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Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily

concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including

endogeneity, heterogeneity in price sensitivity for different tickets, binary outcomes and non-linear interactions between

ticket features. Our secondary goal is to highlight how this estimation can be integrated into a prescriptive trading strategy

for buying and selling tickets in an active marketplace. Academic/practical relevance: We present a novel method

for demand estimation with heterogeneous treatment effect in the presence of confounding. In practice, we embed this

method within an optimization framework for ticket reselling, providing StubHub with a new framework for pricing tickets

on its platform. Methodology: We introduce a general double/orthogonalized machine learning method for classification

problems. This method allows us to isolate the causal effects of price on the outcome by removing the conditional effects

of the ticket and market features. Furthermore, we introduce a novel loss function which can be easily incorporated into

powerful, off-the-shelf machine learning algorithms, including gradient boosted trees. We show how in the presence of hidden

confounding variables instrumental variables can be incorporated. Results: Using a wide range of synthetic data sets,

we show this approach beats state-of-the-art machine learning and causal inference approaches for estimating treatment

effects in the classification setting. Furthermore, using NBA ticket listings from the 2014-2015 season, we show that probit

models with instrumental variables, previously used for price estimation of tickets in the resale market, are significantly

less accurate and potentially misspecified relative to our proposed approach. Through pricing simulations we show our

proposed method is able to achieve an 11% ROI by buying and selling tickets, while existing techniques are not profitable.

Managerial implications: The knowledge of how to price tickets on its platform offers a range of potential opportunities

for our collaborator, both in terms of understanding sellers on their platform and in developing new products to offer them.

Keywords : Pricing, Revenue Management, Heterogeneous Treatment Effects
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2 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

1. Introduction

Ticket marketplaces are a rapidly growing industry with listings for over 10 million events per

month (Erskine 2015). They host an exchange for sellers who wish to sell tickets to interested

buyers. Most of these tickets are previously purchased and not sold from the primary seller, but

rather they are being resold. Although these marketplaces have an abundance of observational

data on how sellers price tickets, understanding market dynamics remains a challenge. Many

firms have difficulty in estimating demand and its sensitivity to price. Additionally, researchers

have highlighted the high elasticity of demand in these markets, in particular how it varies

heterogeneously across different tickets (Diehl et al. 2015, Jiaqi Xu et al. 2019). Through

our collaboration with StubHub1, we notice that estimating price sensitivity in demand is

particularly challenging for the following reasons:

-Heterogeneity in treatment effect - Different seats have different sensitivity to price. In the

data, we observe that tickets that are likely to sell tend to be less price sensitive. However, even

for tickets which have similar estimated probabilities of selling, there are still large differences

in price sensitivity, suggesting that there is further interaction between the ticket features and

the price which our model aims to capture. Heterogeneous treatments are more difficult to

estimate than homogeneous treatments due to the relative sparsity of individuals who react

in the same way.

-Hidden confounding factors - A common issue firms face when trying to make inferences

on data is confounding by hidden variables, which influence both the treatment (price) and

the outcome (demand). This often occurs because firms are not able to exhaustively record

or access all variables which are relevant to the pricing decision being made. This is true even

with StubHub, which has a rich dataset with thousands of explanatory variables; econometric

tests still suggest the presence of endogeneity (see section §6.2). These hidden confounding

factors can lead to biased estimation of the parameters of interest.

-Large, high dimensional datasets - The dataset from StubHub contains millions of tick-

ets, which potentially allows for the estimation of very rich models with complex interaction

effects. Recent advances in machine learning and non-parametric estimation have enabled

these effects to be captured with high predictive accuracy. However, high predictive accu-

racy does not imply the underlying price sensitivity can be captured consistently. It is well

1 StubHub, the world’s largest ticket marketplace, operates in 48 countries and offers live events across the globe. The events offered
span music, sports, theater and other live entertainment shows
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Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling 3

known that advanced machine learning methods could exhibit insufficient sensitivity toward

key parameters (Niculescu-Mizil and Caruana 2005). The difficulty is further exacerbated by

the high dimensionality of the data, as StubHub operates in tens of thousands of separate

events, and each with tens of different sections of tickets.

- Continuous treatments and binary outcomes - The majority of the literature on causal

treatment effect estimation focuses on binary or discrete treatments and continuous outcomes

(Imbens and Rubin 2015). In our setting however, the treatment is price which is continuous,

and the outcome (whether the ticket is sold or not) is binary. Binary outcomes require a non-

linear response function to transform the response variables, while a continuous treatment

means it is significantly harder to group tickets with similar treatments. Furthermore, unlike

a primary ticket seller, and in contrast to many traditional revenue management settings, at

any given time there is only a small percentage of the stadium (5− 10%) available on the

market. This further amplifies the effects of heterogeneity and makes it hard to pool similar

tickets together into an aggregate demand model.

In this work, our primary goal is to accurately isolate and capture the treatment effect

of price within a prediction framework that estimates the probability of an individual ticket

selling. Our secondary goal is to integrate this model into a prescriptive trading strategy for

buying and selling tickets in an active marketplace. Accurately estimating the causal price

effects is very important when selling tickets, as incorrect estimates of the price sensitivity

may lead to sub-optimal pricing decisions (Bertsimas and Kallus 2016). The knowledge of how

to price tickets on its platform offers a range of potential opportunities for our collaborator,

both in terms of understanding sellers on their platform and in developing new products to

offer them. One potential application would be to offer sellers a bid at the time of listing

wherein StubHub would advance the seller a guaranteed payment and then take on the risk

of selling the inventory. This offers security to the seller as they no longer bear the risk that

their ticket will not sell and the burden of managing the pricing.

Contributions: In this paper, we make several contributions.

1. Novel classification model accounting for heterogeneous treatment effects. To the best

of our knowledge, we are the first to propose a semi-parametric model for measuring

heterogeneous treatment effects using the concept of orthogonalization in the classification

setting. To accomplish this goal, we develop a novel loss function that allows us to estimate

the treatment effect directly. This loss function can be incorporated into a wide range
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4 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

of off-the-shelf machine learning methods and allows us to leverage the power of cutting

edge algorithms.

(a) We develop the Two-stage estimation for classification algorithm which accounts for

any general functional form of the treatment effect. The model isolates the causal

effects of the treatment on the outcome by removing the conditional effects of the

control variables. In the presence of hidden confounders, instrumental variables can

also be incorporated. Section §3.1 formulates the classification model and show how

to estimate each of its parameters.

(b) Consistency results and finite-sample guarantee on the estimation error. We show that

the estimates of the classification model are consistent, under mild assumptions on

the functional form of the true treatment effect. We also provide a theoretical rate of

convergence. The results are portrayed in section §3.2.

(c) Numerical performance of the estimation procedure. We integrate the resulting loss

function into lightgbm, a widely used and highly accurate gradient boosting method.

Over a wide range of synthetic data experiments, we show how our approach outper-

forms state-of-the-art machine learning methods for estimating treatment effects in

classification tasks. We dedicate section §5 to the numerical experiments results.

2. Practical contribution: StubHub case study.

(a) We show how to embed this classification procedure within an optimization frame-

work for ticket reselling. We apply our estimation procedure to predict whether an

individual ticket is sold under a particular price (treatment). We then develop two

pricing strategies, based on our underlying probability model with the heterogeneous

price sensitivity, that can be embedded into a master problem with the goal to decide

which tickets to buy. Section §4 describes the details of the pricing and the revenue

management models.

(b) Improved return on investment. Using NBA ticket listings from the 2014-2015 calendar

year, we observe strong predictive accuracy of our classification method. Furthermore,

we show in pricing simulations that the proposed trading strategy (using our under-

lying predictive classification method) is able to achieve 11% ROI, while relying on

existing techniques for estimating price sensitivity are not profitable. This shows that

in an industry with slim margins, even slight misspecification of the demand model

can result in significant losses. We observe a small but significant improvement from
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7% to 11% ROI when using a time-varying pricing policy relative to a constant pricing

policy, suggesting improvements can be made by considering the perishable inventory

effects of tickets. All details of the implementation using StubHub data can be found

in section §6.

We would also like to note that our approach for heterogeneous treatment estimation in

classification settings can be generalized beyond the scope of ticket reselling. For example, in

medicine there are many outcomes which are binary in nature (occurrence of a health event

such as a heart attack or cancer) and treatments that need to be personalized according to a

patient’s symptoms and their corresponding health profile. The approach introduced in this

paper could also be used in other revenue management settings where there is a high degree

of differentiation and/or personalization of a product, leading to a classification model that is

more accurate than an aggregate demand model.

Managerial insights: Our results present valuable insights on the state of the marketplace

and show there is potential to improve overall marketplace efficiency for StubHub. We estimate

that 12% of tickets are more than 10% under priced relative to optimal pricing. This is

a significant arbitrage opportunity resulting in a surplus that is currently captured by 3rd

party market makers, a practice StubHub could reduce without hindering liquidity. Similarly,

we estimate that 14% of tickets are currently more than 10% overpriced relative to optimal

pricing. This suggests there is a significant opportunity to help sellers through “better” pricing

practices. Using our suggested algorithms, it is possible to correctly estimate whether a ticket

will sell at a given price with 91% accuracy, an insight which is valuable in helping StubHub

develop products which enhance the user experience. We show that previously used methods

for price estimation of tickets in the resale market are significantly less accurate and potentially

misspecified relative to our proposed approach. More broadly, we hope this study highlights the

potential difficulties involved in causal price sensitivity estimation, as well as its implications

on pricing practice.

2. Literature review

Our work lies at the intersection of three streams of literature; causal inference, pricing for

events and data-driven pricing.

2.1. Causal Inference

In the operations management community, there is growing awareness of the need to iden-

tify the causal relationships of treatments or interventions that are used in making business
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6 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

decisions. In the presence of endogeneity, instrumental variables are required to identify the

treatment effect. Starting with continuous outcomes (Wright 1928, Reiersøl 1945), there is a

body of work which extended instrumental variable models to binary outcomes using linear

probit models (Rivers and Vuong 1988, Lee 1981, Amemiya 1978). These models are often

referred to in the literature as control function approaches. Similar to our setting, these models

have a continuous treatment but treatment effects are homogeneous. Due to recent advances

in machine learning and advantages in utilizing high dimensional data, there have been exten-

sions to non-parametric models with instrumental variables and binary outcomes (Blundell

and Powell 2003, 2004). Our main contribution over this literature is showing the effective-

ness of an orthogonalization step in the estimation, which is beneficial regardless of whether

confounding is present, and the heterogeneity in effect estimation. We outline the estimation

procedure of Rivers and Vuong (1988) and Blundell and Powell (2003) in more detail in section

§5, where we use these approaches as benchmarks in simulation experiments. For a compre-

hensive review of instrumental variable models with binary outcomes, we refer the reader to

Imbens and Wooldridge (2007).

A relatively recent stream of literature for estimating treatment effects is orthogonalized or

double machine learning methods. These methods aim to isolate the effects of the treatment

on the outcome by removing the conditional effects of the control variables. The methodology

was first introduced by Robinson (1988) for estimating parametric components in partially

linear models. Chernozhukov et al. (2018) provides examples of estimating (homogeneous)

treatment effects in the presence of high dimensional controls. Application of these ideas in a

pricing setting with a continuous demand model can be found in Chernozhukov et al. (2017).

Oprescu et al. (2018) provides some extensions of this approach to a heterogeneous treatment

effect estimation using random forests. Nie and Wager (2017) develops a specific loss function

for the regression setting of heterogeneous treatment effect estimation with binary treatments,

using the orthogonalized outcome and treatment. In contrast, our approach provides novel

loss functions and algorithms for the classification setting for continuous rather than binary

treatments.

2.2. Ticket Pricing for sporting events

There have been several papers studying pricing for event sales for sports events (Bouchet

et al. 2016, Barlow 2000, Duran et al. 2012, Sainam et al. 2010, Kemper and Breuer 2016,

Jiaqi Xu et al. 2019). These papers focus on the problem faced by primary sellers rather than
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resellers. They typically assume demand can be aggregated by section in the venue of the

event. While this is reasonable in the primary sellers case due to the large number of tickets

they are selling, this is not as reasonable in the reselling case where the tickets being sold at

any time are extremely sparse and dependent on market features.

In terms of recent work on secondary ticket sales markets, Zhu (2014) studies the case of

strategic consumers who potentially defer purchasing decisions. Diehl et al. (2015) studies the

NFL resale market using an aggregate demand model and IV regression. These models use

traditional econometric techniques and transformations of linear specifications, which aren’t

necessarily able to capture the complex interactions which exist in large scale data, relative

to the machine learning based techniques we develop.

2.2.1. Comparison with Sweeting (2012) Similar to our work, Sweeting (2012) develops

a dynamic pricing model for selling a single ticket on the MLB resale market. Nevertheless,

the paper’s focus is on capturing the seller’s behavior rather than prescribing the optimal

prices. Sweeting (2012) uses a probit linear model with instrumental variables (probit iv)

to capture the effect of price on the probability of selling an individual ticket. The price

sensitivity (treatment effect) is homogeneous (not dependent on ticket or market features) and

the effects of covariates on price are characterized linearly. In contrast, our specification is able

to capture heterogeneous price sensitivity with high flexibility (using general non-parametric

models such as boosted trees and deep neural networks) of how the heterogeneous treatment

effect and nuisance parameters depend on covariates. The collaboration with StubHub as well

as recent related research have made us aware of the high elasticity of demand in secondary

markets, and in particular, how it varies heterogeneously across different tickets (Diehl et al.

2015, Jiaqi Xu et al. 2019).

To estimate the parameters in the probit iv model, Sweeting (2012) uses Full Maximum

Likelihood Estimation (FMLE). Heckman (1977) observed however that estimating structural

parameters using FMLE methods is computationally difficult. In particular, our model’s flex-

ible specification using non-parametric functions for the nuisance parameters amplifies this

computational difficulty. To address the estimation’s challenges in this flexible specification,

we use orthogonalization to develop a novel loss function for classification which is easily

embedded within the state-of-the-art machine learning algorithms, and is robust to nuisance

parameters. In particular, consistency results from Sweeting (2012) only hold if the true model
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8 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

has a linear form. In comparison, the results of this paper hold under more general assumptions

allowing non-linearity and heterogeneity.

There are also many papers on data-driven pricing problems which incorporate high dimen-

sional features of the product or customer, for example (Cohen et al. 2016, Javanmard and

Nazerzadeh 2016, Ban and Keskin 2017).

3. Heterogeneous treatment effect estimation for classification

In this section, we consider a latent variable model that is a semi-parametric variant of

the model proposed in Rivers and Vuong (1988), which explicitly models the confounding

effect of ticket features on price. We assume access to n identically and independent samples

Wi = (Yi,Xi, Ti,Zi), i= 1, ..., n, where Yi ∈ {0,1} is a binary outcome, Ti ∈R is the treatment,

Xi ∈ X ⊆ Rd is the control, and Zi ∈ Rk is a set of instrumental variables. We propose the

following model where Y ∗ is an unobserved latent random variable such that:

Y ∗ = g(X) + τ(X)T + ε (1)

T =m(X) +βTZ + υ (2)

Z = h(X) +u (3)

Y =

1, if Y ∗ > 0

0, if Y ∗ ≤ 0
(4)

(
ε
υ

)
∼N

(
0
0
,

(
1 ρσυ
ρσυ σ2

υ

))
, u∼N(0,1), E[uυ|X] = E[uε|X] = 0 (5)

In the ticket selling context, Y is the observation of whether the ticket is sold or not. X

corresponds to a set of features with respect to the ticket and the market state (for a more

detailed description, see section §6.3). T is the price chosen for that ticket. The heterogeneous

treatment effect is captured through τ(X), which can be interpreted as the price sensitivity

dependent on the features of the ticket. The term m(X) can be interpreted as the fair market

value of the ticket (the portion of the ticket’s price that can be explained by the features of

the ticket), while v can be interpreted as the idiosyncratic choice by the seller of how to price

the ticket relative to the fair market value. The term g(X) corresponds to the contribution to

the likelihood of selling of the ticket features.

Finally, the model can suffer from omitted variable bias, where there are unobserved vari-

ables which affect both Y and T . These endogenous factors cause correlation between residual

errors ε and υ, leading to bias in the estimate of the treatment effect τ(X). To overcome
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this, suitable instruments Z are required, which only affect Y through the interaction with T .

Through variation of Z, we can observe the impact of changing T on Y . These relationships

are captured through the condition E[uυ|X] = E[uε|X] = 0. The term h(X) captures possible

correlation between the instruments and features of the ticket. We go over the specific set of

instruments we use in the StubHub case study in section §6.2.

The model in (1-5) is difficult to estimate due to the semi-parametric form of equations

(1-3). The non-linear terms g(X), τ(X),m(X), h(X) are challenging to estimate jointly using

maximum likelihood estimation. Simpler models where these terms are linear and the treat-

ment is homogeneous, such as in Rivers and Vuong (1988), can perform poorly when the true

models are non-linear as is often the case with real data. Fully non-parametric models, such as

boosted trees and neural networks, are often able to achieve good predictive accuracy, but do

not explicitly exploit the structure of the model to estimate τ(X), leading to poor approximate

estimates of the heterogeneous treatment effect.

Our model provides a general approach that works for heterogeneous treatment effect esti-

mation in the presence of endogeneity using instrumental variables. However, we note that this

method can also be applied in the special case where ε and υ are independent (no endogene-

ity), in which case an instrumental variable Z is not required. We show in section §5 strong

empirical evidence that this methodology is more effective in the uncorrelated case than other

machine learning approaches which do not use orthogonalization.

3.1. Method

We follow the literature on double/orthogonalized machine learning to isolate the causal effects

of the treatment on the outcome by removing the conditional effects of the control variables.

Machine learning algorithms are known to be good predictors, but this literature also shows

they can be adapted to be good treatment effect estimators that are robust to confounding.

Using orthogonalization, we derive a novel loss function for treatment effects estimation for

classification. We first partial out the effect of X from T to obtain the orthogonalized regressor

T −E[T |X]. Furthermore, we partial out the effect of X on Y ∗ to obtain an orthogonalized

outcome Y ∗ − E[Y ∗|X]. Since E[Y ∗|X] = g(X) + τ(X)m(X) + τ(X)βTh(X) and E[ε|X] = 0,

we can rearrange (1) and (2) as follows:

Y ∗−E[Y ∗|X] = τ(X)(T −E[T |X]) + ε. (6)

This new expression has the advantage of eliminating g(X) and thus removing the direct

effect of confounding. In the classification setting, since Y ∗ is a latent variable, E[Y ∗|X] is
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generally not known, but E[Y |X] can often be approximated using non-parametric machine

learning techniques. Under some assumptions that we will present below, we next link E[Y ∗|X]

to E[Y |X]. In what follows, we take k = 1 (one instrumental variable) but one can easily

generalize our results to the case of k > 1.

Proposition 1. If

(
ε
υ

)
∼N

(
0
0
,

(
σ2
ε ρσεσυ

ρσεσυ σ2
υ

))
, and u∼N (0, σ2

u) is uncorrelated with

ε, υ, then:

E[Y ∗|X] =
√
σ2
uτ(X)2β2 +σ2

ε + 2τ(X)σεσυ + τ(X)2σ2
v ·Φ−1(E[Y |X]).

The proof can be found in appendix A. We can also decompose ε = ρσε
συ
υ + ε̃ into orthog-

onal components, where E[υε̃] = 0, and ε̃|X ∼N(0, (1− ρ2)σ2
ε ) (see Bertsekas and Tsitsiklis

(2002)). With this modification, the treatment T is orthogonal to the error ε̃. The expression in

Proposition 1 can be to substituted into (6) to obtain a new expression for the latent variable:

Y ∗ = Φ−1(E[Y |X])

√
σ2
ε + 2ρσεσvτ(X) + (σv2 +σ2

uβ
2)τ(X)

2
+ τ(X)(T −E[T |X]) +

ρσε
σv

v+ ε̃. (7)

In the remainder of the paper, we assume for simplicity and without loss of generality that

σε = 1. This is a standard assumption in the literature of probit models with instrumental

variables (Rivers and Vuong 1988)2. For brevity, denote w=(β,σu, σv). From expression (7),

we can derive an appropriate loss function resulting from the normally distributed random

component ε̃:

l(Y,X,T, τ, ρ,w, v) = Y log(Φ(f(X,T, τ, ρ,w, v)) + (1−Y ) log(1−Φ(f(X,T, τ, ρ,w, v))) (8)

f(X,T, τ, ρ,w, v) =
Φ−1(E[Y |X])k(X,τ, ρ,w) + τ(X)(T −E[T |X]) + ρ

σv
v√

1− ρ2
(9)

and k(X,τ, ρ,w) =

√
1 + 2ρσvτ(X) + (σv2 +σ2

uβ
2)τ(X)2. (10)

We note that most of these nuisance parameters can be estimated prior to optimization of

this loss function using machine learning algorithms. r̂(X)≈ E[Y |X] can be estimated using

non-parametric classification prediction methods of Y on X. An estimator q̂(X)≈E[T |X] can

be found by non-parametric regression of T on X, ĥ(X)≈E[Z|X] by Z on X while û can be

calculated as the residuals.

2 Although in general σε is not identifiable, it is not necessary to estimate the treatment effect. In the case it is not equal to one, we
estimate a scaled treatment effect τ̂(X) = τ(X)

σε
, which reflects the change in probability with treatment.

Electronic copy available at: https://ssrn.com/abstract=3360622



Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling 11

In the case where m(X) is linear, linear regression of T on X and Z can be used for

estimates m̂(X) and β̂, while v̂ are the residuals. In the general non-linear case, an additional

orthogonalization step can be used on (2):

T −E[T |X] = β(Z −h(X)) + υ, (11)

so β̂ can be calculated by regressing T − q̂(X) on Z − ĥ(X), while again v̂ are the residuals.

To ensure that the estimates of β̂, v̂ are indeed consistent, we randomly split the data into 3

equally-sized partitions and use different datasets to estimate q̂(X), ĥ(X), and the nuisance

parameters β̂, v̂. This ensures that q̂(X) is independent from ĥ(X), and independent from T,Z

which serve to estimate the nuisance parameters, enabling standard consistency results.

For the unknown variances σv and σu, the naive estimation procedure (σ̂υ =
√

1
n

∑
i v̂

2
i , σ̂u =√

1
n

∑
i û

2
i ) does result in a consistent estimator if we follow the sample splitting procedure

above. The analytical results are detailed in section §3.2. The finite-sample performance of

this estimator can be further improved if a bootstrapping method is applied for a finite sample

correction. For example, we can show that the estimator σ̂u satisfies:

Eu,X
[
σ̂2
u

]
= σ2

u +
1

n

n∑
i=1

Eu,X
[
(ĥ(Xi)−h(Xi))

2
]
.

Given our assumptions, this estimator is indeed consistent as ĥ(X)→ h(X), but suffers from

a finite sample error of 1
n

∑n
i=1 Eu,X

[
(ĥ(Xi)−h(Xi))

2
]
. One can use the bootstrap method

(see details in appendix C) to estimate this finite sample error which further improves the

accuracy of our estimator. In section §5, we run computations on synthetic datasets to illustrate

the practical performance of our estimation procedure (including variance estimation). More

formally, our estimation algorithm can be summarized as follows:
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12 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

Algorithm 1 Two stage estimation for classification algorithm with instrumental variables

1: Randomly divide the dataset into three equal-sized sets S1, S2, S3

2: Fit r̂(X)≈E[Y |X], q̂(X)≈E[T |X] via appropriate non-parametric methods using set S1.

3: Fit ĥ(X)≈E[Z|X] via appropriate non-parametric methods using set S2.

4: Using set S3, calculate ŵ= (β̂, σ̂u, σ̂v) and v̂.

5: Define the approximate log-likelihood function:

l̂(Y,X,T,Z, τ, ρ, ŵ, υ̂, r̂, q̂) =Y log(Φ(f̂(X,T,Z, τ, ρ, ŵ, υ̂, r̂, q̂))

+(1−Y ) log(1−Φ(f̂(X,T,Z, τ, ρ, ŵ, υ̂, r̂, q̂))) (12)

where f̂(X,T,Z, τ, ρ, ŵ, υ̂, r̂, q̂) =
Φ−1(r̂(X))k(X,τ,ρ,ŵ)+τ(X)(T−q̂(X))+ ρ

σ̂v
v̂√

1−ρ2
and k is defined in Eq.

(10). Then using all samples from S1, S2, S3, find the approximate maximum likelihood

estimator:

(τ̂(·), ρ̂) = arg min
τ,ρ

{
− 1

n

n∑
i=1

l̂(Yi,Xi, Ti,Zi, τ, ρ, ŵ, υ̂i, r̂, q̂)

}
(13)

In this procedure, steps 1-4 make use of sample splitting to learn independent estimates

for relevant parameters, while step 5 optimizes the approximate empirical log-likelihood

loss function. Optimizing this loss function requires finding the optimal function τ̂(·) and

the correlation parameter ρ̂. As ρ is one dimensional, we recommend using a line search

algorithm to find ρ̂. In particular, for any fixed ρ, we could find the optimal τ̂(·) =

arg minτ − 1
n

∑n
i=1 l̂(Yi,Xi, Ti,Zi, τ, ρ, ŵ, υ̂i, r̂, q̂), and evaluate the loss function. Then ρ can be

optimized using Brent’s method (for example).

Various machine learning optimization methods and base functions can be used for estimat-

ing the function τ(X). This step can efficiently be solved by adapting off the shelf methods,

using a customized loss function. In the ticket reselling setting, we observe that restricting τ̂(·)
to be a tree ensemble and optimizing the second stage using the lightgbm package (Ke et al.

2017) works well in practice as shown in section §6.3. The lightgbm package is an example of

gradient boosted trees (Friedman 2001). The wide effectiveness of ensembles are displayed in

Kaggle competitions with 60% of winning solutions using gradient boosting implementations

(Rogozhnikov and Likhomanenko 2017). The specific details of how to incorporate the loss

function minimization into the lightgbm package are given in appendix G. Alternatively, a
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deep learning approach could be taken by restricting τ̂(·) to be a neural network and opti-

mizing the second stage loss function using tensorflow (Abadi et al. 2016). For simpler

settings, such as when the treatment effect is constant (τ̂(·) = τ), a one dimensional search of

the loss function can be used to find the optimal value (see section §5.1 for experiments).

Note that this method presents a general way of estimating heterogeneous treatments for

classification tasks, as it can be generalized to other variants of the problem depending on

distributions of ε and v. For Gaussian errors, we are able to derive a closed form of the

loss function (as Gaussian variables have a closed form convolution). It is possible to derive

analogous equations for the case where ε and v are not Gaussian if we assume full knowledge

of the joint distribution of ε and v. Nevertheless, this CDF might be difficult to calculate in

practice. We show how to derive these equations with general error distributions in appendix

H. Next, we prove consistency results of the estimators in (13).

3.2. Consistency and Stability of Estimator τ̂(·)

In what follows, we show that under mild regularity conditions, the estimator τ̂(·) that results

from Algorithm 1 would approximate well, with enough data, the true treatment τ(·). This

proof relies on standard assumptions in the econometrics literature (Engle 1994) about con-

sistency, compactness and identifiability of the treatment effect. This in turn ensures that the

approximate likelihood function defined in (12) is close to the true likelihood function. Another

feature we show is that τ̂(·) converge as long as r̂(X) and q̂(X) converge (along with the other

estimated nuisance parameters). Our proof holds for a broad class of treatment effects, in

which the treatment can be characterized by finitely many parameters τ(X) = t(θ1, · · · , θp,X).

We first summarize these standard assumptions regarding the underlying structure of the

treatment effect and the nuisance parameters, which facilitate the subsequent analysis.

Assumption 1 For the latent variable model in (1)-(5), we assume the following:

(a) (Finite Parameterization) τ(X) is a finitely parameterized function τ(X) =

t(θ1, · · · , θp,X) = t(θ,X) where p∈Z+, and t is known.

(b) (Compactness) Θ = (θ, ρ)∈DΘ and X ∈DX where DΘ and DX are compact.

(c) (Continuity) r(X), q(X), h(X) are continuous, 0< r(X)< 1 and t(θ,X) is continuous in

θ for every X, and is continuous in X for every θ with probability 1.

(d) (Identifiability) θ = θ0 ⇔ t(θ, ·) = t(θ0, ·).
(e) (Consistency of Estimation) sup

X∈Dx
|r̂(X) − r(X)| p−→ 0, sup

X∈Dx
|q̂(X) − q(X)| p−→ 0, and

sup
X∈Dx

|ĥ(X)−h(X)| p−→ 0.
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To derive rates of convergence, we further require our non-parametric methods to converge

at least at the
√
n rate. This is achieved by many popular machine learning methods under

suitable conditions, including random forests (Biau 2012) and gradient boosted trees under

early stopping (Zhang et al. 2005).

Assumption 2 (Rate of Convergence) Assume that the non-parametric estimators sat-

isfy, for some δ > 0, sup
X∈Dx

n1/(2+δ)|r̂(X) − r(X)| p−→ 0, sup
X∈Dx

n1/(2+δ)|q̂(X) − q(X)| p−→

0, and sup
X∈Dx

n1/(2+δ)|ĥ(X)−h(X)| p−→ 0.

The following lemma then shows that under the regularity assumptions, the nuisance param-

eters can be consistently estimated. Furthermore, their rate of convergence can also be properly

derived if we assume the non-parametric estimators have a sufficient rate of convergence:

Lemma 1. Consider the latent variable model in (1)-(5). If Assumptions 1(b), 1(c) and

1(e) hold, then β̂, σ̂u, σ̂v and v̂ from Algorithm 1 are consistent estimators. Furthermore, if

Assumption 2 holds, then the estimators converge with a rate at least as fast as n1/(2+δ).

The proof of the lemma is in appendix B. Having set up these assumptions, the following

theorem proves the finite sample consistency of the treatment effect estimator:

Theorem 1. For the latent variable model in (1)-(5), we can parameterize the log-likelihood

as l(Y,X,T, τ, ρ,w,υ) = l(Y,X,T,Θ,w,υ) where Θ = (θ, ρ) and similarly for l̂, f̂ , k. For iid

samples (Xi, Yi, Ti,Zi)i=1···n ∈DX ×DY ×DT ×DZ, define the estimator τ̂ as:

τ̂(X) = t(θ̂1, · · · , θ̂p,X) = t(θ̂,X) (14)

s.t. (θ̂, ρ̂) = Θ̂ = arg max
Θ∈DΘ

{
1

n

n∑
i=1

l̂(Yi,Xi, Ti,Zi,Θ, ŵ, υ̂i, r̂, q̂)

}
(15)

Under Assumption 1:

a. The log likelihood (θ, ρ) = Θ 7→E[l(Y,X,T,Θ,w, v)] has a unique minima (θ∗, ρ∗).

b. τ̂(X) = t(θ̂,X) is a consistent estimator of τ ∗(X) = t(θ∗,X), and ρ̂ is a consistent esti-

mator of ρ∗, as in:

sup
X∈DX

‖t(θ̂,X)− t(θ∗,X)‖ p−→ 0 and ‖ρ̂− ρ∗‖ p−→ 0

Furthermore, if Assumption 2 holds, then we have:

sup
X∈DX

√
n‖t(θ̂,X)− t(θ∗,X)‖ p−→ 0 and

√
n‖ρ̂− ρ∗‖ p−→ 0
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The proof can be found in appendix D. Through extensive numerical simulations on syn-

thetic data (see section §5), we show that gradient boosted trees are able to find the unique

optimal solution fast. Next, we leverage our classification method to develop an optimization

framework that identifies arbitrage opportunities for StubHub.

4. Revenue management for ticket reselling

In this section, we introduce an optimization framework for revenue management for ticket

reselling. The framework relies on two building blocks: (i) Estimating potential optimal revenue

for each ticket, (ii) Developing a trading algorithm for tickets given their potential revenues.

To achieve part (i), we first examine two pricing models for choosing the optimal price to

sell an individual ticket: a static pricing model, where prices are held constant over the time

horizon and a time-variant pricing model, where prices change over time. Both pricing models

use our underlying classification method for whether an individual ticket is sold or not under

a particular price. These pricing models can then be embedded into a master problem with

the goal to decide which tickets to buy given the estimated potential revenues.

4.1. Assumptions

We now discuss a few key assumptions in our pricing approach:

First, since our collaborators do not aim to transact large volumes of tickets, we assume

that the trading algorithm will buy/sell small volumes relative to the secondary ticket market

size. This is necessary to prevent possible endogeneity issues; if a market maker were to buy

too many tickets, the underlying market mechanisms would change. Thus, it would be difficult

to justify using historical data to estimate price sensitivity once a new entrant becomes a

sizeable market participant.

Second, we develop both pricing models for pricing a single ticket. If the number of tickets

being sold by the seller is small and types of tickets are diverse, the cross effects of tickets in

the portfolio will also be small and the relative effects on the overall market will be minor. We

evaluate the strength of these cross-effects on the data in appendix J, and show that based on

our data single-ticket optimization is justified.

Finally, we assume that demand is independent over time periods, but allow it to change

over time according to a forecast. While simple, this model is sufficiently rich to capture

the time dynamics of perishable inventory, and how prices fall closer to the event time to

improve the chances of selling. Furthermore, the simplicity resulting from these assumptions is

necessary to solve the model tractably on the scale of the millions of tickets that could possibly
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be purchased and sold on the market. It is desirable to be able to make these calculations

instantaneously to be able to offer the seller a price before they list their ticket.

In what follows, we introduce first the static, and then the dynamic pricing algorithms.

Subsequently, we analyze the optimization problem for deciding the ticket portfolio.

4.2. Static pricing

To find the optimal revenue for a single ticket, the retailer optimizes the expected revenue of

a ticket by choosing the optimal price T ∗ = arg maxT E[R|T,X,Z] where X are features of the

ticket, Z is the related instrument and R is the resulting revenue. Denoting Y = 1 the event

that the ticket sells, then E[R|T,X,Z] = T · P (Y = 1|T,X,Z) where P (Y = 1|T,X,Z) is the

probability that the ticket sells at price T . Under the two-stage classification model, we can

rearrange (9) and substitute for the maximum likelihood estimator of P (Y = 1|T,X,Z). We

then find an estimate of the maximum expected revenue R̂∗(X,Z) by solving the following

problem:

R̂∗(X,Z) = max
T

T ·Φ
(
f̃(X,T, τ̂ , ρ̂, σ̂v, v̂, q̂, r̂, ĥ)

)
(16)

where f̃(X,T, τ̂ , ρ̂, σ̂v, v̂, q̂, r̂, ĥ)≡ Φ−1(r̂(X))k(X,τ̂ ,ρ̂,ŵ)+(τ̂(X)+ ρ̂
σ̂v

)(T−q̂(X))− ρ̂·β̂
σ̂v

(Z−ĥ(X))√
1−ρ̂2

and k defined in

Eq. (10). The following theorem describes the reseller’s optimal pricing strategy.

Theorem 2 (Optimal Price for the reseller). For a ticket defined by covariates X:

1. If τ̂(X) + ρ̂
σ̂v
≥ 0, then the revenue is increasing with price and the reseller should choose

the highest price possible for the ticket.

2. If τ̂(X) + ρ̂
σ̂v
< 0, then the revenue is unimodal with optimum T ∗ satisfying:

T̄ =
Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

−2(τ̂(X) + ρ̂

σ̂v
)

+

√(
Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

)2
+ 8(1− ρ̂2)

−2(τ̂(X) + ρ̂

σ̂v
)

The proof can be found in appendix E. In practice, in the pricing setting, the demand or

likelihood of selling (a ticket in this setting) is negatively correlated with price, which means

that τ̂(X)< 0, and furthermore our experiments suggest ρ̂ is negative for the ticket reselling

setting so the condition τ̂(X) + ρ̂
σ̂v
< 0 is always satisfied in practice. There are advantages to

having the revenue be a unimodal function, it can be optimized efficiently using a line search

algorithm such as Brent’s method (Brent 1971). In addition, having an upper bound helps

limit the search space.
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4.3. Time-varying pricing

We formulate the dynamic pricing problem for a single ticket as a Markov decision problem

over a finite horizon H. We denote the binary variable Wt whether the ticket will sell in a

given period t. The ticket features are explicitly split into Mt market features which vary with

time (discussed further in appendix F) and X the ticket features which do not change over

time. Note, for notational simplicity we suppress the dependence on the ticket i, but there is

a unique X and Mt for each ticket. The probability of selling the ticket in a single period at a

price Tt is P (Wt = 1|Tt,X,Mt) and the system’s state is described by Mt. Denote Jt(Mt) the

expected optimal revenue to go from period t+ 1 to H given state Mt. Then, the dynamic

programming formulation (using Bellman’s equation) is:

Jt(Mt) = max
Tt

Tt ·P (Wt = 1|Tt,X,Mt)

+ (1−P (Wt = 1|Tt,X,Mt))E[Jt+1(Mt+1)], 1≤ t≤H, and JH+1(MH+1) = 0; (17)

where the first term in (17) is the revenue achieved if the ticket sells while the second term

is the expected revenue from the future. It is possible to estimate the probability of selling in

a single period P (Wt = 1|Tt,X,Mt) from the probability of selling in the remaining horizon

P (Yt = 1|Tt,X,Mt):

P (Wt = 1|Tt,X,Mt) =
P (Yt = 1|Tt,X,Mt)−P (Yt−1 = 1|Tt−1,X,Mt−1)

1−P (Yt−1 = 1|Tt−1,X,Mt−1)
(18)

While theoretically solvable, the dynamic programming solution is not tractable at the

scale of our problem. A common approach in the literature is to solve this model using the

deterministic equivalent LP, which we denote as DLP. It is used by Ma et al. (2018) in the

pricing setting, and by several others (Gallego and Van Ryzin 1994, Wang et al. 2018) in the

revenue management and scheduling literature.

R̄H(Xi) = max
∑
j∈L

H∑
t=1

qtjTtjxtj (19)

s.t
∑
j∈L

H∑
t=1

qtjxtj ≤ 1 (20)

∑
j∈L

xtj ≤ 1 ∀t∈ {1, ...,H} (21)

xtj ≥ 0 ∀t∈ {1, ...,H}, j ∈L (22)
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In this formulation, the variable xtj selects a price Ttj and quantity qtj = P (Wt =

1|Ttj,X,EMt) from a discrete ladder j ∈ L for each time period, while the objective is the

expected revenue over the selling time horizon. Constraint (20) is an inventory constraint

which requires the ticket can be sold at most once in probability, while constraint (21) requires

no more than one price selected per period.

It is well known that OPTLP , the optimal objective value for DLP is an upper bound on the

optimal dynamic policy OPTDP ; i.e. OPTLP ≥OPTDP (Gallego and Van Ryzin 1994, Gallego

et al. 2004). Furthermore, we can use the DLP solution to devise a dynamic pricing policy

with a revenue guarantee of 1
2

with respect to the optimal dynamic policy. This follows from

the Proposition below established by (Ma et al. 2018):

Proposition 2. (Ma et al. 2018) Let r∗ be the optimal objective value of DLP. For each

time period t, we define the price T̂t such that:

T̂t = Tt,jt where jt ∈ arg max
j∈L

(Ttj −
r∗

2
)qtj

Then the expected revenue of the dynamic pricing policy (T̂t)t=1,··· ,H earns an expected revenue

of at least OPTLP/2.

Remark. For our setting, we approximate the true (uknown) qtj with the estimated q̂tj from

our classification model. Theorem 1 ensures that q̂tj converge to q̂tj with the rate 1√
n
, n being

the size of the data. Assuming that StubHub obtains sales data at a rate proportional to the

time passed (n∝ t), then the estimated q̂tj converges at the rate 1√
t

to the true value. Thus,

by linearity, the maximum error of using q̂tj rather than qtj in DLP is proportional to 1√
t
.

This allows StubHub to utilize DLP efficiently with sufficient time (data) to construct the

dynamic pricing strategy in Proposition 2.

One can then calculate the expected revenue of the ticket that this pricing strategy achieves:

R̂∗H(X) = E

[
H∑
t=1

T̂t ·Wt(T̂t,X,Mt)

]
, (23)

where the expectation is taken over the sample paths of the (ticket dependent) market

dependent features Mt (for example, the quantity of tickets sold in the game). Since the

expectation needs to be estimated on all sample paths which are not observed through data, we

can use Monte Carlo simulation to generate these sample paths using the following evolution

equation:

Mt =M0 +µt+σtε.
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µ and σ denote the parameters fitted through historical data for the ticket, M0 indicates

the market feature at time of listing and ε is a standard (0,1) normally distributed variable.

Therefore, each market feature is assumed to follow a Gaussian random walk with drift, as is

commonly the case in reproducing dynamic data (see e.g. Bell et al. 2003).

4.4. Global optimization for purchasing a ticket portfolio

We introduce the following optimization problem to decide which tickets to purchase and add

to our portfolio. In practice, this optimization problem is resolved frequently over the time

horizon to respond to market changes.

max
zi

∑
s∈S

∑
i∈As

(R̂∗H(Xi)−T 0
i − b)zi (24)

s.t.
∑
i∈As

zi + |Is| ≤Cs ∀s∈ S (25)

zi ∈ {0,1}, (26)

In this formulation, zi is a binary variable that decides if each ticket i should be purchased,

As is the set of available tickets on the market for a particular section of an event s∈ S, and

Is is the number of tickets purchased in previous stages but were unsold by the algorithm

for that section. The objective represents the optimal net expected revenue relative to the

listed price T 0
i of the ticket. If the expected revenue sufficiently exceeds the listing price plus

a buffer b, the ticket is considered for purchase. By tuning the buffer parameter b, we limit

the rate at which tickets are purchased. Constraint (25) limits the number of tickets held in

inventory for a given section. This is a knapsack problem that can be decomposed by section

and solved efficiently in practice, once the price optimization and the expected revenue have

been calculated for each ticket using either (16) or (23). As for the tickets previously purchased

through the algorithm but that are unsold, we re-optimize their listing prices based on the

updated market features and the time until the event.

5. Testing the method: experiments on synthetic data

In this section, we evaluate the performance of the estimation procedure from section §3.1

on a variety of synthetic datasets. In fact, it is important to use synthetic datasets first to

establish the validity of our method since in real-world datasets, the parameters of interest

(for example price sensitivity) are seldom known. Furthermore, real-world datasets rarely have

counterfactuals, which are the outcomes that would occur if a different treatment is taken

(in our example, whether a ticket sell if a different price is prescribed). Without this, the
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evaluation of the estimation of treatment effects is difficult. However, in a synthetic data

environment, these can be generated due to knowledge of the underlying probability model

used to create the data. We begin with evaluating our model’s ability to estimate a constant

treatment effect, then we progress to the case of heterogeneous treatment effect using gradient

boosted trees.

5.1. Homogeneous treatment effect simulations

We study a case of the model explained in equations (1) to (5) where the functional form of

the nuisance parameters is linear:

Y ∗ = β′gX + τT + ε, T = β′mX +βZ + υ, Z = βh +u,

(
ε
υ

)
∼N

(
0
0
,

(
1 ρσυ
ρσυ σ2

υ

))
The endogeneity is captured by the correlation between ε and υ, where τ = 2, ρ= 0.5, συ =

1, u∼N(0,1),X ∼N(0, Id). To prove our methodology works on a wide range of simulated

datasets, we generate 100 datasets with n = 1000 data-points each. Furthermore, the coef-

ficients for each dataset are drawn from the following distributions: βh ∼ N(0,1), βg, βm ∼

N(0, Id) but only have 5 non-zero components. This aims to replicate a realistic sparse sce-

nario, where the signal depends only on a few of the observed variables, and the others are

noise.

5.1.1. Benchmark methods: We test against the seminal work by Rivers and Vuong (1988)

from the literature on probit models with instrumental variables. It provides an estimation

procedure based on the decomposition of ε = ρ
συ
υ + ε̃ into independent components, where

E[υε̃] = 0 and:

Y ∗ = β′gX + τT +
ρ

συ
υ+ ε̃

Rivers and Vuong (1988) proposed the following two stage procedure (probit iv):

1. Regress T on X and Z to find υ̂= T − (X ′β̂m + β̂Z), and σ̂υ = ||υ̂||√
n

.

2. Probit regression of Y on X,Z, υ̂ to obtain estimates of β̂g, τ̂ , λ̂= ρ̂
συ

.

This method is different from our proposed approach as it does not have the orthogonaliza-

tion step to reduce sensitivity to the nuisance parameters.

5.1.2. Results: Figure 1a shows how the error in the estimated treatment coefficient

changes with the dimension of the data. We used probit iv and the proposed two stage

method (two stage) to estimate the treatment coefficient for each dataset. To optimize the
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second stage loss function (13), we only require a simple line search to find the correct treat-

ment coefficient. For the first stage, r̂(x)≈E[Y |X] is estimated using probit regression while

q̂(x)≈E[T |X] and ĥ(x)≈E[Z|X] are estimated using OLS regression. σ̂u and σ̂v are unknown

and estimated to be on average 1.014 (standard deviation 0.036) and 0.974 (standard devi-

ation 0.043) respectively, using the bootstrap procedure outlined in appendix C. Figure 1a

shows the probit iv estimator is unable to accurately estimate the treatment effect when

the dimension is high. In this setting, it is beneficial to do the orthogonalization step, which is

why two stage is able to more accurately estimate the treatment effect in a larger dimension.
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(b) Without endogeneity

Figure 1: Homogeneous treatment effect estimate accuracy (n= 1000)

5.1.3. Experiments with no endogeneity: We also study a case with no endogeneity or

instrumental variables (ρ= 0, Z = 0) and show that we are still able to achieve an improve-

ment relative to traditional single stage logistic regression (logistic regression) and

logistic regression with elastic-net penalty (reg logistic regression, Zou and Hastie

2005), implemented using the Glmnet package (Friedman et al. 2009), with 10 fold cross-

validation). In Figure 1b, the logistic regression is able to achieve relatively high accuracy

when the number of samples n is large relative to d (the dimension of X), but performs poorly

as d grows. As expected, the elastic-net logistic regression is less sensitive to d, but has a bias

in the treatment coefficient’s estimation across all datasets, which results in poor performance
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relative to the two stage estimator. This highlights that the benefits of the two stage approach

extend beyond the scenario with endogeneity, and that an orthogonalization step is useful here

as well.

5.2. Heterogeneous treatment effect: gradient boosted trees

We now move to the more general case where the treatment effect depends on the covariates

X. We explore this using gradient boosted tree methods. To do so, we implement our cus-

tomized loss function within the lightgbm package for boosted trees. For the details of the

implementation, we refer the reader to appendix G.

5.2.1. Numerical experiments with heterogeneous treatment effect: We use the model

in (1) - (5), with u∼N(0,1), Xi ∼N(0, Id), h(x) = x1, β = 1, ρ= 0.5, συ = 1.

We explore a number of different synthetic datasets:

• Dataset 1: simple treatment effect (d= 2), g(x) = x1 +x2, m(x) = x1, τ(x) = x1.

• Dataset 2: linear relationships (d= 10), g(x) = x1−x2 +x3, m(x) = x1 +x2 +x3, τ(x) =

x1−x2 +x3.

• Dataset 3: non-linear g(x), linear m(x), τ(x) (d= 2), g(x) = sin(10(x1 + x2)
2)), m(x) =

x1, τ(x) = x1.

• Dataset 4: non-linear relationships (d = 2), g(x) = sin(10(x1 + x2)
2)), m(x) = (x1 −

x2)
2, τ(x) = cos(x1 +x2).

We test our different methods on the ability to correctly predict the change in probability

associated with a change in the treatment. Specifically, for a particular change in treatment

δk and a probability estimator Φ(f̂(X,Z,T )), we define the average error in estimating the

treatment change as:

1

n

n∑
i=1

|(Φ(f̂(Xi,Zi, Ti + δk))−Φ(f̂(Xi,Zi, Ti))−

(E[Y |X =Xi,Z =Zi, T = Ti + δk]−E[Y |X =Xi,Z =Zi, T = Ti])|

In other terms, we first look at the change in the predicted probability when we change each

treatment by a specific amount δk, while holding the control features and instrument (Xi,Zi)

constant. We then take the mean absolute difference with the true change in probability

associated with the known probability distribution. We display this metric in the Y axis in

Figure 3. We repeat this over a range of treatment changes, δk, from -2 to 2 in 0.2 increments,

using a randomly generated sample of 1,000,000 data points.
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5.2.2. Benchmark methods: In addition to comparing against probit iv which is lim-

ited by its linear form, we also compare against Blundell and Powell (2003). This extends

Rivers and Vuong (1988) so that g(X) and h(X) are non-parametric functions, by replacing

the steps in the procedure by the non-parametric equivalent (LGBM iv):

1. Estimate q̂(X,Z) = m̂(x) + β̂Z non-parametrically. Find υ̂= T − q̂(X,Z), and σ̂υ = ||υ̂||√
n

.

2. Estimate f̂(X,Z,T, υ̂) = g(X) + τ(X)T + ρ
σ̂υ
υ̂ non-parametrically.

We note that the main difference with (two stage LGBM) is that the LGBM iv approach

above does not have an orthogonalization step, and does not identify the treatment effect

τ(X), although, as in section §5.2, this can be approximated by changing T in the function

f̂(X,Z,T, υ̂). Finally, we compare against a lightgbm classifier with X,T as explanatory

variables, a method denoted LGBM. 50 rounds of boosting were used for all procedures.

5.2.3. Results: Figure 1 shows that two stage LGBM performs well over a range of

synthetic datasets with endogeneity as long as a suitable instrument is available. The

probit iv method performs poorly on all models where the nuisance parameters are

non-linear or the treatment effect is heterogeneous. The orthogonalization step appears

to give two stage LGBM an advantage over LGBM iv in almost all cases. LGBM is

generally inferior to LGBM iv due to its inability to leverage the instrumental vari-

able to remove the effects of endogeneity. The noise parameters are estimated as part

of the estimation procedure. Using the bootstrap procedure for dataset (1)-(4), the

estimates for σ̂u are 1.00110,1.00008,1.00017,1.00026 respectively, and for σ̂v they are

1.00017,1.00441,0.99960,1.03516. Further comparisons with the naive estimator are available

in appendix N.

5.2.4. Experiments with no endogeneity: We also test our approach when there is no

endogeneity (ρ= 0) and compare to LGBM logit and LGBM probit using boosted trees with

a logistic or probit loss function respectively. Due to the lack of existing methods on estimating

heterogeneous treatment effects in the classification setting with continuous treatments, we

also tried some state of the art methods from the literature meant for the regression setting,

such as generalized random forests (Athey et al. 2016) and rlearner (Nie and Wager 2017).

These methods were not insightful in the classification setting so are omitted from the following

results. The results are shown in Figure 3. We observe that our two stage approach is able

to consistently better estimate the treatment effect than single stage gradient boosted trees

across all data sets in this setting.
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(a) Dataset 1: simple variable effect

treatment
(b) Dataset 2: linear relationships

(c) Dataset 3: non-linear g(x), linear

m(x), τ(x)

(d) Dataset 4: non-linear relation-

ships

Figure 2: Estimating treatment effect for changing sample size

We have additional numerical experiments in appendix L.1 and appendix L.2. We also

explore the effect of sample size on the ability to predict the change in probability in

appendix L.1. In appendix L.2, we explore how the treatment effect estimation impacts the

(sub)optimality of the solution in synthetic pricing simulations.

6. StubHub Case Study

We investigate how our method performs in practice using StubHub data from the 2014-2015

NBA season. We first study the performance of the treatment effect estimation procedure

portrayed in section §3, then the optimization problem for ticket reselling from section §4. We

finally discuss the possible managerial implications for StubHub.

6.1. Introduction

To test the performance of our algorithm, we construct a back-testing environment on the

StubHub market for the 2014-2015 NBA season. In total, there are 1230 games and StubHub

have 8.5 million tickets. We use 34 variables from the database as predictive features X (the
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(a) Dataset 1: simple variable effect

treatment
(b) Dataset 2: linear relationships

(c) Dataset 3: non-linear g(x), linear

m(x), τ(x)

(d) Dataset 4: non-linear relation-

ships

Figure 3: Estimating change in probability with a change in treatment

full table of variables is in appendix F). The outcome variable Y is the binary indicator if the

ticket was eventually sold, and T is the listed price for that ticket.

We construct the instrumental variable Z from how the seller has historically priced tickets

relative to the market. Specifically, Z is defined as the average of the difference between the

seller listed price and the median listed price (in the section of the ticket) across all historical

tickets sold by the seller in the NBA market prior to the 2014-2015 season. If the seller has

not listed a ticket before, we let the value be 0. This is a suitable instrument because buyers

cannot view the seller’s history when buying a ticket, so the only mechanism where Z can

affect the probability of a ticket being sold is through the price T . For benchmarks, we use

the same methods listed in section §5.1.

6.2. Verifying the Instrumental Variable

We conduct experiments to show that Z is a valid and significant instrumental variable. First,

we show that Z is significant in predicting the price variable T . Table 2a displays the coefficient
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of the instrument in the regression of ticket and market features and the instrument on price.

A Wald test of significance, with and without the IV, gives a F-value of 2481.8 and p-value

of < 2.2× 10−16. Typically the F-value for the joint significance of the instruments should be

greater than 10 (Stock and Watson 2015). We also conducted a likelihood ratio test, obtaining

an F-value of 2477.802 and p-value of < 2.2× 10−16.

(a) Regression of ticket and market features

and the instrument (the average historical

price difference on price)

Variable Estimate

Average historical 0.009499∗∗∗

price difference (0.0001907 )

Observations 698286
R2 0.6508
Adjusted R2 0.6508

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) Probit regression of price, ticket and

market features and price residual (from IV

model) on selling outcomes

Variable Estimate

Price residual 0.002902∗∗∗

(0.0004329 )

Observations 698286
AUC 0.8005
Misclassifcation rate 0.1942

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Analysis of Instrumental Variable

To further justify the use of an instrumental variable approach, we demonstrate that endo-

geneity exists in the data. We use the test from Guilkey et al. (1992), which incorporates the

residual from the price prediction into the probit estimation for ticket selling likelihood. Table

2b shows strong evidence against the coefficient of the residual being zero (p-val= 2.04×10−11),

suggesting there is endogeneity in the model.

6.3. Predictive accuracy

We split the historical ticket data into 70% training and 30% testing to evaluate the predictive

performance of the various methods. The testing set is selected so that all tickets in such set

are listed later than the training set to ensure no temporal dependence.

In Table 3, we observe the predictive power of the various models on the NBA dataset

for 2014-20153. We observe comparable performance in both misclassification error and AUC

across all methods that use gradient boosted trees, with the two stage LGBM method achiev-

ing the highest accuracy. The corresponding ROC curves are shown in Figure 4. We also show

in appendix O.1 that it is well calibrated.

3 There are a number of parameters which needs to be estaimed, including: σ̂u = 58.6, ρ̂=−0.32 and σ̂v = 0.38. The small size of
σ̂v, is explained by that better results are obtained if log(price) is used.
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Figure 4: Performance on NBA data with iv:

ROC curve

Algorithm Misclassification error AUC
two stage LGBM 0.135 0.908

LGBM 0.144 0.898
probit iv 0.190 0.795
LGBM iv 0.142 0.901

Table 3: Predictive accuracy on NBA

data

We note that parametric models which do not capture the interaction terms or hetero-

geneous treatment effects, such as probit iv, are considerably less accurate and possibly

misspecified. This is particularly relevant as previous econometric studies for ticket selling have

used such models (Sweeting 2012), which may lead to erroneous treatment effect estimation.

Overall, this high predictive accuracy is promising for real-world applications. We also show

the performance of a simpler model with fewer features in appendix I.

6.4. Back-testing optimization

To understand the performance of our trading algorithm in buying/reselling tickets, we lever-

age data from 2014-2015 NBA season to conduct backtesting experiments. The backtesting

framework consists of two models:

• A purchasing model that uses one of the pricing models above to optimally price tickets

and then decide whether it is favorable to purchase and resell at a higher price.

• An independent baseline model simulating the ground truth of if tickets will sell.

Additional technical details about this backtesting procedure are given in appendix M. We

further construct a RShiny application to live monitor the backtesting procedure with cus-

tomizable features. A screenshot of the application is shown in appendix K.

For the experiment, we select the LGBM iv model (Blundell and Powell 2003) as the baseline

model for its high accuracy in section §6.3. We divide the dataset into two equal-sized sets,

with the training set chronologically before the testing set. We train the baseline model on the

training dataset while we evaluate our models on the testing dataset, assuming the baseline

to be the ground truth. We restrict the trading algorithm to only purchase 50 tickets per

day, due to the computational burden of both the dynamic pricing optimization and the
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simulation of selling probabilities. However, we foresee that this could be scaled significantly

with parallelization. The results are shown in Table 4:

Optimization Model

Method
Pricing Strategy Total Profit

% of Bought

Tickets Sold
ROI

two stage LGBM
Constant 13.7K 58% 7%

Time varying 19.5K 64% 11%

probit iv
Constant -247K 22% -70%

Time varying -116K 38% -29%

Table 4: Comparison of backtesting profit between methods with LGBM iv baseline (limited

to purchasing 50 tickets a day)

Table 4 shows that two stage LGBM performed significantly better than probit iv, a

specification previously used in the ticket resale market. A dynamic pricing strategy based on

probit iv’s probabilities loses 29% of capital invested, while the two stage LGBM approach

achieves a positive 11% return on investment, as evaluated by an independent baseline model.

probit iv underestimates the price sensitivity and as a result just sells 38% of the tickets it

purchases, while two stage LGBM sells 64% of the tickets. Furthermore, we observe that this

misestimation is worse for high value tickets, which have a significant impact on ROI. This

highlights that in an industry with slim margins, even slight misspecification of the demand

model can result in significant losses. We observe a small but significant improvement from 7%

to 11% ROI when using a time-varying pricing policy relative to a constant policy, suggesting

there is improvement to be made by considering the perishable inventory effects of tickets.

7. Conclusions and Discussions

Despite the availability of large datasets on the behaviour of buyers and sellers, estimating

causal relationship between price and probability of selling for tickets on the resale market is

challenging. We introduce a novel loss function for heterogeneous treatment effect estimation

with binary outcomes which can be easily incorporated into off-the-shelf machine learning

algorithms, including neural networks and gradient boosted trees. We prove this loss function

is consistent under mild assumptions, and establish the rate of convergence. In our numerical

experiments on a wide range of synthetic data sets, the two stage approach is able to consis-

tently outperform the single stage counterpart and methods from causal inference in terms of

estimation of treatment effect. On historical data, we show that our approach is price sensitive

with potential to earn up to an 11% return by trading on tickets on the platform. This is
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significant as probit models with instrumental variables previously used for estimating price

sensitivity in this setting are not profitable. We hope that these results increase awareness of

the importance of accurately estimating the casual relationship between price and sales in the

revenue management and pricing community.

The results for heterogeneous treatment effect estimation for classification are widely appli-

cable beyond the scope of ticket reselling. We believe they could be useful in areas such as

medicine, revenue management and other econometric applications.

Finally, we discuss the effect of StubHub’s strategy on the efficiency of the market. The

primary objective of StubHub is to utilize the two stage method to serve as a market maker

on its platform by buying under-priced tickets, and recommending sellers to sell around equi-

librium. There is evidence in the literature (e.g. Logue 1975) that market makers provide a

vital information channel and could increase market efficiency. The same literature also points

out that if the market maker takes a monopolistic position, then it could also decrease the

efficiency in the market by affecting the market equilibrium.

Currently, there are already many market makers on StubHub’s ticket reselling platform

(by buying lower priced tickets and repricing them). In addition, to the best of our knowledge,

StubHub has no plans to be the sole market maker. Therefore, one expect StubHub’s strategy

would increase market efficiency, though the final impact may be limited due to StubHub’s

current self-imposed limit of trading less than 1% of the market.
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Appendix A: Derivation of loss function with endogeneity

We begin by noting that E[Z|X] = h(X), E[T |X] =m(X) +βh(X) and

E[Y ∗|X] = g(X) + τ(X)m(X) +βτ(X)h(X).

Then we have:

E[Y |X] = P
(
Y ∗ > 0|X

)
(27)

= P (g(X) + τ(X)T + ε > 0|X) (28)

= P (g(X) + τ(X)(m(X) +β(h(X) +u) + υ) + ε > 0|X) (29)

= P (βτ(X)u+ τ(X)υ+ ε >−(g(X) + τ(X)m(X) +βτ(X)h(X))|X) (30)

= P (βτ(X)u+ τ(X)υ+ ε >−E[Y ∗|X]|X) (31)

We know that

E[βτ(X)u+ τ(X)υ+ ε|X] = βτ(X)E[u|X] + τ(X)E[υ|X] +E[ε|X] = 0

and

V ar[βτ(X)u+ τ(X)υ+ ε|X] = β2τ(X)2V ar[u|X] +V ar[τ(X)υ+ ε|X] + 2Cov(u, τ(X)υ+ ε|X) (32)

= β2τ(X)2V ar[u|X] + τ(X)2V ar[υ|X] +V ar[ε|X] + 2Cov(υ, ε|X) (33)

= σ2
uτ(X)2β2 + τ(X)2σ2

υ +σ2
ε + 2ρτ(X)σεσυ (34)

Due to normality, βτ(X)u+ τ(X)υ+ ε|X ∼N (0, σ2
uτ(X)2β2 + τ(X)2σ2

υ +σ2
ε + 2ρτ(X)σεσυ). It follows:

E[Y |X] = Φ

(
E[Y ∗|X]√

σ2
uτ(X)2β2 +σ2

ε + 2τ(X)σεσυ + τ(X)2σ2
v

)
(35)

where Φ is the cdf of standard normal variable. We denote Φ−1 the inverse of Φ, then we conclude that

E[Y ∗|X] =
√
σ2
uτ(X)2β2 +σ2

ε + 2τ(X)σεσυ + τ(X)2σ2
v ·Φ−1(E[Y |X]). (36)

Appendix B: Proof of Lemma 1

In what follows, we detail the proofs for the second part of the lemma: by Assumption 2, the estimators converge

to the true values with a rate at least as fast as n1/2+δ. The first part of the lemma (the consistency of the

estimators when Assumption 2 does not hold) follows immediately.

Note that in Algorithm 1, β̂ is calculated by regressing T − q̂(X) against Z − ĥ(X), while the true β can be

calculated by regressing T − q(X) against Z −h(X). Therefore, we have formulas:

β = [(Z −h(X))T (Z −h(X))]−1(Z −h(X))T (T − q(X))

β̂ = [(Z − ĥ(X))T (Z − ĥ(X))]−1(Z − ĥ(X))T (T − q̂(X))

By Assumption 2, we have that sup
X∈Dx

n1/(2+δ)|q̂(X)−q(X)| p−→ 0, and sup
X∈Dx

n1/(2+δ)|ĥ(X)−h(X)| p−→ 0. Therefore,

using the continuous mapping theorem, we have:

sup
X∈Dx

n1/(2+δ)|(Z − ĥ(X))T (T − q̂(X))− (Z −h(X))T (T − q(X))| p−→ 0 (37)
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Matrix Perturbation Theory (see e.g. Stewart 1990) gives rise to:

‖[(Z − ĥ(X))T (Z − ĥ(X))]−1− [(Z −h(X))T (Z −h(X))]−1‖

≤ ‖(Z − ĥ(X))T (Z − ĥ(X))− (Z −h(X))T (Z −h(X))‖︸ ︷︷ ︸
O( 1

n1/(2+δ)
) by Assumption 2

×

‖[(Z − ĥ(X))T (Z − ĥ(X))]−1‖‖[(Z −h(X))T (Z −h(X))]−1‖

Therefore, as long as we assume that ‖[(Z − ĥ(X))T (Z − ĥ(X))]−1‖ and ‖[(Z −h(X))T (Z −h(X))]−1‖ are both

absolutely bounded above by some constant (which is true as long as β̂ and β exist), then it follows:

sup
X∈Dx

n1/(2+δ)‖[(Z − ĥ(X))T (Z − ĥ(X))]−1− [(Z −h(X))T (Z −h(X))]−1‖ p−→ 0 (38)

Combining the consistency results in Equation (37) and (38) gives rise to:

n1/(2+δ)‖β̂−β‖ p−→ 0, (39)

The residual is defined as v = T − q(X)− (Z − h(X))β, while our estimator v̂ has the formula v̂ = T − q̂(X)−
(Z − ĥ(X))β̂. Thus, we have:

‖v− v̂‖= ‖T − q(X)− (Z −h(X))β−T − q̂(X)− (Z − ĥ(X))β̂‖

≤ ‖q(X)− q̂(X)‖+ ‖β‖‖h(X)− ĥ(X)‖︸ ︷︷ ︸
O( 1

n1/(2+δ)
) by Assumption 2

+‖Z − ĥ(X)‖ ‖β− β̂‖︸ ︷︷ ︸
O( 1

n1/(2+δ)
) by (39)

This in turn implies n1/(2+δ)‖v̂− v‖ p−→ 0.

Next, we focus on proving consistency results for the variance estimates σ̂u and σ̂v. The estimator for σu is

defined as: σ̂2
u = 1

n

∑n

i=1(Zi− ĥ(Xi))
2 where n is the number of samples in the dataset. Then:

Eu,X
[
σ̂2
u

]
=

1

n

n∑
i=1

Eu,X
[
(Zi− ĥ(Xi))

2
]

(40)

=
1

n

n∑
i=1

(
Eu,X

[
(Zi−h(Xi))

2
]

+Eu,X
[
(ĥ(Xi)−h(Xi))

2
]

+ 2Eu,X
[
ui(ĥ(Xi)−h(Xi))

])
(41)

Note that by construction of Algorithm 1, ĥ(Xi) is independent of ui due to ĥ(X) being estimated using a
separate dataset, and thus we have:

Eu,X
[
σ̂2
u

]
= σ2

u +
1

n

n∑
i=1

(
Eu,X

[
(ĥ(Xi)−h(Xi))

2
]

+ 2Eu[u]E[(ĥ(Xi)−h(Xi))]
)

(42)

= σ2
u +

1

n

n∑
i=1

Eu,X
[
(ĥ(Xi)−h(Xi))

2
]

= σ2
u +O

(
1

n2/(2+δ)

)
(43)

Where the final equality is by Assumption 2. Similarly, the estimator for σv is defined as:

σ̂2
v =

1

n

n∑
i=1

(Ti− q̂(Xi)− β̂Ti (Zi− ĥ(Xi)))
2.

We have:

Eu,v,X [σ̂2
v ] =

1

n

n∑
i=1

Eu,v,X
[
(Ti− q̂(Xi)− β̂Ti (Zi− ĥ(Xi)))

2
]

(44)

=
1

n

n∑
i=1

(
Eu,X

[
(Ti−m(Xi)−βTi Zi)2

]
+Eu,v,X

[
(q̂(Xi)− q(Xi))

2
]

(45)

+Eu,v,X
[
(β̂Ti (Zi− ĥ(Xi))−βTi (Zi−h(Xi)))

2
]

+ 2Eu,X [Covv(vi, q̂(Xi))] (46)

+ 2Eu,X [Covv(vi, β̂
T
i (Zi− ĥ(Xi)))] (47)

+ 2Eu,v,X [(q̂(Xi)− q(Xi))(β̂
T
i (Zi− ĥ(Xi))−βTi (Zi−h(Xi))]

)
(48)
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By construction of Algorithm 1, q̂(X), β̂, ĥ(X) are independent of v due to these estimators being estimated on
a separate dataset. Furthermore, q̂(X) is independent from β̂. Thus, we have:

= σ2
v +

1

n

n∑
i=1

(
Eu,v,X

[
(q̂(Xi)− q(Xi))

2
]

(49)

+Eu,v,X
[
(β̂Ti (Zi− ĥ(Xi))−βTi (Zi−h(Xi)))

2
]

(50)

+ 2Eu,v,X [(q̂(Xi)− q(Xi))(β̂
T
i (Zi− ĥ(Xi))−βTi (Zi−h(Xi))]

)
(51)

≤ σ2
v +

1

n

n∑
i=1

(
Eu,v,X

[
(q̂(Xi)− q(Xi))

2
]

(52)

+Eu,v,X
[
(β̂Ti (Zi− ĥ(Xi))−βTi (Zi−h(Xi)))

2
]

(53)

+Eu,v,X [(q̂(Xi)− q(Xi))
2] +Eu,v,X [(β̂Ti (Zi− ĥ(Xi))−βTi (Zi−h(Xi))

2]
)

(54)

By Assumption 2, it follows that:

= σ2
v +O

(
1

n2/(2+δ)

)
Q.E.D. (55)

Appendix C: Variance Estimates Using the Bootstrap Method

1. Split up the data to sets S1, S2, and S3.

2. Sample S1 to create b bootstrap samples {S(k)
1 }bk=1. Use these samples to estimate

ĥ(k)(X) = arg min
h

1

|S(k)
1 |

∑
i∈S(k)

1

L(h(xi), zi)

q̂(k)(X) = arg min
q

1

|S(k)
1 |

∑
i∈S(k)

1

L(q(xi), ti)

where L are binary cross entropy loss functions.

3. Sample S2 to create b bootstrap samples {S(k)
2 }bk=1.Use these samples to estimate

β̂(k) = arg min
β

1

|S(k)
2 |

∑
i∈S(k)

2

(ti− q̂(k)(xi)−β(zi− ĥ(k)(xi)))
2.

4. Using S3, estimate:

Ê[V̂ar(ĥ(X))] =
1

|S3|b
∑
i∈S3

b∑
k=1

(ĥ(k)(xi)−
1

b

b∑
k=1

ĥ(k)(xi))
2

Ê[(Z − ĥ(X))2] =
1

|S3|b
∑
i∈S3

b∑
k=1

(zi− ĥ(k)(xi))
2

σ̂2
u = Ê[(Z − ĥ(X))2]− Ê[V̂ar(ĥ(X))]

Ê[V̂ar(q̂(X))] =
1

|S3|b
∑
i∈S3

b∑
k=1

(q̂(k)(xi)−
1

b

b∑
k=1

q̂(k)(xi))
2

Ê[V̂ar(β̂T (Z − ĥ(X))] =
1

|S3|b
∑
i∈S3

b∑
k=1

(β̂(k)(zi− ĥ(k)(xi))−
1

b

b∑
k=1

β̂(k)(zi− ĥ(k)(xi)))
2

Ê[(T − q̂(X)− β̂T (Z − ĥ(X)))2] =
1

|S3|b
∑
i∈S3

b∑
k=1

(ti− q̂(k)(xi)− β̂(k)(zi− ĥ(k)(xi)))
2

σ̂v = Ê[(T − q̂(X)− β̂T (Z − ĥ(X)))2]− Ê[V̂ar(q̂(X))]− Ê[V̂ar(β̂T (Z − ĥ(X))]

Electronic copy available at: https://ssrn.com/abstract=3360622



36 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

Appendix D: Proof of Theorem 1

The proof that (θ, ρ) = Θ 7→ E[l(Y,X,T,Θ,w, v)] has a unique global minimum follows from the properties of

the log likelihood function (see Lemma 2.2 in Engle 1994). Define:

Θ̃ = (θ̃, ρ̃) = arg max
Θ∈DΘ

{
1

n

n∑
i=1

l(Yi,Xi, Ti,Θ,w, vi)

}
(56)

Note that θ̃ is the maximum likelihood estimator of θ. The proof is divided into three steps:

1. We verify the sufficient assumptions to leverage the asymptotic theory of maximum likelihood estimators,

and thus prove that Θ̃
p−→Θ.

2. We use the uniform convergence assumptions of ĥ, q̂, and r̂ along with the maximum likelihood estimator

consistency above to prove that Θ̂
p−→Θ

3. Using the continuity and compactness assumptions, we show that Θ̂
p−→Θ implies:

sup
X∈M

‖t(θ̂,X)− t(θ,X)‖ p−→ 0 and ‖ρ̂− ρ‖ p−→ 0

Proof of 1 There are 4 assumptions that once satisfied, are sufficient to use the asymptotic theory of maximum likeli-

hood estimators (Engle 1994):

(a) The domain of Θ is compact.

Proof: This follows directly from the assumption that θ ∈DΘ, and DΘ is compact.

(b) The function l(Y,X,T,Θ,w, v) is continuous in Θ for all tuples (X,T,Y, v).

Proof: As τ = t(θ,X) is continuous everywhere in θ by assumption, the addition, composition of it

with continuous functions stay continuous. Thus l(Y,X,T,Θ,w, v) is continuous.

(c) There exists an integrable function D(X,T, v) with respect to (X,T, v) such that ∀τ :

|l(Y,X,T,Θ,w, v)|<D(X,T, v) ∀ (X,T,Y,Z,Θ)∈DX ×DT ×DY ×DZ ×DΘ

Proof: The domain of τ = t(θ,X) is compact (both DΘ and DX are compact, so the product space

is compact). Thus, there exists (θ∗,X∗) such that:

|t(θ∗,X∗)| ≥ |t(θ,X)| ∀ (θ,X)∈DΘ×DX

Then we have:

f̃(T,X,v) =
|Φ−1(r(X))|

√
1 + 2|ρσv|t(θ∗,X∗) + (σv2 +σ2

uβ
2)t(θ∗,X∗)

2
+ |t(θ∗,X∗)||T − q(X)|+ |ρ|

σv
|v|

√
1− ρ2

≥ |f(T,X,v,Θ)|

for all Θ∈DΘ. As log is strictly increasing, we then have, for all θ ∈DΘ:

D(X,T, v) = | log(Φ(−f̃(T,X,v)))|> |l(Y,X,T,Θ,w, v)|

(d) Θ 6= Θ0 ⇔ l(·,Θ) 6= l(·,Θ0).
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Proof: The reverse direction is trivial. For the forward direction, we would show that there exists

(Y,T,X,w, v) such that Θ 6= Θ0 ⇒ l(Y,X,T,θ,w, v) 6= l(Y,X,T,Θ0,w, v). We first take Y = 1, and

thus the log-likelihood function becomes:

l(1,X,T,Θ,w, v) = log(Φ(f(X,T,θ, ρ,w, v)))

As log and Φ are injective functions, we only need to show that for all (θ, ρ) 6= (θ0, ρ0) there exists

(T,X,w, v) such that f(X,T,θ, ρ,w, v) 6= f(X,T,θ0, ρ0,w, v).

First, we would consider the case where ρ 6= ρ0. Then let X ∈DX , T ∈DT , w ∈R and let:

v >
σv∣∣∣∣ ρ√

1−ρ2
− ρ0√

1−ρ2
0

∣∣∣∣ .
(∣∣∣∣Φ−1(E[Y |X])k(X,θ, ρ,w) + t(θ,X)(T −E[T |X])√

1− ρ2

∣∣∣∣ .
+

∣∣∣∣∣Φ−1(E[Y |X])k(X,θ0, ρ0,w) + t(θ0,X)(T −E[T |X])√
1− ρ2

0

∣∣∣∣∣).
Then we have:

|f(X,T,θ, ρ,w, v)− f(X,T,θ0, ρ0,w, v)|

≥

∣∣∣∣ ρ√
1−ρ2

− ρ0√
1−ρ2

0

∣∣∣∣
σv

v−
∣∣∣∣Φ−1(E[Y |X])k(X,θ, ρ,w) + t(θ,X)(T −E[T |X])√

1− ρ2

∣∣∣∣
−

∣∣∣∣∣Φ−1(E[Y |X])k(X,θ0, ρ0,w) + t(θ0,X)(T −E[T |X])√
1− ρ2

0

∣∣∣∣∣> 0

as required. Therefore, the only remaining case is when ρ= ρ0 but θ 6= θ0. By identifiability of τ , there

exists X ∈DX such that t(θ,X) 6= t(θ0,X). Then let:

T >

∣∣∣∣Φ−1(E[Y |X])(k(X,θ, ρ,w)− k(X,θ0, ρ,w))−E[T |X](t(θ,X)− t(θ0,X))

t(θ,X)− t(θ0,X)

∣∣∣∣ .
Thus we have:

|f(X,T,θ, ρ,w, v)− f(X,T,θ0, ρ0,w, v)|

=

∣∣∣∣Φ−1(E[Y |X])(k(X,θ, ρ,w)− k(X,θ0, ρ,w)) + (t(θ,X)− t(θ0,X))(T −E[T |X])√
1− ρ2

∣∣∣∣
>

1√
1− ρ2

(|(t(θ,X)− t(θ0,X))T |

−|Φ−1(E[Y |X])(k(X,θ, ρ,w)− k(X,θ0, ρ,w))−E[T |X](t(θ,X)− t(θ0,X))|
)
> 0

Thus we have Θ̃
p−→Θ. Furthermore, according to asymptotic normality of MLE estimators, we have for

some covariance matrix Σ:
√
n(Θ̃−Θ)

p−→N(0,Σ)

Proof of 2 As DX ,DΘ are compact, we have |τ | ≤ c <∞ for some c. Moreover, since DX is compact, and 0< r(X)< 1,

let the maximum and minimum value of r(X) be b < 1 and a> 0 respectively. Then we note that Φ−1(r(X))

is bounded.

Recall Θ̂ = (θ̂, ρ̂) = arg maxΘ∈DΘ

{
1
n

∑n

i=1 l̂(Yi,Xi, Ti,Zi,Θ, ŵ, v̂i, r̂, q̂)

}
. By the uniform convergence

assumptions of q̂(X), r̂(X), ρ̂, σ̂u, σ̂v, β̂, v̂, and compactness of Θ, it is not hard to see that we have uniform

convergence of the loss function over Θ with probability 1:
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sup
Θ∈DΘ

1

n

n∑
i=1

(
l̂(Yi,Xi, Ti,Zi,Θ, ŵ, v̂i, r̂, q̂)− l(Yi,Xi, Ti,Zi,Θ,w, v)

)
p−→ 0

As Θ uniquely maximizes the likelihood, we thus have |Θ̂ − Θ̃| p−→ 0. Therefore, we have Θ̂
p−→ Θ. If in

addition we have for some δ > 0 sup
X∈Dx

n1/2+δ|q̂(X)−q(X)| p−→ 0, sup
X∈Dx

n1/2+δ|r̂(X)−r(X)| p−→ 0, and similarly

for all nuisance parameters, then n1/2+δ|Θ̃− Θ̂| p−→ 0. Thus, we have
√
n(Θ̂−Θ)

p−→ 0 using the asymptotic

normality of MLE above.

Proof of 3 Then, as τ : DΘ × DX is continuous in θ, we have that ‖t(θ̂,X) − t(θ,X)‖ p−→ 0 ∀X ∈ M . Now as τ

has a compact domain (products of compact spaces are compact), pointwise convergence implies uniform

convergence: supX∈DX ‖t(θ̂,X)− t(θ,X)‖ p−→ 0, as τ is continuous in X ( with probability 1). By consistency

of our estimator Θ as above, we also have: ρ̂
p−→ ρ.

With the additional assumptions, we have in addition that:

√
n‖t(θ̂,X)− t(θ,X)‖ p−→ 0 ∀X ∈DX ⇒ sup

X∈DX

√
n‖t(θ̂,X)− t(θ,X)‖ p−→ 0

Similarly for ρ̂.

Appendix E: Optimal Price Strategy

Recall ŵ= (β̂, σ̂u, σ̂v). We have for a given ticket, the optimal price T ∗ is the following:

T ∗ = argmaxT R̂
∗(X,T ) = max

T
T ·Φ

(
f̃(X,T, τ̂ , ρ̂, ŵ, v̂, q̂, r̂, ĥ)

)
(57)

where f̃(X,T, τ̂ , ρ̂, ŵ, v̂, q̂, r̂, ĥ)≡ Φ−1(r̂(X))k(X,τ̂,ρ̂,ŵ)+(τ̂(X)+ ρ̂
σ̂v

)(T−q̂(X))− ρ̂·β̂
σ̂v

(Z−ĥ(X))√
1−ρ̂2

and k defined in Eq. (10).

1. If τ̂(X) + ρ̂

σ̂v
≥ 0, then since Φ(·), the standard normal cdf, is increasing , by composition, the objective

R̂∗(X, ·) is increasing in price T , and the reseller should choose the highest price possible for the ticket.

2. If τ̂(X) + ρ̂

σ̂v
< 0, we calculate the first and second derivatives of R̂∗(X, ·) with respect to price T . We have:

∂R̂∗

∂T
(X,T ) = Φ

(Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)(T − q̂(X))− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

)
+T ·

τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

·Φ′
(Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)(T − q̂(X))− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

)
and

∂2R̂∗

∂2T
(X,T ) = 2

τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

·Φ′
(Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)(T − q̂(X))− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

)
+T ·

( τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)2 ·Φ′′(Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)(T − q̂(X))− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

)
Since for all u∈R : Φ

′′
(u) =−u ·Φ′(u), we can rewrite the last equation as :

∂2R̂∗

∂2T
(X,T ) = g(T,X) ·

(
−T ·

( τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)2 · (Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)(T − q̂(X))− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

)
+ 2 ·

τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)
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where g(T,X) = Φ
′
(

Φ−1(r̂(X))k(X,τ̂,ρ̂,ŵ)+(τ̂(X)+ ρ̂
σ̂v

)(T−q̂(X))− ρ̂·β̂
σ̂v

(Z−ĥ(X))√
1−ρ̂2

)
> 0 ∀T,X.

The sign of ∂2R̂∗

∂2T
depends on the sign of :

−T ·
( τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)2 · (Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)(T − q̂(X))− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

)
+ 2 ·

τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

which can be rewritten as:( τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)(
2−

( τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)2 ·T 2

−
( τ̂(X) + ρ̂

σ̂v√
1− ρ̂2

)
·T ·

(Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

√
1− ρ̂2

))
which is a quadratic function in T . We can then show that there exist T < T̄ such that ∂2R̂∗

∂2T
(X,T )> 0 for

T < T , ∂2R̂∗

∂2T
(X,T )≤ 0 for T ∈ [T , T̄ ) and ∂2R̂∗

∂2T
(X,T )> 0 for T > T̄ , and we characterize T and T̄ as the

following:

T =
Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

−2(τ̂(X) + ρ̂

σ̂v
)

−

√(
Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

)2
+ 8(1− ρ̂2)

−2(τ̂(X) + ρ̂

σ̂v
)

and

T̄ =
Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

−2(τ̂(X) + ρ̂

σ̂v
)

+

√(
Φ−1(r̂(X))k(X, τ̂ , ρ̂, ŵ) + (τ̂(X) + ρ̂

σ̂v
)q̂(X)− ρ̂·β̂

σ̂v
(Z − ĥ(X))

)2
+ 8(1− ρ̂2)

−2(τ̂(X) + ρ̂

σ̂v
)

One can show easily that T < 0 and T̄ > 0. We can also show that ∂R̂∗

∂T
(X,0) > 0 and ∂R̂∗

∂T
(X, T̄ ) < 0.

We conclude that ∂R̂∗

∂T
(X,T ) = 0 has a unique solution T ∗ and we have ∂R̂∗

∂T
(X,T ) > 0 for T < T ∗ and

∂R̂∗

∂T
(X,T )≥ 0 for T ≥ T ∗, which makes the revenue function unimodal. In addition, we have T ∗ ≤ T̄ .

Appendix F: Features Utilized in Real-World Experiment

Environment State Features (X) Game Features (X)
Day of Week Home Team
Week of Year Away Team
Month of Year Average 3pts Attempted (Home)

Days Listed Before Game Average 3pts Made (Home)
Win Percentage (Home)

Market and Pricing Features (Mt)
Price of Ticket section of Ticket
Row of Ticket # of Tickets in Listing

25th/50th/75th percentile price listed in section/game 25th/50th/75th percentile price sold in section/game
Quantity sold in section/game Quantity listed in section/game
Historical Game Median Price Total Value sold in section/game

Normalized Quality Score by section/Game

Appendix G: Boosted tree ensemble implementation:

A boosted tree with J rounds of learning has the functional form of a tree ensemble, where κj(·) are individual

decision trees. In our case, we approximate the heterogeneous treatment effect τJ(·), using a tree ensemble.

τJ(X) =

J∑
j=1

κj(X)
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The accuracy of the model is captured through the loss function defined in (13) (here with some terms omitted

for brevity). Gradient boosted trees train the model in an additive manner, where in the J th iteration, another

decision tree κJ(·) is added to the existing (and fixed) tree ensemble τJ−1(·), in a greedy manner to minimize

the loss function, with an additional regularization term Ω(κJ) included:

LJ =

n∑
i=1

l(Yi, τJ−1(Xi) +κJ(Xi)) + Ω(κJ)

A second order approximation is used to approximate the loss function:

LJ ≈
n∑
i=1

[
l(Y, τJ−1(Xi)) + giκJ(Xi) +

1

2
hiκJ(x)2

]
+ Ω(κJ)

where

gi =
∂l(Yi, τJ−1(Xi))

∂τJ−1(Xi)
, hi =

∂2l(Yi, τJ−1(Xi))

∂τJ−1(Xi)2

are the first and second order partial derivatives of the loss function with respect to τJ−1(Xi). Ignoring constant

terms, we obtain the simplified objective at iteration J :

n∑
i=1

[
giκJ(Xi) +

1

2
hiκJ(Xi)

2

]
+ Ω(κJ)

Therefore, if gi and hi are calculated from data, the tree in the next round κJ(Xi) can be trained to minimize

this regularized loss function. The lightgbm package has an customizable function, objective, that takes

current predictions τJ−1(Xi) and labels Yi as inputs and provides outputs gi and hi. Given gi, hi, there are other

functions in the lightgbm package that fit the tree for this round κJ(Xi), and continue with the algorithm.

We calculate gi and hi using the function fderiv from the pracma package, which numerically differentiates

the function (13) with respect to τJ−1(Xi) using the central difference formula, with automatically chosen step

size.

In our experiments, we implement Algorithm 1 using gradient boosted trees, which we denote

two stage LGBM. With this approach, the nuisance parameters (r̂(X), q̂(X), ĥ(X)) are estimated using a stan-

dard implementation of the lightgbm package, while the loss function (13) is optimized and τ̂(X) is estimated

using a customized loss function defined within lightgbm, as outlined above.
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Supplementary Appendices

Appendix H: Derivation of loss function with general error distributions

Let’s consider the following model:

Y ∗ = g(X) + τ(X)T + ε (58)

T =m(X) +βTZ + υ (59)

Z = h(X) +u (60)

Y =

{
1, if Y ∗ > 0

0, if Y ∗ ≤ 0
(61)

(ε, υ) have have a mean 0 and their joint Probability Density Function (PDF) is f(ε,υ), (62)

u has a mean 0 and fu is its PDF, u⊥υ|X and u⊥ε|X (63)

In this case, we assume full knowledge of the joint distribution of (ε, υ) and the distribution of u. We also note

that u is independent of v and of ε. We can partial out the effect of X on Y ∗ to obtain an orthogonalized outcome

Y ∗ − E[Y ∗|X]. Since E[Y ∗|X] = g(X) + τ(X)m(X) + τ(X)βTh(X) and E[ε|X] = 0, we can rearrange (58) and

(59) as follows:

Y ∗−E[Y ∗|X] = τ(X)(T −E[T |X]) + ε. (64)

Similar to Proposition 1, we can try to characterize E[Y ∗|X] with respect to E[Y |X]. We have:

E[Y |X] = P
(
Y ∗ > 0|X

)
(65)

= P (g(X) + τ(X)T + ε > 0|X) (66)

= P (g(X) + τ(X)(m(X) +β(h(X) +u) + υ) + ε > 0|X) (67)

= P (βτ(X)u+ τ(X)υ+ ε >−(g(X) + τ(X)m(X) +βτ(X)h(X))|X) (68)

= P (βτ(X)u+ τ(X)υ+ ε >−E[Y ∗|X]|X) (69)

Since τ(X)υ+ ε and βτ(X)u are independent, we can use convolution to characterize the PDF of βτ(X)u+

τ(X)υ+ ε. In particular, let W = τ(X)υ+ ε, and R=W + βτ(X)u. It is straightforward to show that the PDF

of W is fW (w) =
∫∞
−∞ f(ε,υ)(w− τ(X)υ,υ)dυ. Then, the PDF of R is

fR(r) =
1

βτ(X)

∫ ∞
−∞

fW (r−u) · fu
( u

βτ(X)

)
du (70)

=

∫ ∞
−∞

∫ ∞
−∞

f(ε,υ)(r− τ(X)(βu+ υ), υ) · fu(u)dυdu. (71)

If we denote the CDF of R as FR(x) =
∫ x
−∞ fR(r)dr, then we can write:

E[Y |X] = 1−FR(−E[Y ∗|X]) (72)

and thus:

E[Y ∗|X] =−F−1
R (1−E[Y |X]) (73)
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If we substitute (73) in (64), we have:

Y ∗ =−F−1
R (1−E[Y |X]) + τ(X)(T −E[T |X]) + ε. (74)

In addition, we can also decompose ε= ρσε
συ
υ+ ε̃ into orthogonal components, where E[υε̃] = 0, and ε̃|X has a

pdf fε̃(ε̃) =
∫∞
−∞ f(ε,υ)(ε̃+ ρσε

συ
υ,υ)dυ. With this modification, the treatment T is orthogonal to the error ε̃. We

obtain a new expression for the latent variable:

Y ∗ =−F−1
R (1−E[Y |X]) + τ(X)(T −E[T |X]) +

ρσε
σv

v+ ε̃ (75)

Then we can derive an appropriate loss function resulting from the distribution of ε̃ using its CDF Fε̃(ε̃) =∫ ε̃
−∞ fε̃(t)dt:

l(Y,X,T, τ, ρ, β,σε, σv, v) =Y log(1−Fε̃(−f(X,T, τ, ρ, β,σε, σv, v))+

(1−Y ) log(Fε̃(−f(X,T, τ, ρ, β,σε, σv, v)))

with f(X,T, τ, ρ, β,σε, σv, v) =−F−1
R (1−E[Y |X]) + τ(X)(T −E[T |X]) +

ρσε
σv

v

We note that most of these nuisance parameters can be estimated prior to optimization of this loss function

using machine learning algorithms. Similar to the model with normal errors, we can estimate r̂(X)≈ E[Y |X],

q̂(X)≈E[T |X] as well as β. However, we would need full knowledge of the joint distributions to fully characterize

the loss function.

Appendix I: Feature Importance and Few Feature Formulation

I.1. Feature importance

Figure 5: Feature importance as evaluated by boosted trees
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Figure 5 shows the relative feature importance as evaluated by a lightgbm gradient boosted trees predictor.

As expected, price is a very important factor for determining the probability of a ticket selling. The section of the

ticket, corresponding to how close the seat is to the court, is also very important, as is the number of days until

the game. When there is only a few days until the game, the ticket has a lower probability of selling. Previous

sales and prices, and the teams playing are also important predictors.

I.2. Few Feature Formulation

Given the high feature importance of some features compared to others, we would test a model with few features

as a baseline for comparison. The specific features chosen are:

• Section

• Days Before Game

• Price of Ticket

This corresponds to the three features with the highest variable importance as illustrated in 5. We then present

the predictive accuracy results under this case:

Algorithm Misclassification error AUC
two stage LGBM 0.181 0.832

LGBM 0.187 0.830
probit iv 0.217 0.745
LGBM iv 0.197 0.820

Table 5: Predictive accuracy on NBA data

We see that the top 3 features, although overwhelmingly important by variable importance metric, is insufficient

for a well-performing model, as even the best-performing model under this restriction is less accurate than the

worst model under the full set of features. This suggests that the additional list of features are essential for an

accurate model.

Appendix J: Correlation between Tickets

In this section, we investigate the validity of our assumption that the selling behavior between different tickets

listed at the same time are not highly correlated, and thus the decision to use a single-item optimization model

is justified.

In a market with many players (thousands in the case of a ticket exchange), each seller is a price taker and

will not have an significant effect on the market. Apart from capturing the (assumed) exogenous market effects,

a seller may be concerned about cross effects between tickets they are selling, and whether they need to solve a

joint pricing problem. To explore this, we look at pairs of tickets which are listed at the same time and try to

see if the covariance is significant.

The sample covariance of Yi, Yj given prices Ti, Tj are as below:

ˆCov(Yi, Yj | Ti, Tj) = P̂[Yi = 1, Yj = 1 | Ti, Tj ]− P̂[Yi = 1 | Ti]P̂[Yj = 1 | Tj ] (76)

Electronic copy available at: https://ssrn.com/abstract=3360622



44 Alley et al.: Pricing for heterogeneous products: analytics for ticket reselling

If ˆCov(Yi, Yj | Ti, Tj)≈ 0, then the joint optimization problem to maximize expected revenue over the price of

these two tickets (Ti, Tj) degenerates to a single-ticket optimization problem:

max
Ti,Tj

P̂[Yi = 1, Yj = 1 | Ti, Tj ](Ti +Tj) + P̂[Yi = 1, Yj = 0 | Ti, Tj ]Ti + P̂[Yi = 0, Yj = 1 | Ti, Tj ]Tj

≈max
Ti,Tj

P̂[Yi = 1 | Ti]P̂[Yj = 1 | Tj ](Ti +Tj) + P̂[Yi = 1 | Ti]P̂[Yj = 0 | Tj ]Ti + P̂[Yi = 0 | Ti]P̂[Yj = 1 | Tj ]Tj

= max
Ti

P̂[Yi = 1 | Ti]Ti + max
Tj

P̂[Yj = 1 | Tj ]Tj

To test the condition ˆCov(Yi, Yj | Ti, Tj)≈ 0 experimentally on our dataset, we focus on the mean of the sample

covariance among tickets to gain sufficient power. That is, for a set of tickets M , we investigate:

µ̂=
1

|{i, j} | i, j ∈M & Colist(i, j) = 1|
∑

i,j∈M:Colist(i,j)=1

ˆCov(Yi, Yj | Ti, Tj) (77)

Here Colist(i, j) is the binary function such that Colist(i, j) = 1 if ticket i and ticket j has a minimum of one day

in overlap in listing time, and that ticket i and ticket j belong to the same game. We only consider ticket pairs

in the same game, as inter-game correlation is expected to be low due to the nature of the events, while most of

the correlation (if there is any) should be intra-game.

If the correlation between tickets are small or non-existent, we expect µ̂≈ 0. Thus we would utilize the Two

One-Sided Equivalence Test (TOST):

H0 : |µ̂|>∆ H1 : |µ̂|<∆

And we intend to find the minimum value of ∆ such that H0 can be rejected on the 5% level. We would utilize two

separate probit regressions to estimate P[Yi = 1, Yj = 1|Ti, Tj ] and P[Yi = 1|Ti], and use the residuals to determine

the variance of µ̂. under strong law of large numbers, µ̂ is approximately normal, and thus we would utilize a

t-test to test this hypothesis. The details of the calculations on the variance of µ̂ is contained in J.1.

We trained the two probit regressions on historical data and evaluated it against 4.47 Million pairs of tickets,

formed through a random set of tickets with size |M |= 100,000. The first probit model (n=4,470,000) is used to

estimate P̂[Yi = 1, Yj = 1 | Ti, Tj ], while the second probit model (n=100,000) estimates P̂[Yi = 1 | Ti].
The minimum ∆ is:

∆m = 0.0110

Thus, we can reject the hypothesis that |µ̂|> 0.01 on the 5% level. Since ∆m ≈ 0, this provides statistical evidence

that the ticket market, on average, is uncorrelated, and thus we can utilize single-ticket optimization.

J.1. Technical details for the Two One-Sided Equivalence Test

In this section, we rigorously derive the distribution of µ̂ under the null distribution subject to standard assump-

tions. For the covariance term:

ˆCov(Yi, Yj | Ti, Tj) = P̂[Yi = 1, Yj = 1 | Ti, Tj ]− P̂[Yi = 1 | Ti]P̂[Yj = 1 | Tj ] (78)

We assume that our estimates approximately follows the normal distribution with iid samples:

P̂[Yi = 1, Yj = 1 | Ti, Tj ] ∼̇N(P[Yi = 1, Yj = 1 | Ti, Tj ], σ2
1) P̂[Yi = 1 | Ti] ∼̇N(P[Yi = 1 | Ti], σ2

2) ∀ i, j (79)

Then we have that:
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Theorem 3. Assume Equation 79 holds. The bias and the variance of the covariance is then:

E[ ˆCov(Yi, Yj | Ti, Tj)] = Cov(Yi, Yj | Ti, Tj)

V[ ˆCov(Yi, Yj | Ti, Tj)] = σ2
1 +σ4

2

Proof: The proof of unbiasedness is trivial and would be omitted. For the variance, we note the following

lemma:

Lemma 2. For independent normal variables X,Y ∼N(0, σ2), we have that:

XY = c(Q−R), (80)

where c= 1
2
σ2, and Q,R∼ χ2

1 are independent.

Then using the lemma, we have:

V[ ˆCov(Yi, Yj | Ti, Tj)] = V
[
P̂[Yi = 1, Yj = 1 | Ti, Tj ]

]
+V

[
P̂[Yi = 1 | Ti]P̂[Yj = 1 | Tj ]

]
= σ2

1 + c2(V[Q] +V[R])

= σ2
1 +σ4

2

Where Q,R∼ χ2
1 and c= 1

2
σ2

2 . Thus, under the assumption that there is no correlation (Cov(Yi, Yj | Ti, Tj) = 0),

we derive the first and second moment of µ̂ as:

E[µ̂] = 0, V[µ̂] =
σ2

1 +σ4
2

|{i, j} | i, j ∈M & Colist(i, j) = 1|
(81)

Then the variances σ2
1 and σ2

2 are replaced with their estimates σ̂2
1 and σ̂2

1 from the models for the single

probabilities P[Yi = 1 | Ti] and cross-probabilities P[Yi = 1, Yj = 1 | Ti, Tj ] respectively. In our simulation, the

estimated numbers were σ2
2 = 0.1098 and σ2

1 = 0.2033 respectively.
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Appendix K: RShiny App

Figure 6: RShiny app

Appendix L: Additional numerical experiments

L.1. Treatment effect error with sample size

We also explore the effect of sample size on the ability to predict the change in probability associated with a

fixed treatment change of 0.5 in Figure 7. We observe that the two stage approach is generally able to converge to

high accuracy estimates. In dataset 2 and 4, we observe that the two stage approach may require more samples

than a single stage, since it requires high accuracy estimates of E[T |X] and E[Y |X] which are also affected by a

small sample size.

L.2. Optimal treatment prescription simulations

To explore the prescriptive element of our algorithm, we can calculate the optimal treatment for an adaptation

of our synthetic data to a revenue maximization setting. Using notation from section §4.2, we find the optimal

price T ∗ = arg maxT T ·P (Y = 1|X,T ), where P (Y = 1|X,T ) is calculated analytically for the respective synthetic

datasets. We can compare against the estimated optimal treatment T̂ = arg maxT T · f̂(X,T ), where f̂(X,T ) is

the estimate of P (Y = 1|X,T ) for each of our models. In the case of the two stage approach, this is equivalent to

solving (16). We compare the optimality gap in revenue for each estimated optimal treatment. We use the same

experimental set up as above and use an exhaustive line search to find optimal T in each optimization problem:
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(a) Dataset 2: simple variable effect treat-

ment
(b) Dataset 3: linear relationships

(c) Dataset 4: non-linear g(x), linear

m(x), τ(x)
(d) Dataset 5: non-linear relationships

Figure 7: Estimating treatment effect for changing sample size

dataset two stage one stage probit one stage logit
constant treatment 0 0 0
linear relationships 0.0017 0.0082 0.0082

non-linear relationships 0.0028 0.0104 0.0134

Table 6: Difference between revenue at prescriptive price T̂ and true optimal price T ∗

We can observe that in each of our synthetic datasets, the improvement in estimation of the treatment effect

translates to an improvement in selecting the optimal treatment. In the next section we outline how we adapted

this approach to StubHub’s data.
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Appendix M: Backtesting Framework

To understand the performance of our algorithm on real-life data without immediately deploying it to production,

we need to conduct backtesting experiments to see how different models perform over periods in a trading

environment. To do so, we generated some simplifying assumptions that allowed us to construct a backtesting

framework for testing the performance of the models on past years’ data efficiently. The backtesting framework

uses two models; the testing model which is used to buy/price tickets and a baseline model which is used to

evaluate whether the tickets will sell. The backtesting procedure is as follows:

1. We enter all the parameters needed to execute the backtesting framework, including:

• Model Retrain Period - How frequent do we want to retrain the model, if we want to do so?

• Baseline Retrain Period - How frequent do we want to retrain the baseline, if we want to do so?

• Test Model Type - The algorithm used to train the model for predictive decisions.

• Baseline Model Type - The algorithm used to train the baseline for counterfactuals.

• Time Model Type - The algorithm used to estimate the time needed for a sold ticket to be actually

sold.

• Buffer Type - What type of buffer do we want to have for our optimization to be comfortable to buy

a ticket? A percentage or an absolute gain, or both?

• Maximum Percentage Increase Allowed on Tickets - What is the upper limit of our optimiza-

tion?

• Minimum Percentage Gain Needed to buy Tickets - A minimum percentage gain needed (of its

optimal value over current price) for the optimization to decide to buy the ticket, if the appropriate

buffer type is chosen.

• Minimum Absolute Gain Needed to buy Tickets - A minimum absolute gain needed (of its

optimal value over current price) for the optimization to decide to buy the ticket, if the appropriate

buffer type is chosen.

2. The specified testing model is trained on 1,000,000 ticket samples in the immediate past of the starting

date. The specified baseline model is trained on all ticket samples contained in the entire dataset so it serves

as an oracle.

3. At the start of the day (00:00), we assume all the tickets that are listed on that day are available.

4. We execute the testing model to evaluate all the tickets listed on the market and buy tickets according to

optimization procedure in section §4.4.

5. After the ticket is bought, the testing model immediately uses the calculated optimal price to relist the ticket

either dynamically or in a static way. For the dynamic setting, we discretize the selling period decisions to

the following cutoffs:

(100,90,80,70,60,50,45,40,35,30,29,28, · · · ,1,0)

We consider selling prices discretized by 5 dollar intervals centered around the original price, with a minimum

of 50% below the listing price and a maximum of 50% over the listing price. The selling probabilities for each

period is decided through evaluating the baseline model at the endpoints of these periods, while accounting
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for market state changes. While evaluating, the daysBefore feature is set to the number of days on the end

points, and for each ticket i and its market feature Mi, we define it using the following evolution equation:

Mi(t) =Mi(0) +µit+σitεi,

where µi and σi are parameters fitted through historical data, and Mi(0) indicates the market state feature

at time of listing. εi is a standard (0,1) Normally distributed variable. Therefore, each market feature is

assumed to be a Gaussian random walk. We run 10 random walks each for each ticket to calculate the

selling probability matrix. The results are averaged.

6. The testing model tries to sell everything in its inventory at the calculated optimal price, and the baseline

model evaluates the selling. We evaluate the selling decision based on 1 random walk for each ticket. The

evaluation selling probabilities are based on the baseline model.

7. At the end of the day (23:59), we assume all the tickets that are removed on that day are removed, and all

tickets that perish that day are also removed.

8. The day count moves forward by one day, and we return to Step 3. If a retraining period for the testing

model or the baseline model is specified, and the period is due on that day, we return to Step 2.
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Appendix N: Comparing Variance Estimates Under Naive Estimator and Bootstrap
Correction

Dataset Naive Estimation Bootstrap Correction
Dataset 1 1.0015 1.00017
Dataset 2 1.0109 1.0044
Dataset 3 1.0009 0.9996
Dataset 4 1.0429 1.0352

Table 7: Estimation of σv Under Various Datasets (Average over 10 Runs)

Dataset Naive Estimation Bootstrap Correction
Dataset 1 1.0015 1.0011
Dataset 2 1.0006 1.0001
Dataset 3 1.0005 1.0002
Dataset 4 1.0007 1.0003

Table 8: Estimation of σu Under Various Datasets (Average over 10 Runs)

Appendix O: Probability Calibration for Estimation Methods

O.1. Probability calibration

Our algorithm uses the predicted probability of a ticket selling to set the optimal price for a ticket. Therefore, it

is very important to be able to estimate these probabilities accurately, which is different from just having a low

misclassification rate. For example, it is a well-documented fact that gradient boosted trees do not produce well

calibrated probabilities (Caruana and Niculescu-Mizil 2006).

Figure 8 shows a calibration plot, which explores the difference between the predicted and empirical proba-

bilities of the model. We separate the tickets into 21 bins based on the nearest 5%-increment of the predicted

selling probability (0− 2.5%,2.5− 7.5%,· · · ,97.5− 100%). Then we calculate the empirical selling probability of

the tickets in the bin and plot the result as the blue dots. For example, for the probit IV model, tickets with

a predicted probability of selling between 22.5-27.5% actually were sold, on average, 15% of the time. We then

include the red dots, which plots an oracle that has perfect calibration. A well-calibrated algorithm would have

near complete overlap between the blue dots and the red dots. We qualitatively observe that the two-stage LGBM

is significantly closer to an oracle classifier than the other models.

To quantify the effect of miscalibration, we devise the following miscalibration statistic. Consider a set of

tickets T = {ti}i=1···n, and predicted probabilities p̂i for ticket ti. We create bins Mj = [lj , uj) that separate

the predicted probabilities into equally spaced intervals. Then the empirical probability of bin Mj is pj =

1
|i:p̂i∈Mj |

∑
i:p̂i∈Mj

Yi where Yi is the observed outcome for ticket ti. We define the predicted probability of bin

Mj , as p̄j = 1
|i:p̂i∈Mj |

∑
i:p̂i∈Mj

p̂i. Thus, miscalibration is defined as 1
n

∑
j
|i : p̂i ∈Mj | · |p̄j − pj |. This can be seen

as a weighted-average difference between the average model probability and the true (empirical) probabilities.
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(c) probit iv
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(d) LGBM iv

Figure 8: Calibration Curves on NBA Data of different prediction models

In table 9, we compare the miscalibration of the various methods. We observe that the miscalibration of the

two-stage method is significantly less than that of the other methods at just over 1%.

Algorithm Miscalibration
two stage LGBM 0.0112

LGBM 0.0251
probit iv 0.0426
LGBM iv 0.0141

Table 9: Probability Calibration on NBA data
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