moments related to this from the calibration exercise: the contemporaneous correlations between

returns and trading variables, the correlations between past trading variables and subsequent returns,

and the cross correlations between the trading variables. Tables 3 and 4 shows that the model produces

correlations of the same sign as in the data. However, informed trading induces variation in the trading

variables different from inattention. This makes it difficult for the model to produce correlations for

the omitted moments that quantitatively match the data.

[Insert Table 5]

Table 5 lists the 24 properties used to calibrate our model. There is one group of six properties for

each of four time frequencies. 20 of the 24 properties involve correlations in Tables 4 and 3. 4 of

the 24 properties are the volatility of individuals’ trading divided by the volatility of market-maker

inventories (also at daily, weekly, biweekly, and monthly frequencies). These link the magnitude of

trading by the different groups in the data to the model. The column of “Target Values” is calculated

with the observable NYSE data described in Table 3 in Section 3. The column of “Best fit” values

comes from model-generated data. The best-fit model’s parameters are chosen from a grid-search over

the same set of parameter values as in Table 4 with the goal of minimizing the sum of (percentage)

squared error.

Criterion Function =
∑
i

(
Modeli − Targeti

Targeti

)2

. (3)

Table 5 reports target and best-fit properties of our data (empirical and model-generated respectively).

As previously noted, we match the sign of all 20 target correlations, while the four standard deviation

ratios are positive by definition. For the most part, our model comes close to matching the magnitudes

of the 20 target correlations. For example, the autocorrelation of daily returns is -0.01 in both

our sample of NYSE data and in our model-generated data. The daily net trades of individuals

(∆Indvt) has a positive autocorrelation of 0.27 in the NYSE data and 0.20 in our model-generated

data. Individuals buy after prices fall at all frequencies in both the NYSE data and the model-

generated data (see cross autocorrelations of -0.06 and -0.02 at a daily frequency). We are less

successful at matching the ratio of standard deviations. Best fits are about half the magnitudes of
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their target values.

Tables 3, 4, and 5 provide support that our model produces results that are consistent with NYSE

price and trading dynamics. This spans both correlations signs and economic magnitudes. Next

we turn to quantifying the economic effects. In particular, the correlations provide insight into how

investors trade and how these relate to price changes. There is no straightforward way to use the

correlations to estimate the importance of the trading variables, and, therefore, limited attention, in

the overall return-generating process.

4 State-Space Model

In this section, we estimate the economic effects of limited attention on asset prices based on a state

space (statistical) model that includes measures of market makers’ inventories and individuals’ net

trades. The statistical model follows from equations in the Internet Appendix (see Eq.IA.4 to IA.9

and Eq.IA.12 for example) and can be thought of a reduced-form (linear) version of the non-linear

model described in Section 2.

Following directly from Eq.IA.12, the state space model defines a stock’s observed price (pi,t) as

the sum of two unobservable components. The first component is its efficient price (mi,t) and the

second component is the transitory price (si,t).

pi,t = mi,t + si,t (4)

mi,t = mi,t−1 + δi,t + βift + wi,t (5)

wi,t = κMM
i M̃Mi,t + κindvi ∆Ĩndvi,t + ui,t (6)

si,t = αMM
i MMi,t + αindvi ∆Indvi,t + εi,t (7)

We use pi,t to denote stock i’s log price. The efficient price (mi,t in logs) is modeled as a process of

uncorrelated increments with a nonzero drift equal to the stock’s required return. This characterization

is appropriate for a process with information arrival. The required return (δi,t) is assumed to be equal

to the monthly risk free rate plus the stock’s beta times a market risk premium of 6%. The increments

consist of the market factor (βift) and an idiosyncratic increment (wi,t). We note that βi is a coefficient

to be estimated while ft represents the demeaned market return. Appendix A.2 provides details related
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to calculating both δi,t and ft.

The idiosyncratic innovation of stock i’s efficient price is denoted wi,t and is one focus of this

section since it represents undiversifiable risk to those who temporarily hold inefficient positions (e.g.,

the market makers). Equation 6 defines wi,t for stock i over period t. The inclusion of the trading

variables M̃Mi,t and ∆Ĩndvi,t in the equation is important for identification if we believe these variables

include trading based on private information. A tilde over the trading variable’s name indicates

autocorrelation has been removed using an autoregressive model. Appendix A.2 provides details

related to calculating both M̃Mi,t and ∆Ĩndvi,t.

The transitory component of price (si,t in logs) is assumed to be stationary. In Eq.7, we allow for

both market makers’ inventories (MMi,t) and individuals’ net trades (∆Indvi,t) to affect the transitory

component of price.

4.1 Estimation Procedure

The state-space model is estimated on a stock-by-stock basis using maximum likelihood. The pro-

cedure exploits a Kalman filter. The estimation is implemented in Ox using standard optimization

techniques. The Kalman filter routines are from an add-on package called ssfpack. See Koopman,

Shephard, and Doornik (1999) for additional information about related estimation procedures. The

optimization procedure follows steps designed to avoid getting stuck in local maxima. The associated

Internet Appendix has additional details. There are at least three advantages with using a state space

model in our setting.

1. A state space model explicitly separates transitory (short-term) effects from permanent (long-

term) effects. This separation allows for parsimonious modeling of how an observed variable

might affect different horizons.

2. Maximum likelihood estimation is asymptotically unbiased and efficient.

3. The state space statistical model helps identify effects that would otherwise be unobserved.

After estimation, the Kalman filter offers an in-sample decomposition of an observed price (time

series) into its efficient and transitory components. The decomposition is available at any point
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in the sample period using past and current prices.11

The t-statistics reported in this section assume that residuals are uncorrelated across stocks as

the state-space model is estimated on a stock-by-stock basis. Estimating all stocks together is not

computationally feasible. Therefore, we test the robustness of our results with an alternative (ARIMA)

statistical model. We estimate the ARIMA model with OLS and t-statistics are based on standard

errors clustered by month.12 A more detailed discussion of the ARIMA model, along with its results

that are quantitatively similar to those reported in this paper, can be found in the Internet Appendix.

Ideally, the model would be estimated at the highest frequency, e.g., daily, and the longer horizon

results could be calculated from those results. However, the linearity of the empirical model may

prevent it from identifying longer horizon transitory price dynamics in higher frequency data. To

examine and confirm this we generate data with our theoretical model. We then estimate a state-

space (statistical) model on these model-generated data. The Internet Appendix provides notes on

the model generated data, as well as results of the state-space estimation.

4.2 Estimation Results

Table 6 shows that both market makers’ and individuals’ trading variables play an important role in

our state space model. Initially we focus on results at a monthly frequency. Results in the ‘Efficient

Price’ section show both κMM
i and κindvi are negative with values of −0.94 and −0.10 respectively.13

Both investor types buy as prices are falling and both types tend to sell as prices are rising. The

coefficient estimates show the slopes of efficient price changes per unit of trading (in this case, the

units are bps per $1,000 of trading).

[Insert Table 6]

11Although not applicable to our study, a fourth advantage of the Kalman filter is that it deals with missing observations
in the most informationally efficient way.

12Beyond the previously discussed advantages of the state space model, another drawback of the ARIMA approximation
is that it requires one to add, in theory, infinite lagged polynomials in order to disentangle short- and long-term effects.

13The negative values, together with the market clearing constraints, imply that estimating the model with institutional
net trades would yield κinsti > 0. This is consistent with institutional traders having value-relevant information.
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To better capture economic magnitudes, we multiply the absolute value of our coefficient estimates

by the relevant variable’s standard deviation. A one standard deviation movement in market makers’

inventory is associated with a 235 bp movement in a stock’s efficient price. For individuals’ net trades,

the associated quantity is 260 bp. By comparison the average total permanent volatility of 932 basis

points per month is shown in the fifth column of the efficient price section of Table 6.

The ‘Transitory Price’ section of Table 6 also provides a number of results. One of this pa-

per’s goals is to answer questions such as: i) Does one investor type’s trading variables “drive out”

the other types’s variables? ii) Or, do trading variables from both market makers and individuals

combine to help explain transitory volatility? Estimates from the transitory equation answer these

questions. Both αMM
i and αindvi are negative. Trades/holdings from one investor type do not “drive

out” trades/holdings from the other type. At a monthly frequency, we see αMM
i is -0.33 which multi-

plied by a one standard deviation of market market inventories yields 159 bps in the transitory price

equation. For individuals’ net trades αindvi is -0.05 which multiplied by a one standard deviation yields

151 bps in the transitory price equation.14

4.3 Term Structure of Transitory Price Movements

By separately estimating the state space model on daily, weekly, biweekly, and monthly data we are

able to study the term structure of transitory price movements. The middle section of Table 6 (under

‘Transitory Equation’) shows that trading related shocks do not disappear at longer horizons. For

example, a one standard deviation movement of market maker inventories is associated with transitory

volatility of 12, 35, 76, and 151 basis points respectively.A similar pattern can be seen when looking

at a one standard deviation movement of individuals’ net trading over different horizons ranging from

daily to monthly.

14Table 3 shows both investor types’ trading variables are positively autocorrelated at a monthly frequency (0.17 for
market makers and 0.32 for individuals). These autocorrelations lead to positive autocorrelation of price pressures and
the total transitory component of prices. The average monthly autocorrelation for the transitory component of price
(si,t) is 0.15. Ultimately, one might like to study horizons greater than one month. Doing so requires much longer time
series than we currently have.
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4.4 Variance Decomposition

Our state space model also allows us to decompose stock price variance. We are particularly interested

in two questions asked at the start of this paper: How “noisy” are daily, weekly, biweekly, and monthly

price and return data? How economically large are transitory price deviations? Given the state space

model defined by Eq.4 to 7, the idiosyncratic return of stock i over period t can be written as:

ri,t ≡ wi,t + si,t − si,t−1 = wi,t + ∆si,t. The variances of our price variables are shown below and one

can think of σ(w) as the size of permanent price changes while σ(∆s) is the size of changes to the

transitory component.

σ2(w) = var[κMM
i M̃Mi,t + κindvi ∆Ĩndvi,t] + σ2(u)

σ2(s) = var[αMM
i MMi,t + αindvi ∆Indvi,t] + σ2(ε)

σ2(∆s) = var[αMM
i (MMi,t −MMi,t−1) + αindvi (∆Indvi,t −∆Indvi,t−1)] + 2σ2(ε)

σ2(r) = σ2(w) + σ2(∆s) + 2cov(w,∆s)

where,

cov(w,∆s) = cov[κMM
i M̃Mi,t + κindvi ∆Ĩndvi,t,

αMM
i (MMi,t −MMi,t−1) + αindvi (∆Indvi,t −∆Indvi,t−1)]

The last two columns of Table 6 show the results of the variance decomposition. The ratio σ2(∆s)
σ2(r)

reflects the size of transitory variance relative to idiosyncratic return variance and we find a 0.25

ratio at a monthly frequency.15 The ratio in the last column is σ2(∆s)−2σ2(ε)
σ2(r)

and represents the size

of transitory variance that is explained by our trading variables relative to the idiosyncratic return

variance. One can think of the numerator as the size of price pressure variance and we see daily and

monthly values of 0.03 and 0.08, respectively.

We compare the degree of price pressure explained by our trading variables to the total movements

of the transitory component. We estimate that market makers’ inventories and individuals’ net trades

account for 0.08
0.25 or 32% of transitory variance.

Finally, we revisit the term structure of transitory volatility. Taking first differences of Eq.4, we

see a stock’s observed return can be written as the sum of its efficient return plus its transitory return

15The Roll (1988, p.564, Table IV) decomposition of idiosyncratic volatility yields a noise component that is roughly
25% of idiosyncratic variance. See Foucault, Sraer, and Thesmar (2011) for further discussion.
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(∆pi,t = ∆mi,t + ∆si,t). The results in Table 6 allow us to consider returns over horizons of one to

twenty days.

The second to last column in Table 6 shows the size of transitory variance relative to idiosyncratic

returns. Our daily results are in line with those suggested by French and Roll (1986) and Roll (1988).

The variance ratio grows moving from daily data (ratio is 0.08) to monthly data (ratio is 0.25). This

result is consistent with recent momentum studies such as Gutierrez and Kelley (2008). Their Figure

1 shows that a reversal portfolio increases in profitability out to a month and the overall reversal effect

lasts about a quarter. At horizons longer than a quarter, momentum becomes more prominent than

reversals.

Also consistent with our results are the expressions for the return-generating process given above.

The autocorrelation of ∆si,t is positive (roughly) at lead/lags up to the longest inattentive period.

Hence, the variance of ∆si,t increases with frequency from daily to monthly data. Given that the

calibration exercise indicates the longest inattentive period is on the order of 42 days, it would make

sense to estimate the SSM with bimonthly and quarterly data. Unfortunately, there are only 84

months of data in our sample. Cutting the sample length to 42 or 28 observations is not feasible given

the requirements of the SSM. For now, we have to wait until longer datasets become available.

The last column in Table 6 shows the size of the price pressure caused by trading variables relative

to the idiosyncratic return variance. At first glance is may be surprising that the transitory variance

does not “die out” after a few days. In fact, when compared with idiosyncratic price movements,

the importance of transitory movements grows as the horizon becomes longer. Our model leads us

to believe that trading-related price pressure should last approximately as long as the least attentive

investors’ horizons.

In fact, the last two columns of Table 6 point to interesting avenues for future research. At what

horizons do transitory movements cease to be important in modern financial markets? Can we link

long horizon effects to extremely limited investor attention? Answering such questions will require

much longer time series than the NYSE data used in this paper. We leave these questions for future

work.
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5 Conclusions

This paper studies the joint dynamics of stock price movements and the trading of individuals, in-

stitutions, and market makers. We present a dynamic model in which individuals and institutions

trade a risky asset in order to hedge an exogenous endowment shock. Some individuals have limited

attention and do not participate in trading at each possible date. Their limited participation creates

supply and demand imbalances as well as opportunities for market makers to step in and trade.

The model produces a wide variety of testable predictions regarding the joint dynamics of stock

price movements and trading variables. The theoretical framework assumes that some individuals

have limited attention and do not trade at each possible date. Their lack of participation creates an

opportunity for market makers to step in and balance supply and demand. NYSE data confirms that

both individuals and market makers tend to buy as prices are falling. The model shows that only

one investor type in aggregate acts as a market maker in the traditional sense—that is, they trade

and then the unwind their positions relatively quickly. While the most attentive individuals follow a

related strategy, individuals in aggregate do not unwind their positions in our model nor do they in

the NYSE data. There are other predictions of the limited attention framework that are consistent

with the empirical results using NYSE price and trading data. For example, our framework predicts

new relations such as market maker inventories today are positively correlated with individual net

buying over the following day, week, and month.

Our paper highlights a well-known pitfall of studying aggregated trading data. Groups of investors

that financial economists would like to study may be quite heterogenous. For example, some indi-

viduals in both our model and in the real world are quite attentive (day traders). Some are not.

General statements about an investor type (in this case, individuals) require nuance. We specifically

model three subtypes of individual investors, solve for the their optimal trading strategies, aggregate

their model-generated data, and compare the aggregate data with empirical data. These steps pro-

duce quantitatively consistent results between the model-generated data and NYSE data for numerous

moments related to the correlations among returns and the different investor types’ trading.

We estimate a reduced-form version of our theory model to demonstrate that transitory price

movements are not merely a short-lived microstructure phenomenon. Deviations from efficient prices

are common, large in magnitude, and last at least a month. For example, a one standard deviation
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change in market makers’ monthly positions is associated with transitory volatility of 1.59% (monthly).

We estimate that between 8% and 25% of stock’s idiosyncratic return variance is due to transitory

price changes (noise). Interestingly, the fraction does not fall at longer horizons. Instead, we find the

8% applies to daily data while the 25% applies to monthly data. Asparouhova, Bessembinder, and

Kalcheva (2010) and Asparouhova, Bessembinder, and Kalcheva (2013) demonstrate the importance

and implications of noise in prices for asset pricing tests. Understanding at what horizon transitory

price changes cease to be important is an open question which requires a longer time series of data.

The results in our paper provide insights into dynamic relations in markets and point to unanswered

questions and future possible research directions. Can we identify and better understand the shocks

that induce investors to trade? Are there shocks that tend to affect some types of investors, but not

others? Put differently, can we estimate different types’ loadings on shocks?
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Table 3: Correlations of Trading and Price Variables (Empirical Data)

This table presents correlations of our main three empirical variables: NYSE market maker inventories (MMi,t) and

individuals’ net trades (∆Indvi,t), and the idiosyncratic part of returns (ri,t). Appendix A describes all variables and

shows the number of observations. Correlations are first calculated on a stock-by-stock basis. The table shows average

correlations (across stocks). t-statistics are reported in parentheses and based on double-clustered standard errors (stocks

and time).

Lag (t-1) Contemporaneous Lead (t+1)

MMt−1 ∆Indvt−1 rt−1 MMt ∆Indvt rt MMt+1 ∆Indvt+1 rt+1

D
a
il
y

MMt 0.60 1.0 0.60

(73.6) (73.6)

∆Indvt 0.06 0.27 0.06 1.0 0.04 0.27

(28.6) (74.6) (23.1) (17.5) (74.6)

rt 0.01 0.01 -0.01 -0.25 -0.09 1.0 -0.12 -0.06 -0.01

(5.7) (9.4) (-3.7) (-68.3) (-22.8) (-43.4) (-26.2) (-3.7)

W
ee

k
ly

MMt 0.37 1.0 0.37

(41.2) (41.2)

∆Indvt 0.07 0.28 0.06 1.0 0.04 0.28

(18.8) (54.4) (14.5) (11.1) (54.4)

rt 0.02 0.02 -0.06 -0.27 -0.13 1.0 -0.09 -0.11 -0.06

(4.2) (6.5) (-7.3) (-37.4) (-20.6) (-19.1) (-28.0) (-7.3)

B
iw

ee
k
ly

MMt 0.27 1.0 0.27

(28.3) (28.3)

∆Indvt 0.08 0.33 0.06 1.0 0.03 0.33

(17.7) (52.3) (12.8) (7.5) (52.3)

rt 0.02 0.03 -0.05 -0.26 -0.16 1.0 -0.08 -0.16 -0.05

(2.6) (5.6) (-4.4) (-39.9) (-19.3) (-11.8) (-28.1) (-4.4)

M
o
n
th

ly

MMt 0.17 1.0 0.17

(12.8) (12.8)

∆Indvt 0.08 0.32 0.06 1.0 0.02 0.32

(12.0) (39.2) (8.7) (3.0) (39.2)

rt 0.05 0.03 -0.06 -0.23 -0.20 1.0 -0.05 -0.20 -0.06

(4.8) (4.3) (-4.5) (-26.6) (-21.6) (-6.5) (-21.3) (-4.5)
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Table 4: Correlation Signs of Trading and Price Variables (Model-Generated Data)

This table presents the correlation signs of market makers inventories (MMt), individuals’ net trades (∆Indvt), and

returns (rt). We study 2,052 different combinations of our model’s parameters (grid points). For each combination, we

generate data from our model and calculate the correlations of the three variables shown above. The sign shown (“+” or

“-”) represents the predominant correlation sign across all 2,052 parameter combinations. The proportion of grid points

with the same sign (as the most predominant correlation sign) is reported below in parentheses.

Lag (t-1) Contemporaneous Lead (t+1)

MMt−1 ∆Indvt−1 rt−1 MMt ∆Indvt rt MMt+1 ∆Indvt+1 rt+1

D
a
il
y

MMt + 1.0 +
(99.7%) (99.7%)

∆Indvt + + + 1.0 + +
(100%) (99.6%) (99.2%) (99.4%) (99.6%)

rt + + – – – 1.0 – – –
(100%) (99.2%) (99.6%) (99.6%) (99.3%) (99.8%) (99.5%) (99.6%)

W
ee

k
ly

MMt + 1.0 +
(99.4%) (99.4%)

∆Indvt + + + 1.0 + +
(100%) (99.3%) (99.2%) (99.7%) (99.3%)

rt + + – – – 1.0 – – –
(99.9%) (99.3%) (100%) (99.9%) (99.9%) (99.6%) (99.8%) (100%)

B
iw

ee
k
ly

MMt + 1.0 +
(99.7%) (99.7%)

∆Indvt + + + 1.0 + +
(100%) (99.2%) (99.2%) (99.5%) (99.2%)

rt + + – – – 1.0 – – –
(99.9%) (99.3%) (100%) (99.8%) (99.9%) (99.6%) (99.6%) (100%)

M
o
n
th

ly

MMt + 1.0 +
(99.5%) (99.5%)

∆Indvt + + + 1.0 + +
(100%) (99.2%) (99.2%) (97.9%) (99.2%)

rt + + – – – 1.0 – – –
(99.9%) (99.4%) (100%) (99.8%) (96.5%) (99.3%) (99.7%) (100%)
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Table 5: Model Calibration

This table compares 24 different properties related to trading variables and returns. Entries in the “Target Values”

column are calculated from our empirical data. Entries in the “Best-Fit Values” column are from a numerical calibration

of our theoretical model using the following parameters: q11=0.24; q12=0.24; q13=0.12; q2=0.20; 1/k1=1/42 days;

1/k2=1/10 days; σ2
∆N=2.00; σ2

x=0.0005; φ=1.00; and r=1.0001.

Target Values Best-Fit Values

from from Model-

Property NYSE Data Generated Data

Panel A: Daily Data

1. Corr of rt and rt−1 -0.01 -0.01

2. Corr of ∆Indvt and ∆Indvt−1 +0.27 +0.20

3. Corr of MMt and MMt−1 +0.60 +0.89

4. Corr of MMt and rt−1 -0.12 -0.09

5. Corr of ∆Indvt and rt−1 -0.06 -0.02

6. σ(∆Indv)/σ(MM) +1.54 +0.75

Panel B: Weekly Data

7. Corr of rt and rt−1 -0.06 -0.03

8. Corr of ∆Indvt and ∆Indvt−1 +0.28 +0.42

9. Corr of MMt and MMt−1 +0.37 +0.54

10. Corr of MMt and rt−1 -0.09 -0.08

11. Corr of ∆Indvt and rt−1 -0.11 -0.10

12. σ(∆Indv)/σ(MM) +4.88 +2.19

Panel C: Biweekly Data

13. Corr of rt and rt−1 -0.05 -0.03

14. Corr of ∆Indvt and ∆Indvt−1 +0.33 +0.27

15. Corr of MMt and MMt−1 +0.27 +0.34

16. Corr of MMt and rt−1 -0.08 -0.05

17. Corr of ∆Indvt and rt−1 -0.16 -0.08

18. σ(∆Indv)/σ(MM) +7.79 +3.69

Panel D: Monthly Data

19. Corr of rt and rt−1 -0.06 -0.04

20. Corr of ∆Indvt and ∆Indvt−1 +0.32 +0.20

21. Corr of MMt and MMt−1 +0.17 +0.17

22. Corr of MMt and rt−1 -0.05 -0.04

23. Corr of ∆Indvt and rt−1 -0.20 -0.04

24. σ(∆Indv)/σ(MM) 12.59 +6.06
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Figure 1: Price and Trading Paths Given a 1σ Exogenous Shock

This figure shows price and trading paths given a one standard deviation exogenous shock in the endowment process

and the aggregate supply, in our model and the Duffie (2010) model, respectively. For both models σ2
x = 0.0005, φ=1.00,

and r = 1.0001. For our model the parameters are: q11 = 0.24; q12 = 0.24; q13 = 0.12; q2 = 0.20; k1 = 42 days; k2 = 10

days; σ2
∆N = 2.00. For the Duffie model the parameters are: q = 0.48 and k = 42.

Panel A: Our Model Panel B: Duffie (2010)
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A Variable Definitions

A.1 Variables in the Theoretical Model

D1,t Demand of “least-attentive” individual investors

D2,t Demand of “partially-attentive” individual investors

D3,t Demand of “most-attentive” individual investors

Ht Vector of dimension (k1 − 1) of quantities held by least-attentive individuals

when these investors are not participating in the market

Ht = (D1,t−1, D1,t−2, · · · , D1,t−k1+1)

Gt Vector of dimension (k2 − 1) of quantities held by partially-attentive individuals

when these investors are not participating in the market

Gt = (D2,t−1, D2,t−2, · · · , D2,t−k2+1)

k1 Participation frequency for least-attentive individuals

k2 Participation frequency for partially-attentive individuals

K1,t Demand of institutional investors

K2,t Demand of market makers

Nt Exogenous endowment

∆Nt Exogenous endowment shock

q1 Fraction of all investors who are individuals (any subtype)

q11 Fraction of “least-attentive” individual investors

q12 Fraction of “partially-attentive” individual investors

q13 Fraction of “most-attentive” individual investors

q2 Fraction of all investors who are institutions
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r Gross riskless interest

Rt+k1 Value (payoff) at date t+ k1 of one unit invested at date t by the least-attentive individuals

Rt+k1 =
(∑k1

i=1 r
k1−1Xt+i

)
+ St+k1

Rt+k2 Value (payoff) at date t+ k2 of one unit invested at date t by the partially-attentive individuals

Rt+k2 =
(∑k2

i=1 r
k2−1Xt+i

)
+ St+k2

St Equilibrium price of the risky asset after taking out the effect of dividends

Xt Dividend payment of the risky asset

Yt State vector with Yt = [Nt, Xt, Ht, Gt]
T

φ Harmonic mean of the all investors

σ2
x Variance of the dividend payment

σ2
∆N Variance of exogenous endowment shock
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A.2 Variables in the Empirical Analysis

βi Stock i’s beta coefficient from a standard CAPM regression.

δi,t Required return of stock i’s over period t.

Defined as: δi,t = rf,t + βi
(

1.06
1
12 − 1

)
.

ft Demeaned series of market-wide returns. Defined as: ft = rm,t − r̄m.

γIndvt Common (market-wide) cumulative net trading factor at the end of period t.

Defined as: γIndvt =
∑
i ωi × Indv

std
i,t .

Where ωi is the weight of stock i in our “market” of 1,019 stocks.

γMM
t Common (market-wide) inventory factor at the end of period t.

Defined as: γMM
t =

∑
i ωi ×MMstd

i,t .

∆γIndvt Net trading of common factor over period t: ∆γIndvt = γIndvt − γIndvt−1 .

Indvshi,t Individuals’ cumulative net trading (in shares) of stock i at the end of

period t.

Indv$
i,t Individuals’ cumulative net trading (in dollars) of stock i at the

end of period t. Defined as: Indv$
i,t = Indvshi,t × P i.

Indvstdi,t Standardized value of individuals’ cumulative net trading of stock i at

the end of period t. Defined as: Indvstdi,t =
Indv$

i,t−Indv
$
i,t

std(Indv$
i,t)

.

Indvi,t Idiosyncratic part of individuals’ cumulative net trading. Defined as: Indvi,t = εi,t
from the regression: Indv$

i,t = α+ β · γIndvt + εi,t.

∆Indv$
i,t Individuals’ net trading (in dollars) of stock i’s at the end

of period t. Defined as: ∆Indv$
i,t = Indv$

i,t − Indv$
i,t−1.

∆Indvi,t Idiosyncratic part of net trading. Defined as: ∆Indvi,t = εi,t
from the regression ∆Indv$

i,t = α+ β ·∆γIndvt + εi,t.

∆Ĩndvi,t Defined as the residual from an AR(1): ∆Ĩndvi,t = εi,t
from the regression: ∆Indvi,t = φ0 + φ1∆Indvi,t−1 + εi,t.

MktCapi,t Market capitalization of stock i, in dollars, at the end of period t.

MktCapi Average market capitalization of stock i, in dollars, over the sample period.
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MMsh
i,t Market Maker’s inventory (in shares) of stock i at the end of period t.

MM$
i,t Market Maker’s inventory (in dollars) of stock i at the end of period t.

Defined as: MM$
i,t = MMsh

i,t × P i.

MMstd
i,t Standardized value of market maker’s inventory of stock i’s at the

end of period t. Defined as: MMstd
i,t =

MM$
i,t−MM

$
i,t

std(MM$
i,t)

.

MMi,t Idiosyncratic part of market maker’s inventory. Defined as: MMi,t = εi,t
from the regression: MM$

i,t = α+ β · γMM
t + εi,t.

M̃Mi,t Defined as the residual from an AR(1): M̃Mi,t = εi,t
from the regression MMi,t = φ0 + φ1MMi,t−1 + εi,t.

∆MMi,t Defined as: MMi,t −MMi,t−1.

Pi,t Price of stock i, in dollars, at the end of period t.

P i Average price of stock i, in dollars, over the sample period.

pi,t Natural log of stock i’s price at the end of period t.

rf,t Return of riskfree rate over period t from Ken French’s website.

rtotali,t Return of stock i’s over period t: rtotali,t = pi,t − pi,t−1.

ri,t Idiosyncratic portion of stock i’s return. Defined as: ri,t = ξi,t.

rm,t Value-weighted market return from CRSP.

r̄m Average of the market wide return over the sample period: r̄m = 1
84

∑84
t=1 rm,t.

from the regression: rtotali,t = α+ βirm,t + ξi,t.

A.3 Number of Observations in the Empirical Analysis

Daily 1,019 stocks × 1,760 days = 1,793,440 observations

Weekly 1,019 stocks × 365 weeks = 371,935 observations

Biweekly 1,019 stocks × 182 2 weeks = 185,458 observations

Monthly 1,019 stocks × 84 months = 85,596 observations
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