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ABSTRACT

In this paper, we construct a model of cyber-weapon
deployment and attempt to determine an optimal de-
ployment time for cyberweapons using this model.
We compare and contrast our approach to that in Ax-
elrod and Iliev (R. Axelrod and R. Iliev. Timing of
cyber conflict. Proceedings of the National Academy
of Science, (1322638111), 2013.), showing that our
model accurately captures four real-world scenarios
and has fewer quantities that are difficult to measure
than the aforementioned approach. Under simplify-
ing assumptions, we prove rules of thumb for deter-
mining when and wether a cyber-weapon should be
deployed.

I INTRODUCTION

Cyber-attacks are the malicious use of computer and
network technology for the purpose of damaging or
destroying infrastructure or human life. In their cur-
rent state, cyber-attacks may be regarded as either
cyber-warfare or cyber-terrorism. Cyber-terrorism is
defined by Lewis [1] as “. . . the use of computer net-
work tools [by a non-governmental organization] to
shut down critical national infrastructures (such as
energy, transportation, government operations) or to
coerce or intimidate a government or civilian popu-
lation.” Cyber-warefare, conversely, can be divided
into two types: cyber espionage and cyber-attacks
both of which are conducted by governments using
paid hackers [2]. Cyber-espionage involves the use of
computer resources to steal information, while cyber-
attacks have the same stated goal as cyber-terrorism
except they are conducted by a formal “cyber-army”
of the attacking government and (should) be used
against legitimate military targets in accordance with
the laws of war. The United States Director of Na-
tional Intelligence (DNI) defines cyber-attacks as the
more serious threat [2], and states that in general
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cyber-security (i.e., defense against cyber-attack) is
the most critical challenge for the United States [3].

Cyber-attacks are frequently in the popular press,
with Stuxnet and its related attacks Flame, Duqu
and Gauss being the most recent and extreme exam-
ple of a massive cyber-attack allegedly1 conducted by
a government or governments against Iran [4]. Many
consider this to be the very first example of cyber-
warfare conducted by one country or coalition against
another [5] and Milevski asserts that the Stuxnet de-
ployment was an example of Special Operations on
the cyber-battlefield [6].

The presence of sophisticated cyber-weapons (where
we stipulate that Stuxnet was a sophisticated cyber-
weapon) raises several questions on the ethics of their
use [7]. It also creates a set of new optimization
questions for the use of cyber-weapons. Unlike con-
ventional weapons, cyber-weapons become obsolete
with the discovery of exploits and the dissemination
of patches. Therefore, either a country or group must
engage in continuous development of new weapons for
cyber-space or they must be prepared to deploy these
weapons immediately upon creation. On the other
hand, weapons like Stuxnet are only useful as long as
they remain covert, therefore any deployed weapon
like Stuxnet can only be expected to provide a re-
turn on investment (ROI) for a finite period of time,
again (intuitively) encouraging early deployment. On
the other hand, cyber-attacks (including hacking) can
lead to substantial losses when they are discovered.
By way of example, consider the hacking scandal sur-
rounding the German Chancellor’s phone [8]. This
alleged cyber-attack has led to diminished relations
between the United States and Germany leading to
the question: under what conditions do the costs of
a cyber-attack outweigh the benefits?

Axelrod and Iliev [9] attempt to answer some of these
questions by posing a mathematical model of the ben-
efit of deploying cyber-weapons at a certain time. In
this paper, we analyze Axelrod and Iliev’s model and

1Responsibility for these attacks has never been formally
assumed by any government. All responsibility still remains
alleged.
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argue that it is an excellent start, but incomplete and
failing to sufficiently take into account long-term pay-
off or loss (as may have occurred in both Stuxnet and
the hacking of German Chancellor’s phone). In par-
ticular, one of the failures of their model is a lack of
proper definition of stakes as well as gains and a fail-
ure to explicitly include loss. We propose an enhance-
ment to the their model that takes these factors into
consideration and then analyze the same examples as
those given by Axelrod and Iliev in the light of our
improved model. A major take-away from our model
is that under simplifying assumptions we can deter-
mine criteria for when a cyber-weapon should be de-
ployed immediately vs. never deploying the weapon.
For more complex models of payoff (e.g., Martingale
models) we show that deployment times may vary
substantially within a given time horizon.

1 RELATED WORK

The problem of timing in releasing a cyber-weapon is
qualitatively similar to several problems that already
exist in the literature. The weapon-target assignment
problem [10] is a well known NP-hard optimization
problem whose solution yields an optimal targeting
plan for a set of weapons against a set of (known)
targets. This optimization problem does not consider
the problem of when to release (as it is assumed that
release will occur immediately after planning). Time
games are a related area of game theory [11]. These
games include attrition games, in which one player
must decide when to retire [12]. Another class of
timing games are duel games in which the players
have a set of bullets (in the simplest games, one bul-
let) and must decide when to fire based on changing
accuracy. Surveys of these games are given in [13]
and [14]. None of these timing games precisely re-
lates to our problem, where we do not have an accu-
rate model of the opponent’s strategy set. Thus, our
problem is more closely related to a weapon-target
assignment problem with the decision of when to fire
being paramount.

2 PAPER ORGANIZATION

The remainder of this paper is organized as follows:
In Section II we discuss the elements of the model of
Axelrod and Iliev and present our variation to this
model. In Section III we use our model with sim-
ple (non-stochastic) models of gains and losses as-
sociated with deploying a cyber-weapon. In Section
IV we analyze our model when the gain associated

with the cyber-weapon follows a random walk (like
a non-drifting stock). In Section V we compare our
findings to real-world events and the analysis in [9].
Finally, we present conclusions and future directions
in Section VI.

II MATHEMATICAL MODEL

We begin by discussing the model of Axelrod and
Iliev: in this model, a quantity S ∈ (0, 1] called stealth
is assumed to be known. This is the probability that
cyber-weapon continues to be useful (i.e., function)
given that it has been deployed. The related quantity
is persistence P ∈ (0, 1] which is the the probability
that a cyber-weapon continues to be useful given that
it is not deployed. In essence, S captures the proba-
bility that an adversary will discover (and disable) a
deployed cyber-weapon while P captures the proba-
bility that a non-deployed cyber-weapon will continue
to be useful (i.e., that vulnerabilities it employs will
not be discovered and patched). While difficult to
measure there is sufficient historical information to
estimate values for S and P .

Axelrod and Iliev also assume a random variable s
(with range in R) called the stakes which are vaguely
defined as the importance of the cyber-attack to the
attacker and assume that a threshold for this random
variable is used to govern the attack. A gain function
G : R → R is applied to the threshold T , which
is to be determined. Axelrod and Iliev then state
the discounted value of the cyber-weapon assuming a
discounting (interest) rate w ∈ (0, 1]. In this model,
they assume two time periods: the present and the
future. In the present we know the stakes, and if the
stakes are higher than the threshold we deploy the
weapon and get the value G(T ) +wSV . If the stakes
are lower than the threshold, we do not deploy the
weapon and only get the future value wPV . Thus,
they define the total value as a function of T as:

V = Pr(s > T ) (G(T ) + wSV ) +

(1− Pr(s > T ))wPV (1)

This recurrence equation can then be solved (alge-
braically) for V to determine V as a function of T as-
suming that the probability distribution of the stakes
is known and G(T ) is also known. The optimal tim-
ing in their paper is actually the determination of an
optimal threshold Topt.

There are a few simplifications–and a few complications–
in this model that make it impractical and unrealis-
tic. First off, stakes are too poorly defined to be of
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any use and in a highly polarized environment (com-
mon in political decision environments) every situ-
ation is considered to be high stakes. Moreover, it
seems that gain is mixed with stakes, where presum-
ably the higher the stakes the higher the gain, so
these two factors could be consolidated into one esti-
mation. In this model the stakes are considered to be
a random variable which is independent of time. Yet,
the authors attempt to couple optimal threshold with
optimal timing, however the two should not be cou-
pled if stakes are time-independent. In the real world,
the stakes of tomorrow should be a function of the
present stakes and thus dependent on time. Further-
more, the model’s gain function does not seem to take
into account the losses that can occur after a cyber-
weapon has been deployed for an extended period of
time (e.g., the German discovery of the bugging of
Angela Merkel’s phone leading to diplomatic harm).
Instead, they assume that the value of the weapon is
fixed. Consequently, this model may encourage the
use of cyber-weapons early and often.

Ideally, we want a model which tells us when to de-
ploy our weapon, instead of giving us an immeasur-
able quantity (threshold) on which to base our de-
ployment. We propose a different model which re-
duces the use of unknown elements, and creates a
more realistic and practical method for determining
optimal timing. As before, let P be the persistence
of a cyber-weapon and let S be its stealth. We dis-
miss the stakes random variable and simply consider
a a gain function of time G(t), which stakes is con-
solidated into, and loss variable L. In the sequel, we
will consider cases were these are not random, but
governed by known functions as well random walks.
We simplify the ”value” of the cyber weapon to be its
gains minus its losses. A cyber-weapon deployed at
time τ (the value we are interested in determining) is
then given by:

V (τ) = P τwτG(τ)+∑
t>τ

wt
(
E[G(t)]St−τ + E[L(t)](1− St−τ )

)
(2)

This expression correctly takes into account loss as a
result of a failure of stealth and requires the estima-
tion of four parameters:

1. The persistence P ,
2. the stealth S,
3. the gain function (or stochastic process) G(t),
4. the loss function (or stochastic process) L(t)

Gain and loss functions can be modeled through or-

dinal values as was done in the game theoretic model
of the Battle of Avranches [15] or through consensus
estimates among decision makers and stake-holders
themselves [16]. The goal for a decision maker is to
determine, given these parameters, the optimal time
τ to release a cyber-weapon.

III DECAYING OR CONSTANT GAINS
AND LOSSES

Consider the case when:

G(t) = βtG

L(t) = γtL

for fixed values G ≥ 0 and L ≤ 0. Then Equation 2
becomes:

V (τ) = P τwτG(τ)+∑
t>τ

wt
(
Gβt−τSt−τ +Gγt−τ (1− St−τ )

)
(3)

In the case when γ or β are 1, then this is a constant
gain or loss scenario. After an algebraic analysis, we
can re-write Expression 3 as:

V (τ) = (Pw)τG+

wτ+1

[
L

1− wγ
+

wSβG

1− wSβ
− wSγL

1− wSγ

]
(4)

Let:

p = Pw

R(G,L) =
L

1− wγ
+

wSβG

1− wSβ
− wSγL

1− wSγ

Then Equation 4 can be written as:

V (τ) = Gpτ +R(G,L)wτ+1 (5)

This function has an extremum at:

τ∗ =
log(w)− log

(
− G log(p)
R log(w)

)
log(p)− log(w)

(6)

which may or may not be exogenous or positive de-
pending on the sign of the numerator. To see this
note, that p < w (by assumption) and therefore the
denominator is always negative. Moreover, the term:

log

(
−G log(p)

R log(w)

)
(7)
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is real only when R < 0, since G > 0 by assumption.
Thus:

τ∗ > 0 ⇐⇒ log(w) < log

(
−G log(p)

R log(w)

)
⇐⇒

w < −G log(p)

R log(w)
⇐⇒ −Rw

G
<

log(p)

log(w)

because R < 0 by assumption. Thus we have proved:

Proposition 1. The value function V (τ) has a real
positive extremum if and only if R < 0 and :

−R
G
<

log(p)

w log(w)
(8)

We can now characterize the nature of this extremum.
Note that V ′(0) is:

G log(p) +Rw log(w) (9)

Thus:

V ′(0) > 0 ⇐⇒ G log(p) +Rw log(w) > 0 ⇐⇒

− R

G
>

log(p)

w log(w)

Combining this with Proposition 1 we see:

Proposition 2. Any real, positive local extremum of
V (τ) is a minimum.

Finally, note that:

V (0) = G+Rw (10)

lim
τ→∞

V (τ) = 0 (11)

Thus, we may conclude the following about the model
under the given assumptions:

Proposition 3. If G + Rw > 0, then V (τ) is max-
imized at τ = 0 and the cyber-weapon should be de-
ployed at τ = 0. Otherwise, the cyber-weapon should
not be deployed.

IV RANDOM WALK GAINS AND
LOSSES

A more realistic model for gain is a stochastic process
such as a random walk. In this case, G(t) depends
only on the gains at the previous time step, and can
either increase or decrease from G(t− 1). If we con-
sider a scenario playing out day-by-day, each day the

situation could be slightly mitigated, or slightly wors-
ened. This is accurately modeled by a random walk.
Depending on the situation, we could alter the pa-
rameters of the random walk and, for instance, place
a higher probability on the situation getting worse
than getting better. For simplicity, in this section we
leave the loss, L, constant.

The main difference with this model is that, after the
time of deployment, the future gains are unknown.
Thus, at the time of deployment τ , a known gain
G(τ) is collected, but for t > τ the gains are unknown,
so we must explicitly consider E[G(t)]. The value of
deploying the weapon at time τ continues to be given
by Equation 2, but modified to consider our constant
loss function:

V (τ) = P τwτG(τ)+∑
t>τ

wt
(
E[G(t)]St−τ + L(1− St−τ )

)
(12)

For simplicity, we will only consider examples where
G(t) is a symmetric random walk on R with step size
s, meaning that Pr(G(t) = G(t − 1) + s) = 1

2 and
Pr(G(t) = G(t − 1) − s) = 1

2 . Since the walk is
symmetric, E[G(t)] = G(τ) for all t > τ .

In order to numerically estimate the optimal deploy-
ment time, we simulate this random walk 10,000 times
with a given set of parameters and step sizes, and de-
termine which deployment time is optimal for each
iteration. For each iteration, we start at G(0) and
calculate V (0). The walk then takes one step which
randomly increases or decreases G by s, and we calcu-
late V (1) based on G(1), where G(1) is either G(0)−s
or G(0)+s. We run this over 10 time steps, and then
chose the time that yielded that highest value as our
optimal time of deployment. As shown in the figures
below, we constructed a histogram of the number of
instances that each t was optimal. Over the 10,000
trials, this gives us an approximate percentage of the
time that a specific τ will be optimal for a given set of
parameters and step size. In terms of gains, since the
value function depends only on G(τ) and E[G(t)], it
was surprising to find that the step size of the random
walk dramatically alters the expected optimal time of
deployment. We conducted experimental trials with
two different step sizes (5 and 50), holding all other
parameters constant at P = 0.8, S = 0.2, w = 0.9,
and L = −1. Over 10,000 trials, a histogram of the
optimal deployment time is shown below for both
walks, keeping all other variables constant.

In the first histogram, the random walk has a step size
of 5, and we see that, typically, the optimal deploy-
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(a) s = 5 (b) s = 50

Figure 1: Histogram of optimal weapon deployment
time with the gains modeled as a random walk

ment is at the last time step. However, in the second
histogram, when the random walk has a step size of
50, we see that the optimal deployment time is much
sooner, usually around time t = 1. This suggests that
the variability in the walk, not the expected value of
the walk, is an important determination for optimal
deployment time.

We explain this phenomenon as follows: suppose we
are interested in the probability of time τ being the
optimal deployment time, given that we know G(τ) =
k. Suppose that the parameters w,P, S, and L are
fixed, and G(t) is modeled by a simple symmetric
random walk with step size s.

In order for τ to be the optimal deployment time,
we need V (τ) > V (t) for all t 6= τ . First con-
sider all t > τ . For each t we can compute G∗t =

maxG{V (t) | V (t) ≤ V (τ)}. Then Mt =
G∗

t

s is the
maximum number of positive steps a random walk
starting at 0 could take by time t in order to preserve
τ as the optimal deployment time 2. Thus, the proba-
bility that τ is the optimal time of deployment given
that we know G(τ) = k can be directly calculated
by counting the number of walks that are less then
Mt by time t, start at the origin, and go through the
point (τ, k), as illustrated in Figure 2 below.

We can simplify the expression for V (τ) by substitut-
ing all parameters except for k:

V (τ) = c1 + c2k (13)

where c1 is the component of the value that does not
depend on k (i.e., the part that depends only on the
loss), so c1 is negative. For all t > τ , we can say that

V (t) = c′1 + c′2G(t) (14)

where c1 < c′1 because from the model it is clear that
the earlier we deploy, the more losses we incur over

2We can easily consider cases where G(0) 6= 0 by shifting
the walk

Figure 2: This figure illustrates the concept of Mt,
shown in red. We are interested in the number of
random walks that start at the origin, go through
the points (τ, k), and stay below the red line. The
green line indicates a random walk that follows these
rules.

the total time span. We can calculate G∗t by setting
these two expressions equal to each other:

G∗t =
(c1 − c′1) + c2k

c′2
(15)

so

Mt =
(c1 − c′1) + c2k

c′2s
(16)

Now suppose we are interested in learning what hap-
pens to M when we change s. Let s′ be the new step
size, and let all values with a prime be the correspond-
ing values using s′ instead of s. Then k′ = ks′/s. Let
a = s/s′. Then we obtain the following expression
for M ′t :

M ′t =
a(c1 − c′1) + c2k

c′2s
(17)

Since (c1 − c′1) is negative, when a > 1, M ′t < Mt,
meaning that:

Pr(V (τ) > V (t)|t > τ) > Pr(V ′(τ) > V ′(t)|t > τ).
(18)

So when s′ is smaller than s, there is a smaller chance
that τ is the optimal deployment time for all t > τ .

Now we consider t < τ . In order to calculate the
maximum number of positive steps that G(t) could
take by time t and still maintain τ as the optimal

deployment time, we now take Mt =
G∗

t

s . The prob-
ability that V (t) > V (τ) for all t < τ is simply the
proportion of random walks that begin at the origin,
stay below Mt at time t, and end up at k

s compared
to the total number of random walks starting at the
origin and ending at k

s at time τ . Now we refer back
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to Equation 17 to see what happens when we consider
a step size s′ instead of s. Since t < τ , c1 − c′1 is now
positive, so when a > 1 we have M ′t > Mt, meaning
that

Pr(V (τ) > V (t)|t < τ) < Pr(V ′(τ) > V ′(t)|t < τ).
(19)

A diagram depicting these results is below.

Figure 3: The red lines indicate Gt, the boundary
that the walk must remain below. The dashed red
lines shows Gt when the step size is 5, and the solid
red lines shows Gt when the step size is 50. The green
dashed and solid line, respectively indicate possible
random walks that start at the origin, stay below
the dashed and solid red lines, respectively, and go
through the point (τ, k).

Qualitatively, these results indicate that early deploy-
ment times are favored when s is large and later de-
ployment times are favored when s is small, which is
what we observed in the example at the beginning of
this section.

V COMPARISON TO REAL-WORLD
EVENTS

Our model suggests alternative explanations for the
decision of when to deploy a cyber weapon. In [9],
Axelrod and Iliev consider a number of historical ex-
amples to validate their model, claiming that early
deployment times are either indicative of very high
stakes, high stealth, or low persistence. Using a ran-
dom walk model for gains (which are analogous to
high stakes, assuming that higher stakes yields higher
gains), we find that high variability or uncertainty in
future Gains can also lead to early deployment times,
and that greater certainty in future Gains leads to
later deployment times. Alternatively, using our con-
stant/diminishing gains model, we see that early de-

ployment is consistent with a perception of very low
likelihood of loss or extremely large gains.

Note: this section simply re-analyzes scenarios pro-
vided in [9]. To our knowledge, all activities are al-
leged. This section is not meant to accuse or as-
sert the veracity of any claim made in [9]; e.g., at
no point in time has any official from the Chinese
government substantiated the allocations of Chinese
espionage discussed in the sequel. In fact, these alle-
gations have been repeatedly denied.

1 STUXNET

First we look to the example of Stuxnet. According to
Axelrod and Iliev’s analysis of the situation, Stuxnet
had poor Persistence and comparatively good Stealth.
Furthermore, Axelrod and Iliev argue the stakes were
high in the situation, suggesting a large gain. We in-
fer that because the Stuxnet code escaped, there were
significant losses to using the weapon. Applying this
situation our model, we use the following parame-
ters: P = 0.2, S = 0.8, w = 0.9, L = −2, G(0) = 5,
s = 1. This means that Stuxnet had low Persistence,
high Stealth, significant losses, high initial gains, and
low variability in the future gains. Using our random
walk model, we find that immediate deployment is al-
ways optimal. Moreover, using a constant gain / loss
model (i.e., β = γ = 1) we see a similar result, with
τ = 0 being the optimal deployment time (i.e., deploy
immediately). This is illustrated in Figure 4. Con-

2 4 6 8 10
Τ

4

6

8

10

12

14

VHΤL

Figure 4: The computed V (τ) for a constant gain/loss
model of StuxNet deployment.

versely, when the step sized is changed to s = 5, im-
mediate deployment is is only optimal about 35% of
the time, and almost every time step is optimal a sig-
nificant portion of the time. Thus, it is far less clear
when to deploy when there is more uncertainty in
the gains (or stakes, in Axelrod’s model). In general,
we conclude the very intuitive result that weapons
with low persistence, high stealth, significant losses,
and high immediate gains should be deployed imme-
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diately unless there is very high uncertainty in future
gains, in which case a later deployment time could be
optimal.

2 IRANIAN ATTACK ON SAUDI
ARAMCO

Compared to the Stuxnet example, Axelrod and Iliev
cite this example as one in which the stealth of the
attack was poor. Thus, we choose S = 0.4, and keep
P = 0.2, w = 0.9, and L = −2. For the random
walk model, if all parameters are held constant (us-
ing s = 5) and we vary G(0), our model predicts that
for G(0) < 5.7, the weapon should be deployed in a
late time period, but if G(0) > 5.7, then the weapon
should be deployed immediately. Since the Iranians
did use their cyber weapons immediately, they must
have perceived their gains to be very large. However,
we could also consider how the variability in the gains
could have affected the Iranians perception. Even
with low initial gains, by increasing the step size we
can achieve early deployment. and the Iranians be-
lieved that the gains were very volatile. This can be
factored into our model by increasing the step size of
our random walk. Thus, the Iranians could have ei-
ther perceived extremely high gains, or a very uncer-
tain future about the gains. The constant gain/loss
model provides similar results with G > 11.3 result-
ing in immediate deployment and G < 11.3 resulting
in a later deployment time.

3 EVERYDAY CHINESE CYBER
ESPIONAGE

Axelrod and Iliev attempt to use their model to ex-
plain why the Chinese continually launch cyber at-
tacks against the US, when they have only moderate
Stealth and relatively low gains, instead of waiting
until when the gains are higher. The possible expla-
nations that are cited for this behavior are either that
the Chinese believed their weapons to have low per-
sistence, or they believed that their weapons would
have high stealth against some targets because some
outlier targets have been slow to detect them. We use
our random walk model with moderately low current
gains G(0) = 5, relatively low loss, L = −1, and mod-
erate Stealth, S = 0.5. We vary the Persistence and
the step size to search for possible explanations. With
P = 0.8 and s = 1, our model predicts that the lat-
est possible deployment time is optimal about 24% of
the time, and immediate deployment is almost never
optimal. When P = 0.2, the latest deployment time

is optimal about 35% of the time, and immediate
deployment is, again, almost never optimal. Thus,
change in persistence does not seem to be the driving
force behind early or late deployment time.

However, when step size is increased and P = 0.2
or P = 0.8, early deployment times become opti-
mal. In conclusion, when gains are moderately low
and have low uncertainty, our model indicates that
even a drastic reduction in P would not account for
early deployment. With low gains, the uncertainty in
future gains is a potential driving force behind the de-
ployment time. (If the cyber weapons did in fact have
high Stealth against some targets, this could also be
a driving force.)

Interestingly, this is a case where the constant gain/loss
model differs from the random walk model. For all
values of persistence, with S = 0.5, G = 5 and
L = −1 and w = 0.9, we conclude that immediate
deployment is optimal. In this case, the value of L is
the driving factor in the decision.

4 PREMATURE CHINESE USE OF A
HIGH-PERSISTENCE, LOW-STEALTH
RESOURCE

In this section, Axelrod and Iliev use the example of
the Chinese halt of its rare-earth exports pressure to
provide strong economic pressure against Japan. In
summary, in conflict with Japan, China cut off its ex-
ports of rare earth materials. China controlled 97%
of the market, and Japan imported half of that. This
economic warfare had high persistence and very low
stealth. In these situations, there should be a very
high threshold for use, and it is difficult to justify
China’s immediate use of economic power when the
future stakes would probably have been higher. In
this case, since it was predicted that future stakes
would be higher, we would model this with an asym-
metric random walk. If we set current gains atG(0) =
5, then a realistic random walk might be Pr(G(t +
1) = G(t) + 5) = 0.8, and Pr(G(t+ 1) = G(t)− 5) =
0.2 Using the parameters P = 0.8, S = 0.1, and
L = −1, our model predicts that the latest deploy-
ment time is optimal about half of the time. Thus,
we agree with Axelrod and Iliev that the Chinese de-
sire to immediately economically harm the Japanese
overwhelmed their rational decision making. They
could have gained more by waiting to deploy at a later
time. This case is particularly interesting because it
cannot be modeled by the constant/diminishing gain
and loss model and requires a model consistent with
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gains following a random walk.

VI CONCLUSIONS AND FUTURE
DIRECTIONS

Inspired by the work of Axelrod and Iliev [9], we have
proposed a stochastic model of the value of deploy-
ing a cyber-weapon at a specific time. Our model
extends the work in [9] by explicitly incorporating a
stochastic time-varying gain function and (as needed)
a stochastic time varying loss function. When the
gain/loss functions are geometrically decreasing, we
prove a simple rule of thumb on whether a cyber-
weapon should be deployed. When the gains are
given by a random walk, we illustrate cases where
early and later deployments are probabilistically op-
timal.

In future work, we hope to consider more complex
and realistic gain/loss functions and to develop meth-
ods for estimating the parameters P and S. Addi-
tionally, this model is qualitatively similar to some
models from mathematical finance. It would be in-
triguing to evaluate modifications to these models to
determine whether or not results from this field could
be applied to the problem of cyber-weapons deploy-
ment. Finally, we have only considered one side of
the interaction. Future work should consider more
game-theoretic models of cyber-weapons release.
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