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Abstract

We survey the growing literature emphasizing the role that supply-and-demand

forces play in shaping the term structure of interest rates. Our starting point is the

Vayanos and Vila (2009, 2021) model of the term structure of default-free bond yields,

which we present in both discrete and continuous time. The key friction in the model

is that the bond market is partially segmented from other financial markets: the prices

of short-rate and bond supply risk are set by specialized bond arbitrageurs who must

absorb shocks to the supply and demand for bonds from other “preferred-habitat”

agents. We discuss extensions of this model in the context of default-free bonds and

other asset classes.
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1 Introduction

The past 15 years have witnessed a resurgence of interest in the role that supply-and-demand

forces play in shaping the term structure of interest rates. In part, this interest has been

driven by the widespread adoption of quantitative easing (QE) policies by major central

banks which, beginning in 2008, have sought to depress long-term interest rates by purchasing

vast quantities of long-term bonds. An enormous literature has demonstrated that large

shocks to the supply of long-term bonds—such as those stemming from QE—and shocks to

demand from investors such as pension funds exert significant effects on long-term interest

rates. For example, Gagnon et al. (2011) report that the combined announcement effect of

U.S. QE policies between 2008 and 2010 was to reduce 10-year U.S. Treasury yields by 91

basis points. Similar effects have been documented in numerous other countries, including

the U.K, Japan, and the Eurozone.1

The role of supply-and-demand forces in the term structure is puzzling, both from the

perspective of textbook macroeconomic theory and of traditional asset-pricing theory. In

textbook macroeconomic models with intergenerational risk sharing and non-distortionary

taxes, Ricardian equivalence holds. As a result, households’ consumption profiles and the

term structure of interest rates do not depend on whether the government finances its expen-

ditures using debt or taxes, or whether it borrows using short-term or long-term bonds. For

instance, consider a government that seeks to reduce long-term interest rates by buying back

long-term bonds and replacing them with short-term bonds—i.e., by pursuing a form of QE.

Because households sell long-term bonds to the government, they will realize smaller capital

losses if interest rates rise in the future. However, because the government’s outstanding

debt has become shorter term, households must pay higher taxes if interest rates rise. These

two effects exactly offset each other, leaving households’ consumption profiles and interest

rates unchanged. As a result, the maturity structure of the government’s debt is irrelevant.

Eggertsson and Woodford (2003) prove irrelevance propositions along these lines.

The role of supply-and-demand forces in the term structure is also puzzling from the

perspective of traditional asset-pricing theory, which assumes frictionless and fully integrated

financial markets. In models with fully integrated financial markets, changes in the net

supply of debt, whether short- or long-term, can only impact bond risk premia and yields

through their impact on the aggregate risks that highly diversified investors must bear in

equilibrium and only to the extent to which these risks are correlated with investors’ marginal

utility. But if global financial markets are fully integrated, even seemingly large supply shocks

such as those stemming from QE policies are a tiny drop in the ocean of global aggregate risk.

This explains why Federal Reserve chair Benjamin Bernanke once quipped “The problem

with Quantitative Easing (QE) is that it works in practice but not in theory” (Bernanke

2014).

1Table 1 in Wiliams (2014) collects empirical estimates from studies of QE in the U.S. and other countries.
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A more promising and natural approach to understanding how changes in the supply and

demand for bonds affect the term structure has been to assume that the investors who must

accommodate these changes are not the highly diversified investors envisioned by traditional

asset-pricing theory but instead are bond market specialists. For these specialized investors

to accommodate changes in the supply and demand for bonds, bond risk premia must adjust

to compensate them for the additional risk they are bearing. This approach to bond markets

was first proposed by Tobin (1958, 1969). Modigliani and Sutch (1966) later introduced the

notion that investors differ in their “preferred habitats” along the term structure, with some

investors preferring long maturities and some preferring shorter ones. This approach has

been modernized and substantially generalized by Vayanos and Vila (2009, 2021, hereafter

VV), generating a host of additional predictions.

In the VV model, the short-term interest rate, and hence the expectations hypothesis

(EH) component of longer-term bond yields, follows an exogenous stochastic process. The

key focus is on how bond risk premia—the expected excess returns on longer-term bonds over

the short rate—are shaped by supply and demand in equilibrium. The key friction in the

VV model is that the bond market is partially segmented from broader financial markets as

well as from the economy at large. Formally, the marginal investors in bonds—whom we call

“bond arbitrageurs”—are specialized traders who choose portfolios consisting of short- and

long-term bonds. Arbitrageurs have mean-variance preferences over next-period wealth and

accommodate changes in the supply and demand for bonds from other agents. Changes in

bond supply and demand can arise from government issuance, from central bank purchases,

or from other investors such as pension funds who have a demand for long-term bonds. We

refer to all bond market participants other than arbitrageurs as “preferred-habitat agents.”

We refer to the net supply coming from these preferred-habitat agents as “supply,” although

this should be understood as gross supply from issuers minus demand from preferred-habitat

investors. Since specialized bond arbitrageurs are risk-averse, they will only absorb supply

shocks from preferred-habitat agents if bond expected returns adjust in response.

Over the 15 years, the VV approach has become the standard model for understanding

the impact of large-scale bond purchases by central banks, as well as a host of other supply-

and-demand driven phenomena in bond markets. The VV model has also been extended

to make sense of similar supply-and-demand effects in other asset classes, including foreign

exchange, interest-rate derivatives, and credit instruments.

In this review, we present the VV model of the term structure and its applications and

extensions. While the original VV model was developed in continuous time, we begin by

presenting it in discrete time, as was first done by Hanson (2014). We then present the

continuous-time version of the VV model in parallel, and briefly discuss a simplified version

in which there are only short-term bonds and a single class of perpetual long-term bonds.

Our goal is to present a set of workhorse models that researchers can adapt for use in other

settings and to sketch out a number of ways that researchers have already adapted the VV
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model. We both draw out the key economic intuitions that emerge from these models and

present the “cookbook” for solving them.

We begin our analysis by studying a setting where the only risky assets are a set of

zero-coupon bonds that are present in constant and inelastic supply. Bond arbitrageurs

are risk averse and can flexibly allocate their wealth amongst bonds of different maturities.

Critically, “bad times” for specialized bond arbitrageurs need not coincide with bad times for

well-diversified investors or for the representative household. Specifically, under the natural

assumption that specialized bond arbitrageurs typically have a long position in long-term

bonds, periods of rising interest rates will be “bad times” for bond arbitrageurs, and long-

term bonds must offer a positive risk premium even though rising interest rates often imply

good news for well-diversified investors and the overall macroeconomy. Thus, in contrast to

traditional integrated-market theories, the VV approach makes it easy to understand why

bond term premia are usually positive and why the yield curve is typically upward sloping.

Specifically, if bond supply is positive, the yield curve is upward sloping on average, and its

average slope is proportional to the amount of dollar-duration risk that arbitrageurs must

bear, arbitrageur risk aversion, and the variance of short-rate shocks.

With a single risk factor, the effects that any supply shock has on the term structure

work through the shock’s contribution to dollar-duration risk. To illustrate the striking

implications of this result, we use Figure 1, first introduced by Cochrane (2008). Suppose

that there is an unanticipated and permanent supply shock consisting of an increase in the

supply of 10-year bonds and an equal dollar reduction in the supply of 3-year bonds. What

happens to the yield curve? A näıve but incorrect intuition is that the effects are localized,

with 10-year yields rising and 3-year yields declining. But this intuition misses a central

insight from the model: with a single risk factor—i.e., the short-term interest rate—bond

returns are perfectly correlated across maturities. As a result, the net impact of this shock

depends solely on how it alters arbitrageurs’ overall exposure to the short rate. Specifically,

since the price of the 10-year bond is more sensitive to movements in the short rate than that

of the 3-year bond, the supply shock raises the dollar-duration risk that arbitrageurs must

bear, thereby pushing up the equilibrium price of short-rate risk. As a result, the supply

shock leads the entire yield curve to steepen. In summary, the single-factor VV model implies

that local supply-and-demand shocks have global effects on the yield curve.

We next study the case when the supply of zero-coupon bonds responds elastically to bond

prices. We consider the case where the supply curve is upward-sloping as well as the case

where it is downward-sloping. Upward-sloping bond supply could arise if the government

and firms tend to issue more debt when interest rates are low, or if bond demand from

preferred-habitat investors is downward-sloping. We show that upward-sloping bond supply

implies that bond risk premia will be low when short rates are high, leading long-term yields

to underreact to movements in short rates relative to the EH benchmark. Thus, when bond

supply is upward-sloping, the VV model can match the stylized facts from Fama (1984)
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Figure 1: Effects of bond supply with one risk factor.

Campbell and Shiller (1991) that a steeper yield curve is associated with higher bond risk

premia.

Perhaps surprisingly, at higher frequencies bond supply may be downward-sloping be-

cause of mortgage refinancing or extrapolative investors. We show that a downward-sloping

bond supply generates a term premium that is high when short rates are high, leading bond

yields to overreact to movements in short rates relative to the EH. As a result, VV models

with downward-sloping supply have been used to explain the finding that long-term rates

appear to be excessively sensitive to movements in short rates at higher frequencies.

We next modify the model to consider the case where there are random shocks to bond

supply from preferred-habitat agents as in Greenwood and Vayanos (2014). Supply risk

creates an additional source of priced risk that is reflected in the term structure. A key

finding in this case is that the expected persistence of supply shocks determines their impact

on the term structure of interest rates. If supply shocks are highly persistent, then they will

have a monotonic effect on the yield curve, with the greatest effect being on long-term yields.

However, if supply shocks are more transient, then they will have a hump-shaped effect on

the yield curve, with the greatest effect being on intermediate-term yields.

The model we just described is developed in Section 2. In Section 3 we repeat a portion

of the analysis in continuous time. Wherever possible, we use identical notation so that

researchers can seamlessly switch between the two presentations. While our discrete-time

model relies on an approximation that becomes exact only in the continuous-time limit, the

derivations and formulas in the discrete-time model have perfect analogs in continuous time.
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But, as we show, the model is straightforward to express in either setting, with the discrete-

time setting being simpler for some applications and the continuous-time setting for others.

The advantage of discrete time is that it may be easier to incorporate into other models.

The continuous-time version of the model turns out to be well suited, however, for describ-

ing the case where supply is both random and price-elastic. When supply is both random

and elastic, even permanent supply shocks can have hump-shaped effects. The intuition for

the hump shape is that because arbitrageurs sell bonds at a given maturity to accommodate

a decrease in supply, they become more willing to buy bonds at other maturities to keep

a similar risk profile. With elastic supply, the prices of these other bonds move only to

the extent that arbitrageurs actually buy them. Arbitrageurs are not willing to buy them

aggressively because, with random supply, bond returns are imperfectly correlated across

maturities.

Finally, in Section 4 we develop a simplified version of the VV model in which there are

only short-term bonds and a single class of perpetual long-term bonds. While this model

requires an additional approximation, it is very easy to solve. As a result, it may be useful

to macro-economists or macro-finance researchers who want to model the idea that supply-

and-demand effects play a role shaping long-term interest rates, but who are not interested

in modeling the full term structure of yields.

Since the first version of VV was circulated in 2007, the theoretical and empirical litera-

ture on supply-and-demand effects in the term structure has blossomed. In part, this growth

has been driven by the widespread interest in QE policies. In Section 5 we provide a brief

overview of empirical applications of the VV framework, with the objective of connecting the

findings to key economic ideas highlighted by the VV model. Most empirical applications

of the VV framework have either sought to isolate shocks to the supply or demand for long-

term bonds (such as QE or demand by pension funds), or alternately sought to construct

empirical proxies for arbitrageurs’ holdings of long-term bonds and risk aversion.

In Sections 6 and 7 we review several theoretical extensions of VV that have been de-

veloped in literature. Section 6 focuses on extensions that focus on the term structure

of default-free bond yields. The main extensions that we review are multiple supply fac-

tors (Vayanos and Vila (2009, 2021)), forward guidance about short rates and bond supply

(Greenwood et al. (2016)), the zero-lower bound on short rates (King (2019)), slow-moving

capital (Greenwood et al. (2018)), arbitrageur wealth effects and balance-sheet frictions

(Kekre et al. (2023),He et al. (2022),Hanson et al. (2023)), convenience yields that arise

because government bonds have some of the valuable attributes of money (Krishnamurthy

and Vissing-Jorgensen (2012)), and real versus nominal yields (Campbell et al. (2009)).

Section 7 discusses applications to other domains, including foreign exchange (Greenwood

et al. (2023), Gourinchas et al. (2022)), defaultable corporate bonds (Greenwood et al.

(2018),Costain et al. (2022)), and investor segmentation across markets. Section 8 concludes,

with some remarks about directions for future research.
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2 The VV Model in Discrete Time

2.1 Model

Time t is discrete and infinite. At each time t, there are zero-coupon, default-free bonds that

have face value one and mature in τ = 1, 2, ..., T periods. We refer to the bond maturing in

τ periods as the τ -period bond. The price of the τ -period bond at time t is denoted by

P
(τ)
t = exp(−τy(τ)t ), (1)

where y
(τ)
t denotes the bond’s continuously compounded yield to maturity. We denote the

log bond price by p
(τ)
t ≡ log(P

(τ)
t ) = −τy(τ)t .

We refer to the yield of the 1-period bond as the short rate and denote it by rt = y
(1)
t .

We take rt as exogenous and assume that it follows the AR(1) process

rt+1 = r + ρr(rt − r) + σrεr,t+1, (2)

where ρr ∈ (0, 1), r, and σr > 0 are constants, and εr,t+1 is a stochastic shock with Et[εr,t+1] =

0 and Vart[εr,t+1] = 1. In the background, we think of monetary policy as determining the

short rate rt outside of the model.

We denote the return on the τ -period bond between times t and t + 1 by R
(τ)
t+1 ≡

P
(τ−1)
t+1 /P

(τ)
t − 1, and the log return by r

(τ)
t+1 ≡ log(1 + R

(τ)
t+1) = p

(τ−1)
t+1 − p

(τ)
t . We denote

these returns by R
(1)
t+1 = 1/P

(1)
t − 1 ≡ Rt and r

(1)
t+1 = −p(1)t = rt, respectively, for the 1-period

bond. The return on the τ -period bond between times t and t+ 1 can be approximated by

R
(τ)
t+1 ≈ r

(τ)
t+1 +

1

2
Vart[r(τ)t+1]. (3)

The approximation becomes exact in the continuous-time limit of Section 3 as the time

between periods goes to zero.2

There are two types of agents, “bond arbitrageurs” and “preferred-habitat agents”. Ar-

bitrageurs are competitive and form a continuum with unit mass. They choose their bond

portfolios to trade off the mean and variance of their wealth 1-period ahead. Denoting by

X
(τ)
t the market value of arbitrageurs’ holdings of the τ -period bond at time t, arbitrageur

2This approximation follows from the second-order Taylor expansion

1 +R
(τ)
t+1 = exp(r

(τ)
t+1) ≈ 1 + r

(τ)
t+1 +

1

2
(r

(τ)
t+1)

2 = 1 + r
(τ)
t+1 +

1

2

(
(r

(τ)
t+1 − Et[r

(τ)
t+1]) + Et[r

(τ)
t+1]

)2
,

and because, in the vicinity of the continuous-time limit, the term (r
(τ)
t+1 − Et[r

(τ)
t+1])

2 is close to Vart[r(τ)t+1],

and the terms 2(r
(τ)
t+1 − Et[r

(τ)
t+1])Et[r

(τ)
t+1] and (Et[r

(τ)
t+1])

2 are small relative to r
(τ)
t+1 and Vart[r(τ)t+1]. Using

log returns plus a Jensen’s inequality adjustment to approximate simple net returns as in (3) is a linearity-
generating modeling device that does not qualitatively impact any of our conclusions. Indeed, the formulae
we derive below are the exact discrete-time analogs of the formulae that arise in the continuous-time limit.
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wealth evolves according to

Wt+1 = (Wt −
∑T

τ=2
X

(τ)
t )(1 +Rt) +

∑T

τ=2
X

(τ)
t (1 +R

(τ)
t+1). (4)

The first term in (4) is arbitrageurs’ return from investing in the short rate, and the second

term is the return from investing their remaining wealth in τ -period bonds for τ ≥ 2. Using

(3), we can approximate the evolution of arbitrageurs’ wealth by

Wt+1 ≈ Ŵt+1 ≡ Wt(1 + rt) +
∑T

τ=2
X

(τ)
t (r

(τ)
t+1 +

1

2
Vart[r(τ)t+1]− rt). (5)

We assume that arbitrageurs choose their bond holdings {X(τ)
t }Tτ=2 to maximize

Et[Ŵt+1]−
a

2
Vart[Ŵt+1], (6)

where a ≥ 0 is arbitrageurs’ coefficient of risk aversion.

We use the term “preferred-habitat agents” to refer to all bond market participants other

than arbitrageurs, including the government and other players who issue bonds as well as

other investors who hold bonds. To clear the market, arbitrageurs must hold the net supply

of bonds coming from preferred-habitat agents. For simplicity, we refer to this net supply

as “supply.” However, it is worth bearing in mind that shifts in supply can stem either

from shifts in the amount of outstanding bonds—e.g., due to issuance by the government—

or from shifts in the holdings of other investors. We model supply in reduced from and

consider different specifications for it in Sections 2.2 to 2.4.

We end this section by deriving a general relationship between bond yields, short rates,

and bond excess returns that holds in all the equilibria that we derive in Sections 2.2 to 2.4.

The return on the τ -period bond between times t and t+1 can be written as the sum of the

expected component Et[R
(τ)
t ] and the unexpected component R

(τ)
t − Et[R

(τ)
t ]. Using (3), we

can write the expected and unexpected components as

µ
(τ)
t ≡ Et[r

(τ)
t+1] +

1

2
Vart[r(τ)t+1] = Et[p

(τ−1)
t+1 − p

(τ)
t ] +

1

2
Vart[p(τ−1)

t+1 ], (7)

r
(τ)
t+1 − µ

(τ)
t = r

(τ)
t+1 − Et[r

(τ)
t+1] = p

(τ−1)
t+1 − Et[p

(τ−1)
t+1 ], (8)

respectively. Using (7), the fact that p
(τ)
t = −τy(τ)t , and assuming that Vart[r(τ)t+1] is constant

over time as will be the case in the equilibrium of our model, we can write the expected

excess return over the short rate as

µ
(τ)
t − rt = τy

(τ)
t − (τ − 1)Et[y

(τ−1)
t+1 ]− rt +

1

2
Var(τ), (9)
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where Var(τ) denotes the constant value of Vart[r(τ)t+1]. Iterating (9) forward, we find

y
(τ)
t = τ−1

∑τ−1

j=0
Et [rt+j]︸ ︷︷ ︸

Expected short rates

+ τ−1
∑τ−1

j=0
Et[µ

(τ−j)
t+j − rt+j]︸ ︷︷ ︸

Expected excess bond returns

− τ−1
∑τ−1

j=0

1

2
Var(τ−j)︸ ︷︷ ︸

Convexity adjustment

. (10)

The yield of the τ -period bond is equal to the sum of three terms. The first term is aver-

age expected short rates over the bond’s life. This term corresponds to the Expectations

Hypothesis (EH) component of the term structure. The second term is the average of the

bond’s 1-period expected returns in excess of the short rate over the bond’s life. The third

term is a convexity adjustment. Since expected excess returns in our model arise purely

from risk, we refer to them as risk premia from now on.

2.2 Constant Supply

In this section we assume that the supply coming from preferred-habitat agents, expressed

in market-value terms, is constant over time.3 Denoting the supply of the τ -period bond in

period t by S
(τ)
t , we assume

S
(τ)
t = ζ(τ) (11)

for a function ζ(τ) that depends only on maturity τ .

We look for an equilibrium where bond yields are affine functions of the short rate. In

our conjectured equilibrium, the log price of the τ -period bond at time t takes the form

p
(τ)
t = −τy(τ)t = −

[
A(τ)

r (rt − r) + C(τ)
]
, (12)

where the functions A
(τ)
r and C(τ) depend only on maturity τ . The function A

(τ)
r characterizes

the sensitivity of bond prices to the short rate factor rt as a function of bond maturity τ ,

where we define factor sensitivity or dollar duration with respect to the factor as percentage

decline in price per unit increase in the factor.4

We solve for the equilibrium when supply is constant in Section 2.2.1. Section 2.2.2

presents the key results and intuitions and is mostly self-contained. Thus, readers who want

to skip the mathematical derivations in Section 2.2.1 can skip ahead to Section 2.2.2.

3Expressing supply in market-value terms—as opposed to face-value terms—is key to the tractability of
the VV model. Although this assumption is not completely innocuous, broadly similar economic conclusions
would hold if supply was instead specified in face-value terms.

4Since p
(τ)
t = −τy

(τ)
t , the duration of the τ -period bond—i.e., its percentage decline in price per unit

increase in its yield—is trivially τ . However, from (12), the dollar duration of the τ -period bond with respect

to the short rate rt is A
(τ)
r .
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2.2.1 Deriving the Equilibrium

Substituting (12) into (7) and (8), and using the assumed AR(1) dynamics for the short rate,

we can write the expected and unexpected components of the return of the τ -period bond

between times t and t+ 1 as

µ
(τ)
t = A(τ)

r (rt − r)− A(τ−1)
r ρr(rt − r) + C(τ) − C(τ−1) +

σ2
r

2
[A(τ−1)

r ]2, (13)

r
(τ)
t+1 − µ

(τ)
t = −A(τ−1)

r σrεr,t+1, (14)

respectively. Substituting (13) and (14) into arbitrageurs’ budget constraint (5), we can

write the arbitrageurs’ objective (6) as

∑T

τ=2
X

(τ)
t (µ

(τ)
t − rt)−

aσ2
r

2

(∑T

τ=2
X

(τ)
t A(τ−1)

r

)2
. (15)

Arbitrageurs maximize (15) over their bond holdings {X(τ)
t }Tτ=2. The arbitrageurs’ first-order

condition for their holdings of the τ -period bond, X
(τ)
t , is

µ
(τ)
t − rt = A(τ−1)

r λr,t, (16)

where

λr,t ≡ aσ2
r

∑T

τ=2
X

(τ)
t A(τ−1)

r (17)

is the price of short-rate risk.

The first-order condition (16) follows from the absence of arbitrage. Specifically, absence

of arbitrage requires that the ratio of a bond’s risk premium µ
(τ)
t −rt to the bond’s sensitivity

A
(τ−1)
r to the short-rate risk factor must be the same for all bonds. If the ratio differed

across bonds, then it would be possible to construct riskless arbitrage portfolios. However,

the absence of arbitrage alone imposes no restrictions on the price of short-rate risk λr,t.
5

We determine the equilibrium price of short-rate risk λr,t from market-clearing—i.e., from

the equilibrium interaction between arbitrageurs and preferred-habitat agents. Substituting

arbitrageurs’ position X
(τ)
t from the market-clearing condition X

(τ)
t = S

(τ)
t = ζ(τ) into (17),

we find

λr,t = aσ2
r

∑T

τ=2
ζ(τ)A(τ−1)

r ≡ λr. (18)

The price of short-rate risk is proportional to arbitrageurs’ risk aversion a, the variance σ2
r

of short-rate shocks, and the sensitivity
∑T

τ=2 ζ
(τ)A

(τ−1)
r of arbitrageurs’ bond portfolio to

the short-rate factor. The portfolio’s factor sensitivity or dollar duration with respect to the

short-rate factor is obtained by multiplying the arbitrageurs’ position ζ(τ) in the τ -period

5Technically, (16) only follows approximately from the absence of arbitrage since (13) and (14) only hold
approximately in discrete time. However, this equation follows strictly from the absence of arbitrage in the
model’s continuous-time limit since the continuous-time analogs to (13) and (14) hold exactly.
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bond by the bond’s sensitivity A
(τ−1)
r to the factor and then summing across maturities.

The price of short-rate risk is constant over time and is denoted by λr, because the constant

supply assumption implies that arbitrageurs’ bond positions are constant.

Substituting µ
(τ)
t from (13) and λr from (18) into (16), we obtain the equation

A(τ)
r (rt − r)− A(τ−1)

r ρr(rt − r) + C(τ) − C(τ−1) +
σ2
r

2
[A(τ−1)

r ]2 − rt = A(τ−1)
r λr, (19)

which we use to solve for the functions A
(τ)
r and C(τ). Equation (19) is affine in rt − r.

Identifying linear terms in rt − r, we find the difference equation

A(τ)
r − A(τ−1)

r ρr − 1 = 0. (20)

Identifying constant terms, we find the difference equation

C(τ) − C(τ−1) − r − A(τ−1)
r λr +

σ2
r

2
[A(τ−1)

r ]2 = 0. (21)

The terminal conditions for (20) and (21) are A
(0)
r = 0 and C(0) = 0, respectively, because

maturing bonds are worth their face value of one (i.e., P
(0)
t = 1).

The solution for A
(τ)
r is

A(τ)
r =

∑τ−1

j=0
(ρr)

j︸ ︷︷ ︸
∂

∂rt
(
∑τ−1

j=0 Et[rt+j ])

=
1− ρτr
1− ρr

, (22)

and the solution for C(τ) is

C(τ) = τr︸︷︷︸∑τ−1
j=0 E[rt+j ]

+
[∑τ

j=1
A(j−1)

r

]
λr︸ ︷︷ ︸∑τ−1

j=0 E[µ(τ−j)
t+j −rt+j ]

− σ2
r

2

∑τ

j=1
[A(j−1)

r ]2︸ ︷︷ ︸∑τ−1
j=0 Var(τ−j)

. (23)

Note that τ−1C(τ) is the yield of the τ -period bond when the short rate rt is equal to its

long-run mean r. According to (23), that yield is equal to the sum of three terms which

correspond to those in the yield decomposition (10). The first term, r, is the average of the

expected short rates over the next τ periods. The second term is the average of the risk

premia earned by the bond (and given by (16)) over the next τ periods. The third term is

a convexity adjustment.

2.2.2 Results and Intuitions

In this section we examine how shocks to the short rate and to bond supply affect bond

yields. Equation (22) implies that the effect of short-rate shocks on bond yields conforms
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to the EH: a unit short-rate shock raises the yield of the τ -period bond by ∂y
(τ)
t /∂rt =

τ−1A
(τ)
r = τ−1

∑τ−1
j=0(ρr)

j—i.e., by the shock’s effect on the average of the expected short

rates over the next τ periods.

What is the intuition for this result? Holding bond expected returns µ
(τ)
t fixed, a decline

in the short rate would raise µ
(τ)
t − rt and, hence, arbitrageurs’ demand for longer-term

bonds. However, since the supply of bonds is fixed, the expected returns on bonds must

adjust in equilibrium so that bond risk premia µ
(τ)
t − rt are not impacted by changes in the

short rate. Since the convexity adjustment terms also do not depend on the short rate, the

yield decomposition (10) implies that the effect of short-rate shocks on yields works through

expected short rates only and conforms to the EH. By contrast, when the supply coming from

preferred-habitat agents is elastic, as we will assume in Section 2.3, the effect of short-rate

shocks on yields does not conform to the EH.

Equation (22) further implies that the sensitivity A
(τ)
r of bond prices to short-rate shocks

rises with bond maturity τ , and the sensitivity τ−1A
(τ)
r of bond yields to short-rate shocks

declines with maturity. Moreover, the effect of short-rate shocks is stronger when the short

rate is more persistent (higher ρr).

Consider next shocks to bond supply. In line with the constant supply assumption in

Section 2.2, we take supply shocks to be unanticipated and permanent. We represent a

supply shock by a change ∆ζ(τ) in the supply of τ -period bonds for τ = 1, 2, ..., T . Since

(22) implies that A
(τ)
r does not change, (12), (18) and (23) imply that the yield for maturity

τ changes by

∆y
(τ)
t =

∆C(τ)

τ
=

∑τ
j=1A

(j−1)
r

τ
aσ2

r

∑T

τ=2
∆ζ(τ)A(τ−1)

r︸ ︷︷ ︸
∆λr

. (24)

The supply shock affects yields because it changes the dollar duration of arbitrageurs’

portfolio with respect to the short rate. The dollar duration changes by
∑T

τ=2 ∆ζ
(τ)A

(τ−1)
r ,

and the price of short-rate risk changes by ∆λr = aσ2
r

∑T
τ=2∆ζ

(τ)A
(τ−1)
r . If portfolio dollar

duration increases, then yields for all maturities rise—even for maturities for which supply

decreases. This is illustrated in Figure 1 which shows the term structure response to an

unanticipated supply shock in which the supply of 3-year bonds drops and the supply of

10-year bonds rises by an equal amount. Because the change in the supply of 10-year bonds

raises portfolio dollar duration more than the change in the supply of 3-year bonds lowers

it, yields for all maturities rise.

While changes in the supply of bonds of different maturities have different effects on

yields, they all have the exact same relative effect across maturities, generating a term-

structure response with the same shape. In other words, for any two maturities τ2 > τ1, the

ratio ∆y
(τ2)
t /∆y

(τ1)
t is the same irrespective of the distribution of the supply shock ∆ζ(τ)

across maturities τ . In that sense, supply effects are fully global. By contrast, with random

supply shocks, assumed in Sections 2.4 and 3, supply effects become partially localized:

11



the shape of the term structure response depends on the distribution of the supply shock

across maturities, and shifting that distribution towards longer maturities generates a term

structure response that is relatively stronger for longer maturities.

Equation (24) also implies that the response of the term structure to supply shocks (of

any maturity) increases with maturity: long-term bonds are more impacted than short-term

bonds. Indeed, since A
(τ)
r is increasing in τ , so is τ−1

∑τ
j=1A

(j−1)
r . Intuitively, an increase

in supply raises bond yields because it raises bond risk premia. Moreover, bond risk premia

rise more for longer-maturity bonds because their prices are more sensitive to the short rate

(A
(τ)
r increases in τ). Since supply changes are permanent, the average of the risk premia

earned by a bond over its life increases more for longer-maturity bonds. However, supply

shocks can instead have a hump-shaped effect on the term structure when they are random

and mean-reverting as in Section 2.4, or when they are random and the supply coming from

preferred-habitat agents is elastic as in Section 3.

An additional implication concerns the sign of bond risk premia and the average slope

of the yield curve over time. In frictionless asset-pricing models—e.g., consumption-based

models, bond risk premia are generally negative because short rates decline in “bad” eco-

nomic times, making bonds a valuable hedge for diversified investors. This logic breaks down

in our model of segmented markets, where the marginal investor in bonds is a specialized

arbitrageur who holds a long position in bonds—i.e., λr > 0 if
∑T

τ=2 ζ
(τ)A

(τ−1)
r > 0. When

short rates fall, specialized bond arbitrageurs earn large profits even though low short rates

may correspond to bad times for the economy and for well-diversified investors. Thus, one

appeal of the VV model is that it provides a natural economic explanation for why bond

risk premia are typically positive and yield curves are upward-sloping on average.

2.3 Elastic Supply

In this section we assume that the supply coming from preferred-habitat agents responds

elastically to bond prices. For simplicity, we assume that the supply of the τ -period bond

depends only on the price of that bond and takes the form

S
(τ)
t = ζ(τ) + η(τ)p

(τ)
t (25)

for functions ζ(τ) and η(τ) that depend only on τ . The function η(τ) is the sensitivity of the

supply of the τ -period bond to changes in its log price.

If η(τ) > 0, then bond supply is increasing in price. This could be because gross bond

supply increases with price—e.g., because the government and corporations issue more debt

when interest rates are low. It could also be because bond demand from other preferred-

habitat agents decreases with price—e.g., investors substitute away from bonds and towards

equities when interest rates are low, thereby reaching for yield across asset classes.

12



If η(τ) < 0, then bond supply is decreasing in price. This could be because gross bond

supply decreases with price or bond demand from other preferred-habitat agents increases

with price. Perhaps surprisingly, the literature has explored a number of mechanisms that

can cause net bond supply to decrease with price. These include mortgage refinancing, asset-

liability hedging by insurers and pensions, investors who extrapolate recent changes in short

rates, and investors who reach for yield across the term structure (Hanson (2014), Hanson

and Stein (2015), Malkhozov et al. (2016), Domanski et al. (2017), Hanson et al. (2021),

Carboni and Ellison (2022)).

If there were no arbitrageurs in the model with elastic supply, then yields would have

to adjust so that the net supply from preferred-habitat agents in (25) would equal to zero.

Equilibrium yields would be given by

y
(τ)
t =

ζ(τ)

η(τ)τ
. (26)

As a result, yields would be constant over time and completely disconnected from changes in

short rates, giving rise to severe failures of the EH. The market for each individual maturity

would be completely segmented from that for other maturities, corresponding to an extreme

form of the preferred-habitat view (Culbertson (1957), Modigliani and Sutch (1966)).

2.3.1 Deriving the Equilibrium

The derivation of the equilibrium begins as in Section 2.2.1 with constant supply. However,

with elastic supply, λr,t is not given by (18) but by

λr,t = aσ2
r

∑T

τ=2
[ζ(τ) + η(τ)p

(τ)
t ]A(τ−1)

r = λrr(rt − r) + λr, (27)

where

λrr ≡ −aσ2
r

∑T

τ=2
η(τ)A(τ)

r A(τ−1)
r , (28)

λr ≡ aσ2
r

∑T

τ=2

[
ζ(τ) − η(τ)C(τ)

]
A(τ−1)

r . (29)

Substituting µ
(τ)
t from (13) and λr,t from (27) into (16), we obtain a counterpart to (19)

A(τ)
r (rt − r)− A(τ−1)

r ρr(rt − r) + C(τ) − C(τ−1) +
σ2
r

2
[A(τ−1)

r ]2 − rt

= A(τ−1)
r [λrr(rt − r) + λr] . (30)

Identifying linear terms in rt − r, we find

A(τ)
r − A(τ−1)

r (ρr + λrr)− 1 = 0, (31)
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which is the counterpart of (20). Identifying constant terms, we find (21).

A complication when solving the difference equation (31) for A
(τ)
r is that the coefficient

λrr depends on a sum involving A
(τ)
r . This gives rise to a fixed-point problem, which we solve

in two steps. First, we take ρ∗r ≡ ρr + λrr as given and solve (31) as a difference equation

with constant coefficients. The solution is

A(τ)
r =

1− (ρ∗r)
τ

1− ρ∗r
. (32)

Second, we require that the solution (32) is consistent with the definition of λrr in (28). This

gives rise to the following non-linear fixed-point condition in ρ∗r:

ρ∗r = ρr − aσ2
r

T∑
τ=2

η(τ)
1− (ρ∗r)

τ

1− ρ∗r

1− (ρ∗r)
τ−1

1− ρ∗r
. (33)

ρ∗r can be interpreted as the short rate’s persistence under the risk-neutral measure.

Solving for C(τ) involves solving a similar fixed-point problem. Taking λr as given, the

solution of (21) is (23). Substituting (23) into (29) leads to a linear equation in λr whose

solution is

λr =
aσ2

r

∑T
τ=2

[
ζ(τ) − η(τ)τr + σ2

r

2
η(τ)

∑τ
j=1[A

(j−1)
r ]2

]
A

(τ−1)
r

1 + aσ2
r

∑T
τ=2 η

(τ)
[∑τ

j=1A
(j−1)
r

]
A

(τ−1)
r

. (34)

2.3.2 Results and Intuitions

When bond supply is elastic, short-rate shocks trigger an endogenous supply response from

preferred-habitat agents, shifting bond risk premia. As a result, bond yields under- or over-

react to short-rate shocks relative to the EH. Whether yields under- or over-react to the

short rate depends on whether bond supply from preferred-habitat agents is increasing or

decreasing in bond prices. When supply is upward-sloping (η(τ) > 0), bond risk premia are

decreasing in the short rate and bond yields under-react to the short rate relative to the EH.

The converse happens when supply is downward-sloping (η(τ) < 0).

To understand the intuition for under- and over-reaction, consider the case where bond

supply is upward-sloping—i.e., where η(τ) > 0. Holding bond expected returns µ
(τ)
t fixed, a

decline in the short rate raises µ
(τ)
t − rt and, hence, arbitrageurs’ demand for longer-term

bonds. When supply is upward-sloping, arbitrageurs’ buying pressure not only leads bond

prices to rise but also leads arbitrageurs to buy more bonds from preferred-habitat agents.

Because arbitrageurs hold more bonds when short rates fall, they become more exposed to

future movements in short rates, so the price λr,t of short-rate risk rises. Since λr,t rises,

bond risk premia rise and bond yields under-react to declines in the short rate relative to

the EH baseline. Formally, when η(τ) > 0, equation (28) implies λrr < 0, so equation (27)
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implies that that λr,t rises when rt falls. As a result, when η(τ) > 0 and λrr < 0, we have

ρ∗r ≡ ρr + λrr < ρr—i.e., the persistence ρ∗r of the short rate under the risk-neutral measure

is smaller than the persistence ρr under the physical measure.

When η(τ) > 0, bond risk premia are positively related to the slope of the yield curve—

i.e., to y
(τ)
t − rt for τ ≥ 2. Indeed, a low short rate implies both a steeper than average yield

curve and higher than average bond risk premia. As a result, a steep yield curve predicts

higher future excess returns on bonds. The positive relationship between the slope of the

yield curve and bond risk premia is one of the most widely documented empirical facts in

the term-structure literature, starting with Fama and Bliss (1987) and Campbell and Shiller

(1991).

Naturally, all of these results are reversed when η(τ) < 0. Specifically, when the supply

from preferred-habitat agents is decreasing in bond prices, bond yields over-react to move-

ments in short rates relative to the EH. As a result, versions of the VV model in which

η(τ) < 0 have proven useful in understanding the “excess sensitivity” of long-term yields to

changes in short rates that has been documented at higher frequencies. See, for example,

Hanson (2014), Hanson and Stein (2015), Malkhozov et al. (2016), Domanski et al. (2017),

Hanson et al. (2021), Carboni and Ellison (2022).

2.4 Random Supply

In this section we allow the supply coming from preferred-habitat agents to fluctuate ran-

domly over time. We focus on the case where supply does not respond to bond prices. We

analyze the case where supply is both random and responds elastically to bond prices in

Section 3.

For simplicity, we assume that the random supply is driven by a single supply factor st.

The supply of the τ -period bond is

S
(τ)
t = ζ(τ) + θ(τ)st, (35)

for functions ζ(τ) and θ(τ) that depend only on τ . We parameterize the function θ(τ) so that

an increase in st raises the dollar duration of aggregate bond supply with respect to the short

rate—i.e.,
∑T

τ=2 θ
(τ)A

(τ−1)
r > 0. Dollar duration trivially increases in st when bond supply

for all maturities increases in st—i.e., θ(τ) > 0 for all τ ≥ 2.6 We assume that the supply

factor st follows the AR(1) process

st+1 = ρsst + σsεs,t+1, (36)

6A more general condition ensuring that an increase in st raises the dollar duration of aggregate bond
supply with respect to the short rate is (i)

∑T
τ=2 θ

(τ) ≥ 0 and (ii) there exists τ∗ ∈ [1, T − 1] such that

θ(τ) ≤ 0 for τ ≤ τ∗ and θ(τ) > 0 for τ > τ∗. Conditions (i) and (ii) imply
∑T

τ=2 θ
(τ)A

(τ−1)
r > 0 because the

function A
(τ)
r is positive and increasing in τ .
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where ρs ∈ (0, 1) and σs > 0 are constants, and εs,t+1 is a stochastic shock with Et[εs,t+1] = 0

and Vart[εs,t+1] = 1. Setting the long-run mean of the st to zero is without loss of generality

because we can redefine ζ(τ). For simplicity, we also assume Covt[εs,t+1, εr,t+1] = 0—i.e.,

supply shocks are uncorrelated with short-rate shocks—but this assumption can easily be

relaxed. Greenwood and Vayanos (2014) study the continuous-time version of this model.

We look for an equilibrium where bond yields are affine functions of the short rate and

the supply factor. In our conjectured equilibrium, the log price of the τ -period bond at time

t takes the form

p
(τ)
t = −τy(τ)t = −

[
A(τ)

r (rt − r) + A(τ)
s st + C(τ)

]
, (37)

where the functions A
(τ)
r , A

(τ)
s and C(τ) depend only on maturity τ .

2.4.1 Deriving the Equilibrium

Substituting (37) into (7) and (8), and using the assumed AR(1) dynamics for the short

rate and the supply factor, the expected and unexpected components of the return of the

τ -period bond between times t and t+ 1 are

µ
(τ)
t = A(τ)

r (rt − r)− A(τ−1)
r ρr(rt − r) + A(τ)

s st − A(τ−1)
s ρsst + C(τ) − C(τ−1) (38)

+
σ2
r

2
[A(τ−1)

r ]2 +
σ2
s

2
[A(τ−1)

s ]2,

r
(τ)
t+1 − µ

(τ)
t = −A(τ−1)

r σrεr,t+1 − A(τ−1)
s σsεs,t+1, (39)

respectively. Substituting (38) and (39) into the arbitrageurs’ budget constraint (5) and

using the assumption that supply shocks are uncorrelated with short-rate shocks, we can

write the arbitrageurs’ objective (6) as

∑T

τ=2
X

(τ)
t (µ

(τ)
t − rt)−

aσ2
r

2

(∑T

τ=2
X

(τ)
t A(τ−1)

r

)2
− aσ2

s

2

(∑T

τ=2
X

(τ)
t A(τ−1)

s

)2
. (40)

The arbitrageurs’ first-order condition for X
(τ)
t is

µ
(τ)
t − rt = A(τ−1)

r λr,t + A(τ−1)
s λs,t, (41)

where the prices of factor risk are λf,t ≡ aσ2
f

∑T
τ=2X

(τ)
t A

(τ−1)
f for f = r, s. Using the market-

clearing condition X
(τ)
t = S

(τ)
t = ζ(τ) + θ(τ)st, the equilibrium prices of factor risk are

λf,t ≡ aσ2
f

∑T

τ=2

[
ζ(τ) + θ(τ)st

]
A

(τ−1)
f = λfsst + λf , (42)
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where

λfs ≡ aσ2
f

∑T

τ=2
θ(τ)A

(τ−1)
f , (43)

λf ≡ aσ2
f

∑T

τ=2
ζ(τ)A

(τ−1)
f . (44)

Substituting µ
(τ)
t from (38) and λf,t from (42) into (41), we find the equation

A(τ)
r (rt − r)− A(τ−1)

r ρr(rt − r) + A(τ)
s st − A(τ−1)

s ρsst + C(τ) − C(τ−1)

+
σ2
r

2
[A(τ−1)

r ]2 +
σ2
s

2
[A(τ−1)

s ]2 − rt = A(τ−1)
r [λrsst + λr] + A(τ−1)

s [λssst + λs], (45)

which is affine in rt and st. Identifying linear terms in rt − r, we find (20) from Section 2.2.

Identifying linear terms in st, we find

A(τ)
s − A(τ−1)

s (ρs + λss)− A(τ−1)
r λrs = 0. (46)

Identifying constant terms, we find

C(τ) − C(τ−1) − r − A(τ−1)
r λr − A(τ−1)

s λs +
σ2
r

2
[A(τ−1)

r ]2 +
σ2
s

2
[A(τ−1)

s ]2 = 0. (47)

The solution for A
(τ)
r is (22) from Section 2.2. Solving for A

(τ)
s entails a similar fixed-point

problem as in Section 2.3. Taking λss as given, the solution of (46) is A
(1)
s = 0 and for τ > 2

A(τ)
s = λrs

τ−1∑
j=1

(ρ∗s)
(j−1)A(τ−j)

r = λrs
1

ρ∗s − ρr

(
1− (ρ∗s)

τ

1− ρ∗s
− 1− ρτr

1− ρr

)
> 0, (48)

where λrs = aσ2
r

∑T
τ=2 θ

(τ)A
(τ−1)
r > 0 and ρ∗s ≡ ρs + λss satisfies the following fixed-point

condition:

ρ∗s = ρs + aσ2
sλrs

[∑T

τ=2
θ(τ)

1

ρ∗s − ρr

(
1− (ρ∗s)

τ−1

1− ρ∗s
− 1− ρτ−1

r

1− ρr

)]
. (49)

The parameter ρ∗s can be interpreted as the persistence of the supply factor under the

risk-neutral measure. Given our assumptions on θ(τ), any solution ρ∗s of (49) satisfies ρ
∗
s > ρs.

The solution for C(τ) is

C(τ) = τr +
τ∑

j=1

A(j−1)
r λr +

τ∑
j=1

A(j−1)
s λs −

σ2
r

2

τ∑
j=1

[
A(j−1)

r

]2 − σ2
s

2

τ∑
j=1

[
A(j−1)

s

]2
. (50)
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2.4.2 Results and Intuitions

We first examine how shocks to bond supply affect bond yields and how the effect depends

on the shocks’ persistence. Recall from Section 2.2 that an unanticipated and permanent

shock to the supply of bonds of any maturity has a larger effect on long-term yields than

on short-term yields. Our results in this section imply that a mean-reverting supply shock

can instead have a hump-shaped effect on the yield curve, which is largest for intermediate-

maturity bonds. Formally, (37) and (48) imply that a unit shock to the supply factor st
raises the yield for maturity τ by

∂y
(τ)
t

∂st
=
A

(τ)
s

τ
=
λrs
τ

1−(ρ∗s)
τ

1−ρ∗s
− 1−ρτr

1−ρr

ρ∗s − ρr
=
λrs
τ

τ−1∑
j=0

(ρ∗s)
j − ρjr

ρ∗s − ρr
≡ λrs

τ

τ−1∑
j=0

φ(j). (51)

When ρ∗s > 1, the positive sequence φ(j) is increasing in j. Since ∂y
(τ)
t /∂st is an average of an

increasing sequence of numbers, it is increasing in τ . Therefore, the effect of a supply shock

on the term structure increases with maturity. When instead ρ∗s < 1, the positive sequence

φ(j) is hump-shaped and converges to zero when τ goes to infinity. Therefore, ∂y
(τ)
t /∂st

is a hump-shaped function in τ , so supply shocks have a hump-shaped effect on the term

structure. The condition ρ∗s < 1 is met when ρs is small—i.e., the supply shock is transitory.

The intuition for the hump shape follows from the decomposition (10). A supply shock

raises bond yields because it raises the average of the risk premia earned by a bond over

its life. Risk premia earned at any given time after the shock rise more for longer-term

bonds because their prices are more sensitive to the short rate and to supply.7 However,

risk premia are expected to decline over time following a supply shock because the shock

is transitory, so risk premia are expected to remain elevated over a smaller fraction of the

life of a longer-term bond. If supply shocks are sufficiently transitory, then their maximum

impact will be on intermediate-term yields.

The existence of random supply shocks reinforces the positive relationship between risk

premia and the slope of the yield curve that arises in Section 2.3 when supply is upward-

sloping. An elevated supply from preferred-habitat agents implies that bond risk premia

are higher than average because arbitrageurs must be induced to hold that supply. Holding

short rates fixed, this means that long-term yields and the slope of the yield curve—i.e.,

y
(τ)
t − rt for τ ≥ 2, are higher than average.

We next show that with random supply, the effects of supply are not fully global as in

Section 2.2, but become instead partially localized. The relative effect of a supply shock

on yields of different maturities depends on the distribution of the shock across maturities.

7Formally, equations (41) and (42) and the facts that λrs > 0 and λss > 0 imply that the risk premium

µ
(τ)
t − rt of τ -period bonds is increasing in st. Moreover, this effect becomes stronger for larger τ because

A
(τ−1)
r and A

(τ−1)
s are increasing in τ .
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In particular, the rise in long-term yields relative to the rise in short-term yields stemming

from an increase in supply is greater when that increase concerns the supply of long-term

bonds than when it concerns the supply of short-term bonds.

To explain the intuition for partial localization, consider an unanticipated and permanent

change ∆ζ(τ) in the supply of τ -period bonds for τ = 1, 2, ...T . Since (22) and (48) imply

A
(τ)
r and A

(τ)
s do not change, (37) and (50) imply that the yield for maturity τ changes by

∆y
(τ)
t =

∆C(τ)

τ
=

∑τ
j=1A

(j−1)
r

τ
∆λr +

∑τ
j=1A

(j−1)
s

τ
∆λs, (52)

where ∆λf = aσ2
f

∑T
τ=2∆ζ

(τ)A
(τ−1)
f for f = r, s are the changes in the prices of short-rate

and supply risk. Partial localization means that ∆y
(τ2)
t /∆y

(τ1)
t for any two maturities τ2 > τ1

is higher when the supply shock ∆ζ(τ) originates at longer maturities. Key to partial local-

ization is that A
(τ)
s /A

(τ)
r is increasing in maturity τ—i.e., supply shocks are a more important

driver of long-term yields whereas short-rate shocks are a more important driver of short-term

yields. Indeed, when A
(τ)
s /A

(τ)
r is increasing in τ , an increase ∆ζ(τ) in the supply of long-term

bonds results in a larger increase in the price of supply risk relative to the price of short-rate

risk—i.e., a larger ∆λs/∆λr, compared to a same-sized increase in the supply of short-term

bonds. Since, in addition, (
∑τ2

j=1A
(j−1)
s )/(

∑τ2
j=1A

(j−1)
r ) > (

∑τ1
j=1A

(j−1)
s )/(

∑τ1
j=1A

(j−1)
r ) for

τ2 > τ1, (52) implies that ∆y
(τ2)
t /∆y

(τ1)
t is higher when ∆ζ(τ) originates at longer maturities.

3 The VV Model in Continuous Time

Our analysis of random supply shocks so far assumes that supply does not respond elastically

to bond prices. In this section, we develop the continuous-time version of the VV model and

use it to analyze the case where supply is both random and elastic. As we show below, in

this case, even permanent shocks can have hump-shaped effects.

3.1 Model

Time t is continuous and infinite. At each time t, there is a continuum of zero-coupon,

default-free bonds that have face value one and mature at time t + τ where τ ∈ (0, T ]. We

denote the time-t price of the bond that matures at t + τ by P
(τ)
t , and define the bond’s

yield to maturity y
(τ)
t and log price p

(τ)
t as in Section 2. Taking the unit of time to be years,

we refer to the bond with maturity τ as the τ -year bond.

The short rate rt is the limit of the yield y
(τ)
t as τ goes to zero. We take rt as exogenous

and assume that it follows the Orstein-Uhlenbeck process

drt = −κr(rt − r)dt+ σrdBr,t, (53)
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where κr > 0, r and σr > 0 are constants, and Br,t is a Brownian motion. The process (53)

is the continuous-time counterpart of (2). The persistence parameter ρr of the discrete-time

AR(1) process (2) maps to exp(−κr∆t), where ∆t is the time between discrete periods.

The instantaneous change in the price and log price of the τ -year bond at time t are de-

noted by dP
(τ)
t and dp

(τ)
t , respectively. This differential accounts for the change in maturity—

i.e., dP
(τ)
t = P

(τ−dt)
t+dt − P

(τ)
t . Ito’s lemma implies

dP
(τ)
t

P
(τ)
t

= dp
(τ)
t +

1

2
Vart[dp(τ)t ]. (54)

Equation (54) is the continuous-time counterpart of (3), but (54) holds exactly whereas (3)

is only an approximation.

Arbitrageurs choose a bond portfolio to trade off the mean and variance of the instanta-

neous changes in their wealth Wt. The continuous-time counterpart of the budget constraint

(5) is

dWt = Wtrtdt+

∫ T

0

X
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− rt

)
dτ. (55)

Arbitrageurs choose their bond holdings {X(τ)
t }τ∈(0,T ] to maximize

Et [dWt]−
a

2
Vart [dWt] . (56)

3.2 Elastic and Random Supply

We assume that the supply coming from preferred-habitat agents both fluctuates randomly

over time and responds elastically to bond prices. The supply of the τ -year bond is

S
(τ)
t = ζ(τ) + θ(τ)st + η(τ)p

(τ)
t (57)

for functions ζ(τ), θ(τ) and η(τ) that depend only on τ . We assume that the supply factor st
follows the Ornstein-Uhlenbeck (OU) process

dst = −κsstdt+ σsdBs,t, (58)

where κs > 0 and σs > 0 are constants and Bs,t is a Brownian motion. For simplicity, we

assume that Bs,t is independent of Br,t—i.e., supply shocks are independent of short-rate

shocks, but this assumption can easily be relaxed.

We look for an equilibrium where bond yields are affine functions of the short rate and

the supply factor—i.e., where the log price of the τ -year bond at time t takes the form (37)

in Section 2.4.

20



3.2.1 Deriving the Equilibrium

Applying Ito’s lemma to P
(τ)
t = exp(−[A

(τ)
r (rt − r) + A

(τ)
s st + C(τ)]) and using the OU

processes for the short rate and the supply factor, the instantaneous return of the τ -period

bond at time t is
dP

(τ)
t

P
(τ)
t

= µ
(τ)
t dt− A(τ)

r σrdBr,t − A(τ)
s σsdBs,t, (59)

where

µ
(τ)
t ≡ dA

(τ)
r

dτ
(rt−r)+

dA
(τ)
s

dτ
st+

dC(τ)

dτ
+A(τ)

r κr(rt−r)+A(τ)
s κsst+

σ2
r

2

[
A(τ)

r

]2
+
σ2
s

2

[
A(τ)

s

]2
(60)

denotes the instantaneous expected return. Equation (59) can also be derived from (54)

together with (37), (53) and (58).

Substituting (59) into the arbitrageurs’ budget constraint (55) and using the indepen-

dence between short-rate and supply shocks, we can write the arbitrageurs’ objective (56)

as ∫ T

0

X
(τ)
t (µ

(τ)
t − rt)dτ −

a

2

[
σ2
r

(∫ T

0

X
(τ)
t A(τ)

r dτ

)2

+ σ2
s

(∫ T

0

X
(τ)
t A(τ)

s dτ

)2
]
. (61)

Arbitrageurs maximize (61) over their bond holdings {X(τ)
t }τ∈(0,T ]. Their first-order condi-

tion for X
(τ)
t is

µ
(τ)
t − rt = A(τ)

r λr,t + A(τ)
s λs,t, (62)

where the prices of factor risk are

λf,t ≡ aσ2
f

∫ T

0

X
(τ)
t A

(τ)
f dτ (63)

for f = r, s. Using the market-clearing condition X
(τ)
t = S

(τ)
t = ζ(τ) + θ(τ)st + η(τ)p

(τ)
t , we

find that the equilibrium prices of factor risk are

λf,t = aσ2
f

∫ T

0

[ζ(τ) + θ(τ)st + η(τ)p
(τ)
t ]A

(τ)
f dτ = λfr(rt − r) + λfsst + λf , (64)
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where

λfr ≡ −aσ2
f

∫ T

0

η(τ)A(τ)
r A

(τ)
f dτ, (65)

λfs ≡ aσ2
f

∫ T

0

[
θ(τ) − η(τ)A(τ)

s

]
A

(τ)
f dτ, (66)

λf ≡ aσ2
f

∫ T

0

[
ζ(τ) − η(τ)C(τ)

]
A

(τ)
f dτ. (67)

Substituting µ
(τ)
t from (60) and λf,t from (64) into (62), we find an affine equation in rt and

st. Identifying linear terms in rt − r, linear terms in st and constant terms, we find

dA
(τ)
r

dτ
+ A(τ)

r (κr − λrr)− A(τ)
s λsr − 1 = 0, (68)

dA
(τ)
s

dτ
+ A(τ)

s (κs − λss)− A(τ)
r λrs = 0, (69)

dC(τ)

dτ
− r − A(τ)

r λr − A(τ)
s λs +

σ2
r

2

[
A(τ)

r

]2
+
σ2
s

2

[
A(τ)

s

]2
= 0, (70)

respectively. Equations (68)-(70) constitute a system of three ordinary differential equations

(ODEs). They must be solved with the terminal conditions A
(τ)
r = A

(τ)
s = C(τ) = 0.

The system of equations (68)-(70) reduces to solving one ODE at a time when supply is

inelastic (η(τ) = 0) or non-random (σs = 0). In either case λsr = 0, so the term in A
(τ)
s drops

from (68) and that ODE involves only A
(τ)
r . Given its solution A

(τ)
r , (69) can be solved for

A
(τ)
s , and given the solutions A

(τ)
r and A

(τ)
s , (70) can be solved for C(τ). Sections 2.2 to 2.4

use this recursive structure in discrete time. Specifically, when η(τ) = 0 or σs = 0, we have

the following cases in continuous time, which map to Sections 2.2 to 2.4:

• When η(τ) = 0 and σs = 0, the solution for A
(τ)
r is

A(τ)
r =

∫ τ

0

exp(−κrj)dj︸ ︷︷ ︸
∂

∂rt
(
∫ τ
0 Et[rt+j ]dj)

=
1− exp(−κrτ)

κr
. (71)

The reaction of bond yields to changes in the short rate conforms to the EH. Equation

(71) is the precise continuous-time analog of (22).

• When η(τ) ̸= 0 and σs = 0, the solution for A
(τ)
r is

A(τ)
r =

1− exp(−κ∗rτ)
κ∗r

, (72)

where κ∗r ≡ κr − λrr, the short rate’s mean reversion parameter under the risk-neutral
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measure, satisfies the fixed-point condition

κ∗r = κr + aσ2
r

∫ T

0

η(τ)
(
1− exp(−κ∗rτ)

κ∗r

)2

dτ. (73)

Equation (73) implies κ∗r > κr when η
(τ) > 0 (long-term yields under-react to the short

rate relative to the EH) and κ∗r < κr when η
(τ) < 0 (long-term yields over-react to the

short rate relative to the EH). Equations (72) and (73) are the precise continuous-time

analogs of (32) and (33).

• When η(τ) = 0 and σs > 0, the solution for A
(τ)
r is (71) and the solution for A

(τ)
s is

A(τ)
s = λrs

1

κr − κ∗s

(
1− exp(−κ∗sτ)

κ∗s

1− exp(−κrτ)
κr

)
︸ ︷︷ ︸∫ τ

0 exp(−κ∗
sj)A

(τ−j)
r dj

, (74)

where λrs = aσ2
r

∫ T

0
θ(τ)A

(τ)
r dτ > 0 and κ∗s ≡ κs −λss satisfies the fixed-point condition

κ∗s = κs − λrsaσ
2
s

∫ T

0

θ(τ)
1

κr − κ∗s

(
1− exp(−κ∗sτ)

κ∗s

1− exp(−κrτ)
κr

)
dτ. (75)

The function A
(τ)
s is always increasing in τ while the function τ−1A

(τ)
s is increasing in

τ when κ∗s < 0 and is hump-shaped in τ when κ∗s > 0. Equations (74) and (75) are the

precise continuous-time analogs of (48) and (49).

When supply is both random and elastic, λsr is non-zero, and (68) and (69) must be

solved as a system. Given the solution A
(τ)
r and A

(τ)
s of that system, (70) can be solved for

C(τ). To solve the system of (68) and (69), we write it in vector form[
dA

(τ)
r

dτ
dA

(τ)
s

dτ

]
+M

[
A

(τ)
r

A
(τ)
s

]
=

[
1

0

]
, (76)

where

M ≡

[
κr − λrr −λsr
−λrs κs − λss

]
≡

[
κ∗r −λsr

−λrs κ∗s

]
. (77)

The system involves a fixed-point problem analogous to that in Sections 2.3 and 2.4 because

the matrix M depends on integrals involving A
(τ)
r and A

(τ)
s . We can solve the fixed-point

problem in two steps, as in Sections 2.3 and 2.4. The first step is to take M as given and
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solve (68) and (69) as a linear ODE system with constant coefficients. The solutions are

A(τ)
r =

1− exp(−νrτ)
νr

− νs − κ∗s
νr − νs

(
1− exp(−νsτ)

νs
− 1− exp(−νrτ)

νr

)
, (78)

A(τ)
s = λrs

1

νr − νs

(
1− exp(−νsτ)

νs
− 1− exp(−νrτ)

νr

)
, (79)

where

νr =
κ∗r + κ∗s +

√
(κ∗r − κ∗s)

2 + 4λsrλrs
2

and νr =
κ∗r + κ∗s −

√
(κ∗r − κ∗s)

2 + 4λsrλrs
2

(80)

are the eigenvalues of M. The second step is to compute the integrals in M (i.e., to compute

λrr, λsr, λrs, and λss) given the solution A
(τ)
r and A

(τ)
s , and require that they are consistent

with the value of M used to compute A
(τ)
r and A

(τ)
s . This problem amounts to solving a non-

linear system of four scalar equations in the four elements of M. When supply is inelastic

or non-random, only one non-linear scalar equation needs to be solved—i.e., when λsr = 0,

νr = κ∗r and νs = κ∗s.
8

3.2.2 Results and Intuitions

We illustrate supply effects in a calibrated version of the model. We consider a negative shock

∆ζ(τ) to bond supply S
(τ)
t that is unanticipated and permanent. All calibrated parameters

except for the shock’s persistence are as in Figure 3 of Vayanos and Vila (2021). The decrease

in supply corresponds to QE purchases worth 12% of GDP.

Figure 2 plots the supply shock’s effects on the term structure of yields. The left panel

assumes that the shock is permanent. The right panel assumes that the shock reverts

deterministically to zero at the rate κζ = 0.15, implying a half-life of 4.62 years. In each

panel the red, green, light blue, blue, and black solid lines assume that the shock exclusively

alters the supply of 2-, 5-, 10-, 20- and 30-year bonds, respectively. The black dashed line

8Two alternative approaches to solving this fixed-point problem have been proposed. One approach,
developed in Hayashi (2018), uses the discrete-time version of the model and expresses the fixed-point

problem as a system of 2T quadratic equations in the 2T unknowns A
(τ)
r and A

(τ)
s for τ = 1, .., T . The

unknowns are treated as functions of the arbitrageurs’ risk aversion a, and an ODE in a is derived by
differentiating implicitly the system with respect to a. The initial condition for the ODE is for the value
a = 0, for which the system can easily be solved in closed form.
Another approach, developed in Vayanos and Vila (2021), uses the continuous-time version of the model

and assumes that T is infinite and the functions θ(τ) and η(τ) are exponentials or linear combination of

exponentials. The integrals in M then become Laplace transforms of the functions A
(τ)
r and A

(τ)
s and of

their squares and product. Taking Laplace transforms of both sides of the ODE system (76), yields scalar
equations in the Laplace transforms. These equations reduce to a non-linear system of four scalar equations.
Relative to the approach of diagonalizing M, the advantage of the Laplace transforms approach is that the
fixed-point problem can be formulated and solved without needing to distinguish cases depending on whether
the eigenvalues of M are real or complex.
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Figure 2: Effects of QE for the main calibration in VV.

assumes that the shock alters the supply of a basket of Treasury maturities whose composition

matches the maturities purchased by the Fed during the first round of QE from March 2009

to March 2010—i.e., QE1—as reported in D’Amico and King (2013). Yield changes in the

y-axis are in percent points—e.g., 2% is 200 basis points.

Figure 2 shows that supply effects exhibit some localization. Consistent with the dollar-

duration intuition described in Section 2.2, a decrease in the supply of bonds with longer

maturities generates a larger downward shift in the yield curve. For example, there is a

larger downward shift when the negative supply shock is concentrated in 30-year bonds than

when it is concentrated in 2-year bonds. That downward shift, however, is not larger for all

maturities: yields on 1- to 3-year bonds are more sensitive to a decrease in supply of 2-year

bonds than of 30-year bonds.

Figure 2 further shows that even permanent supply shocks can have hump-shaped effects

on the yield curve. For example, a permanent decrease in the supply of 2-year bonds has

its maximum effect on 10-year yields. Permanent shocks can have hump-shaped effects only

when the supply coming from preferred-habitat agents is both random and elastic. Indeed,

with a non-random or an inelastic supply, the effects are always increasing in maturity, as

shown in Sections 2.2 and 2.4, respectively. The intuition for the hump shape is that because

arbitrageurs sell bonds at the given maturity to accommodate the decrease in supply, they

become more willing to buy bonds at other maturities to keep a similar risk profile. With

elastic supply, the prices of those other bonds move only to the extent that arbitrageurs

actually buy them. With two (or more) risk factors, bond returns are not perfectly corre-

lated across maturities, so arbitrageurs are not willing to substitute as aggressively across

maturities because doing so exposes them to additional risk. As a result, supply effects are

partially concentrated around the maturities where the supply shocks land. Hump-shaped

effects become more pronounced when supply is more elastic. They also become more pro-

nounced when supply shocks are transitory, as can be seen by comparing the right panel of
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Figure 2 to the left panel.

4 Perpetuities

For some applications, particularly in macroeconomics, the researcher may want to model the

effects of supply and demand on long-term interest rates without modeling the entire yield

curve. In this section, we replace the ladder of zero-coupon bonds with a single long-term

bond, namely a coupon-bearing perpetual bond. Because coupons introduce nonlinearities,

we linearize the perpetuity’s return following Campbell and Shiller (1988). The resulting

model is highly tractable and captures many of the insights in the previous sections. Sim-

plified VV models of this type have been used in Greenwood et al. (2018), Hanson et al.

(2021), Greenwood et al. (2023), and Hanson et al. (2023). This simple model is not a

suitable framework for numerical calibration.

There are only two assets. The first is a 1-period bond. We refer to its yield, rt, as

the short rate and assume it follows the exogenous AR(1) process (2). The second asset

is a perpetuity that has a face value of one and pays a coupon of K > 0 in each period.

We denote the perpetuity’s price and log price at time t by P
(L)
t and p

(L)
t , respectively. We

denote the perpetuity’s return and log gross return between times t and t + 1 by R
(L)
t+1 =

(K + P
(L)
t+1)/P

(L)
t − 1 and r

(L)
t+1, respectively.

As in Section 2, we approximate the perpetuity’s return between times t and t+ 1 by

R
(L)
t+1 ≈ r

(L)
t+1 +

1

2
Vart[r(L)t+1]. (81)

Following Campbell and Shiller (1988), we further approximate the perpetuity’s log return as

a linear function of its continuously compounded yield y
(L)
t . We carry out this approximation

around the point where the perpetuity is trading at par—i.e., at a price equal to its face

value of one. Specifically, we approximate the log return on the perpetuity from t to t+1 as

r
(L)
t+1 ≈

1

1− δ
y
(L)
t − δ

1− δ
y
(L)
t+1 = y

(L)
t − δ

1− δ
(y

(L)
t+1 − y

(L)
t ), (82)

where δ ≡ 1/(1+K) ∈ (0, 1) is a constant of the linearization. The perpetuity’s return is the

sum of a “carry” component, yt, which investors earn if yields do not change and a capital

gain component, −(δ/(1− δ))(yt+1 − yt), due to changes in yields.9

Bond arbitrageurs choose portfolios consisting of 1-period bonds and perpetuities. They

have mean-variance preferences over wealth 1-period ahead, with risk aversion a. Denoting

by X
(L)
t the market value of arbitrageurs’ holdings of the perpetuity at time t, arbitrageur

9This log linear approximation dates back to Shiller, Campbell, and Schoenholtz (1983) and is discussed

in Campbell (2018). To derive it, recall that the gross return on the perpetuity from t to t+1 is 1+R
(L)
t+1 =

(K + P
(L)
t+1)/P

(L)
t . Letting Y

(L)
t ≡ exp(y

(L)
t+1) − 1 denote the perpetuity’s ordinary yield, the price of the
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wealth evolves according to

Wt+1 = (Wt −X
(L)
t )(1 +Rt) +X

(L)
t (1 +R

(L)
t+1). (83)

Using the approximation (3) for the return of the 1-period bond, and (81) for the return of

the perpetuity, we can approximate the evolution of arbitrageurs’ wealth by

Wt+1 ≈ Ŵt+1 ≡ Wt(1 + rt) +X
(L)
t (r

(L)
t+1 +

1

2
Vart[r(L)t+1]− rt). (84)

Arbitrageurs choose their holdings of the perpetuity X
(L)
t to maximize (6). Defining µ

(L)
t ≡

Et[r
(L)
t+1] +

1
2
Vart[r(L)t+1], this is equivalent to maximizing

(µ
(L)
t − rt)X

L
t − a

2
Vart[r(L)t+1](X

(L)
t )2. (85)

The arbitrageurs’ first-order condition for X
(L)
t is

µ
(L)
t − rt = aVart[r(L)t+1]X

(L)
t . (86)

We assume that the supply of the perpetuity coming from preferred-habitat agents is

S
(L)
t = ζ + st − ηy

(L)
t , (87)

where ζ and η are constants, and st follows the AR(1) process in equation (35).

We look for an equilibrium where the yield of the perpetuity is an affine function of the

short rate rt and the supply factor st. The yield takes the form

y
(L)
t = Br(rt − r) +Bsst +B, (88)

perpetuity is P
(L)
t = K/Y

(L)
t = K/(exp(y

(L)
t )− 1). Thus, the log return on the perpetuity from t to t+ 1 is

r
(L)
t+1 = log

(
K + P

(L)
t+1

P
(L)
t

)
= log

(
K +

K

exp(y
(L)
t+1)− 1

)
− log

(
K

exp(y
(L)
t )− 1

)
.

Linearizing this equation about the point where the perpetuity is trading at par at times t and t + 1—i.e.,

about the point where y
(L)
t+1 = y

(L)
t = log(1 +K), we find

r
(L)
t+1 ≈ y

(L)
t+1 −

1 +K

K

(
y
(L)
t+1 − log(1 +K)

)
+

1 +K

K

(
y
(L)
t − log(1 +K)

)
=

1 +K

K
y
(L)
t − 1

K
y
(L)
t+1,

which coincides with (82). Equation (82) can be generalized to allow the perpetuity to be self-amortizing,
enabling a modeler to control the value of δ. In each period, a self-amoritizing perpetuity pays the coupon
K and a fraction 1 − λ of its face value, and leaves the owner with λ units of the same perpetuity, where
λ ∈ [0, 1]. (The standard perpetuity corresponds to λ = 1.) The linearization constant for a self-amortizing
perpetuity is δ = λ/(1 +K). See Greenwood et al. (2023).
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for constants Br, Bs and B. This conjecture and the approximation (82) imply that the

conditional variance of 1-period perpetuity returns is constant over time and given by

Vart[r(L)t+1] = Var(L) ≡
(

δ

1− δ

)2 (
B2

rσ
2
r +B2

sσ
2
s

)
> 0. (89)

To solve the model, we substitute X
(L)
t from the market-clearing condition X

(L)
t = S

(L)
t

into the arbitrageurs’ first-order condition (86). Using the definition of µ
(L)
t , the approxi-

mations (81) and (82), the conjectured form of yields (88) and the AR(1) dynamics for the

short rate and the supply factor, we find the equation

µ
(L)
t −rt︷ ︸︸ ︷

1− δρr
1− δ

Br(rt − r) +
1− δρs
1− δ

Bsst +B +
1

2
Var(L) − rt

= aVar(L) (ζ + st − η [Br(rt − r) +Bsst +B]) , (90)

which is affine in rt − r and st. Identifying linear terms in rt − r, linear terms in st and

constant terms, we find

Br =

1−δ
1−δρr

1 + 1−δ
1−δρr

ηaVar(L)
> 0, (91)

Bs =

1−δ
1−δρs

aVar(L)

1 + 1−δ
1−δρs

ηaVar(L)
> 0, (92)

B = r +
aVar(L)(ζ − η(r − 1

2
Var(L)))

1 + ηaVar(L)
− 1

2
Var(L), (93)

respectively. Equations (91)-(93) are the counterparts of the difference and differential equa-

tions for A
(τ)
r , A

(τ)
s and C(τ) derived in Sections 2 and 3. They are scalar equations, which

makes the perpetuity model simpler to solve.

Because Br and Bs depend on Var(L), and Var(L) depends on Br and Bs, a fixed-point

problem analogous to that in Sections 2 and 3 arises. We can reduce the fixed-point problem

to a scalar equation in Var(L), as can be seen by combining (89), (91), and (92):

Var(L) =
(

δ

1− δ

)2
( 1−δ

1−δρr

1 + 1−δ
1−δρr

ηaVar(L)

)2

σ2
r +

(
1−δ

1−δρs
aVar(L)

1 + 1−δ
1−δρs

ηaVar(L)

)2

σ2
s

 .

When supply is constant and inelastic (σ2
s = η = 0), the fixed-point problem is degenerate

and there is a unique equilibrium. When instead σ2
s > 0 or η ̸= 0, the fixed-point problem

is non-degenerate because the risk of holding perpetuities depends on how their prices react

to shocks, and vice-versa. Furthermore, when σ2
s > 0 or η < 0, the fixed-point problem can
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have multiple solutions. Researchers typically focus on the unique equilibrium that is stable

and does not explode in the limit where σ2
s and η go to zero.

Many—but not all—of the qualitative implications of the VV model can be illustrated

in the perpetuity model. For example, as in Section 2.3 above, the sign of η determines how

changes in the short rate impact bond risk premia and, thus, whether long-term yields under-

or over-react to the short rate relative to the EH. When η = 0, the reaction of long-term

yields to changes in the short rate conforms to the EH—i.e., ∂(µ
(L)
t − rt)/∂rt = 0 and bond

risk premia do not depend on short rates, so

Br =
∂

∂rt
(1− δ)

∑∞

j=0
δjEt[rt+j] =

1− δ

1− δρr
.

When η > 0, long-term yields to under-react to movements in the short rate relative to the

EH because ∂(µ
(L)
t − rt)/∂rt < 0, and Br < (1 − δ)/(1 − δρr). Long-term yields instead

over-react to movements in the short rate relative to the EH when η < 0. Similarly, as in

Section 2.4, when η = 0, the impact of random supply shocks on long-term yields is greater

when ρs is larger and supply shocks are more persistent.

5 Empirical applications of the VV framework

Empirical applications of the VV framework have sought to either isolate shocks to the

supply or demand for long-term bonds, or alternately have sought to construct empirical

proxies for arbitrageurs’ holdings of long-term bonds and risk aversion. Several papers have

further argued that some agents in bond markets trade in a “rate-amplifying” fashion in the

short-run, causing long rates to over-react to movements in the short rate relative to the

EH at high frequencies (Hanson et al. (2021)). Our goal in this section is not to provide an

exhaustive treatment of the empirical literature on supply-and-demand effects in the term

structure. Instead, we seek to connect some of the main findings in this growing empirical

literature to concepts emphasized in the VV model.

5.1 Variation in bond supply

Garbade and Rutherford (2007) and Greenwood and Vayanos (2010) study the effects of

a significant shift in the supply of long-term bonds: the U.S. Treasury’s 2000−2001 debt

buyback program. In early 2000, the U.S. Treasury, which at the time was running budget

surpluses, announced that it would begin repurchasing long-term bonds. Between March

2000 and December 2001, the Treasury repurchased a significant fraction of outstanding debt

maturing in more than 10 years. Consistent with the idea of preferred-habitat, Garbade and

Rutherford (2007) and Greenwood and Vayanos (2010) find that the announcement of these

debt repurchases was associated with a large drop in 30-year yields relative to 10-year yields.
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Greenwood and Vayanos (2014) conduct a more systematic historical examination of

how the supply and maturity structure of government debt impacts long-term yields in the

U.S. To do so, they compute the maturity-weighted debt-to-GDP ratio, which is roughly

the product of the debt-to-GDP ratio times the weighted-average-maturity of government

debt, analogous to the dollar duration concept in (18). Greenwood and Vayanos (2014) then

regress long-term yields and the future excess returns on long-term bonds on this duration

supply variable, controlling for the level of short rates. They find that duration supply is

positively related to current yield spreads relative to the short rate and predicts future excess

returns on long-term bonds.

Many papers have studied the impact of central bank QE policies on bond yields. Gagnon

et al. (2011) report that the combined impact of U.S. QE announcement events between

2008 and 2010 was to reduce 10-year U.S. Treasury yields by 91 basis points and and 10-

year agency yields by 156 basis points. Similar effects have been documented in other

countries, including the U.K. and the Eurozone (Joyce et al. (2011), Fratzscher et al. (2018)).

Although most studies focus on the overall steepening of the yield curve, D’Amico and King

(2013) document local effects in the spirit of the version of the model discussed in Section

3. Bhattarai and Neely (2022) provide a comprehensive review of the empirical literature on

unconventional monetary policy.

Moving beyond government bonds, Hanson (2014) and Malkhozov et al. (2016) argue that

mortgage refinancing waves in the U.S. are associated with significant shifts in the effective

supply of long-term bonds that must be held by arbitrageurs. Most home mortgages in the

U.S. are 30-year fixed-rate loans with a no-penalty prepayment option. When long-term

interest rates decline, more households are expected to refinance their mortgages in the near

term, so the ensuing refinancing waves cause the effective maturity of outstanding mortgages

to shrink. As a result, mortgage refinancing waves lead to significant shifts in the total dollar

quantity of interest rate risk that U.S. fixed-income investors must bear in equilibrium. Both

Hanson (2014) and Malkhozov et al. (2016) build VV-style models that feature endogenous

mortgage refinancing waves. In reduced form, both models are similar to assuming that

η < 0—i.e., that the net supply of long-term bonds is downward-sloping and thus increasing

in the level of long-term bond yields. Empirically, these papers show that the duration of

outstanding mortgage-backed securities is a strong and positive predictor of future declines in

long-term yields and, hence, the future excess returns on long-term bonds. Moreover, while

the impact of mortgage duration on expected excess returns is increasing in bond maturity,

increases in mortgage duration are short-lived in nature and have a hump-shaped effect on

the yield curve, with their maximum impact being felt on intermediate maturities.

5.2 Variation in bond demand

Greenwood and Vayanos (2010) study a large shock to the demand for long-term bonds
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stemming from the 2004 reforms to pension regulation in the U.K. These reforms increased

the incentives of pension funds to hold long-term U.K. government bonds, especially long-

term inflation-protected securities. Consistent with the VV framework, this increase in

demand for long-term bonds was associated with an inversion of the yield curve and an

especially large effect on the long end: long-term U.K. yields (e.g., 30-year yields) declined

significantly relative to intermediate-term yields (10-year yields). Because of these ‘local’

effects, the empirical results are best understood in the context of the version of the model

with elastic and random supply.

Greenwood and Vissing-Jorgensen (2018) conduct a more systematic cross-country exam-

ination of how the demand for long-term bonds from pension funds and insurance companies

affects the long end of the yield curve. Specifically, using data from 26 countries, they find

that the spread between 30-year and 10-year government bond yields is negatively related to

the ratio of pension and life insurance assets to GDP. This finding suggests that preferred-

habitat demand from pensions and insurers for long-term bonds plays an important role in

shaping the long end of the yield curve. Exploiting regulatory changes in several European

countries from 2008 and 2013, Greenwood and Vissing-Jorgensen (2018) provide event-study

evidence on the effect, further supporting the idea that pension and insurance demand im-

pacted the long end of the yield curve. In particular, they argue that pension and insurance

demand is partially driven by hedging linked to the regulatory discount curves. When regula-

tors reduce the dependence of the regulatory discount curve on a particular security, pension

and insurance demand for the security falls and its yield increases. Similar to Greenwood and

Vayanos (2010), Greenwood and Vissing-Jorgensen (2018) provide several examples whereby

demand shocks have local effects. In this way, they are best interpreted as an illustration of

the VV model with elastic and random supply.

Ray et al. (2023) use news about demand revealed during Treasury auctions to measure

how shocks transmit through the term structure. Their empirical strategy is based on the

idea that all supply information is known before the close of each auction. Therefore, they

argue, the release of the auction results reveals unexpected shifts in demand. By utilizing high

frequency changes in Treasury yields around the close of Treasury auctions, they document

that demand shocks are large and persistent, with effects on yields that last for many weeks

following the auction. They extrapolate their findings to understand the impact of QE.

Domanski et al. (2017) point to a rate-amplification (or convexity-driven) mechanism

stemming from the desire of pensions and insurers to dynamically match the duration of

their assets and liabilities. Specifically, since the convexity of their liabilities exceeds that of

their assets, pensions and insurers tend to purchase additional long-term bonds when long-

term interest rates fall, to dynamically manage their interest-rate exposure. Empirically,

Domanski et al. (2017) examine the portfolio rebalancing behavior of German insurers and

argue that their convexity-dirven portfolio rebalancing contributed to the large decline in

long-term interest rates in the Eurozone in late 2014. As above, these findings could be
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explained in a VV-style model where η < 0.

Hanson and Stein (2015) provide further empirical evidence for a negative η in the VV

model. They show that long-term real yields on U.S. Treasury bonds are surprisingly sensitive

to unexpected movements in short-term nominal interest rates driven by central bank policy

announcements. They also propose a different institutional explanation for why η might be

negative. The idea is that some investors care about the current yield on their portfolio as

opposed to the portfolio’s expected return. When short-term yields decline, EH logic implies

that long-term yields decline by less, causing the term structure to steepen. This boosts

the demand for long-term bonds from yield-seeking investors—i.e., these investors “reach

for yield” and buy more long-term bonds when rates drop, pushing down the risk premium

component of long-term yields.

5.3 Variation in arbitrageur risk tolerance

Although the VV model specifies the first-order condition of arbitrageurs, it is silent on who

the relevant arbitrageurs are. Haddad and Sraer (2020) suggest that banks are marginal

investors in fixed-income markets (through lending decisions, willingness to hold Treasury

and Agency bonds, and so on), and that, therefore, the amount of interest-rate risk that

banks are holding should determine bond risk premia and future excess returns. Haddad

and Sraer (2020) measure bond risk premia through banks’ average “income gap” computed

as bank assets that reprice within one year, minus liabilities that mature or reprice within

one year. The lower the income gap is, the higher is the interest-rate risk that banks must

bear. Haddad and Sraer (2020) show that the income gap forecasts excess bond returns over

the next four quarters, with increasing magnitudes for bonds of longer maturities.

6 Extensions to models of default-free government bonds

In this section, we discuss extensions to the baseline VV model that have been developed in

the context of default-free bonds. We sketch the key formal elements of each extension and

its relationship to the analysis in Sections 2 and 3.

6.1 Multiple supply factors

In Sections 2 and 3, random supply arises from a single supply factor. In practice, however, a

variety of supply factors may operate at different maturities. For example, a factor reflecting

the demand of mutual-fund managers may shift the (net) supply of short-term bonds, and a

factor reflecting the demand of pension funds and insurance companies may shift the (net)

supply of long-term bonds.
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We can generalize the model for K > 1 supply factors by assuming that the supply of

τ -period bonds at time t is

S
(τ)
t = ζ(τ) +

∑K

k=1
θ
(τ)
k sk,t, (94)

for functions ζ(τ) and {θ(τ)k }Kk=1 that depend only on τ , and for supply factors {sk,t}Kk=1. Each

supply factor follows an AR(1) process of the form (36) in discrete time, or an OU process of

the form (58) in continuous time. In either case, equilibrium bond yields are affine functions

of the short rate and the K supply factors.

The model can be solved following the steps outlined in Sections 2 and 3. First, we

compute µ
(τ)
t using the conjectured bond yields, short-rate dynamics and supply-factor dy-

namics. Second, we derive the arbitrageurs’ first-order condition for X
(τ)
t . For example,

assuming that time is discrete and the short rate and the K supply factors are all mutually

independent, we find

µ
(τ)
t − rt = A(τ−1)

r λr,t +
∑K

k=1
A(τ−1)

sk
λsk,t, (95)

where the prices of risk are λf,t ≡ aσ2
f

∑T
τ=2X

(τ)
t A

(τ−1)
f for f = r, {sk}Kk=1, and A

(τ)
sk is the

sensitivity of bond prices to supply factor sk. Third, we determine the equilibrium prices of

risk by imposing market clearing, X
(τ)
t = S

(τ)
t , where S

(τ)
t is given by (94). This yields an

affine equation in the short rate and the supply factors that we use to construct a system of

difference equations in discrete time or a system of ODEs in continuous time. As in Sections

2 and 3, that system can be solved by first treating it as system with constant coefficients

and then requiring that (some of) these coefficients satisfy a fixed-point condition.

With multiple supply factors, the effects of supply shocks are more localized than with a

single supply factor. Intuitively, supply effects become more localized because the arbitrage

trades required to spread and smooth their effects globally are risky for arbitrageurs and

hence are not undertaken aggressively in equilibrium. A model with multiple supply factors,

including a supply factor that acts primarily on longer-term bonds, helps further understand

the finding from Greenwood and Vayanos (2010) and Greenwood and Vissing-Jorgensen

(2018) that shifts in the demand for long-term bonds from pensions and insurers can drive

down 30-year yields relative to 10-year yields.

6.2 Forward guidance

In Sections 2 and 3, expectations about future short rates and bond supply change only when

the current values of these variables change. This is because the variables follow AR(1) or OU

processes. In practice, however, expectations about future short rates and bond supply can

change even when the current values of these variables do not change. For example, central

banks engage in forward guidance, conveying their intentions about the future path of short
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rates, without necessarily moving current short rates. Likewise, central banks have typically

conducted QE by announcing a future path of bond purchases rather than by changing bond

supply upon announcement.

We can introduce shocks to expected future short rates and bond supply by allowing the

short rate and the supply factor to revert to a time-varying mean. For example, in discrete

time, we can assume that factor f for f = r, s evolves according to

ft+1 = f t + ρf (ft − f t) + εf,t+1, (96)

where the time-varying mean f t evolves according to

f t+1 = f + ρf (f t − f) + εf,t+1. (97)

A natural assumption under this specification is that shocks to a factor’s time-varying mean

are more persistent than shocks to the factor’s current value (0 < ρf < ρf < 1).

Greenwood et al. (2016) model forward guidance on short rates and bond supply using

the specification (96) and (97). Equilibrium bond yields are affine functions of the short

rate, the supply factor, and their time-varying means.

Shocks to expected future short rates have a hump-shaped effect on the yield curve

because investors expect the shocks to be temporary. The location of the hump depends on

the shocks’ persistence. For example and in line with the EH, if investors expect short rates

to rise and reach their maximum value in five years, then the hump will be located at a

longer maturity than if investors expect short rates to reach their maximum in three years.

Shocks to expected future supply have a hump-shaped or an increasing effect on the yield

curve. Moreover, the hump is located at a longer maturity compared to shocks to expected

future short rates with the same persistence (ρr = ρs). This is because shocks to expected

future supply affect bond yields through expected future bond risk premia, and risk premia

primarily affect longer-term bonds.

6.3 Effective lower bound

Under the AR(1) and OU processes in Sections 2 and 3, the short rate can take arbitrarily

low negative values. King (2019) incorporates an effective lower bound (ELB) on the short

rate into the VV framework. The short rate is assumed to be rt = max[b, r̂t], where r̂t is a

“shadow” short rate that follows an OU process and b is a lower bound, which can be set to

zero.

In the presence of an ELB, equilibrium bond yields become nonlinear functions of the

short rate and bond supply, and the model must be solved numerically. The nonlinearities

give rise to three key insights concerning behavior close to the ELB. First, forward guidance

that future short rates will be kept low—i.e., news that r̂t has fallen—lowers uncertainty
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about future short rates and bond yields. This is because future short rates will be close to

the ELB, and thus will exhibit little variation. Second, forward guidance that future short

rates will be low reduces bond risk premia, holding bond supply fixed, because of the lower

uncertainty. Third, QE purchases have a smaller effect on bond yields close to the ELB.

This is because short-rate volatility is low close to the ELB, so arbitrageurs do not bear as

much short-rate risk per unit of supply as they would have to bear away from the ELB.

6.4 Slow-moving capital

Greenwood et al. (2018) and Hanson et al. (2021) add a slow-moving arbitrage response

to the VV model. Specifically, following Duffie (2010), these papers assume that some

fraction of arbitrageurs are slow-moving and only periodically rebalance their portfolios.

This assumption implies that arbitrageurs’ short-run demand curve is less price-elastic than

their long-run demand curve. Hence, the short-run effect of supply shocks on bond yields

exceeds the shocks’ long-run effect.

These models generate a distinction between “stock” and “flow” effects. In the baseline

VV model, there is no distinction because (i) flows are simply changes in stocks and (ii) the

slope of arbitrageurs’ demand curve is not horizon-dependent. As a result, the current stock

of supply fully characterizes bond risk premia. However, once the slopes of arbitrageurs’

short- and long-run demand curves differ, the path of supply shocks matters: a jump in

supply has a larger (temporary) effect on bond yields than a gradual increase in supply of

the same cumulative magnitude.

6.5 Wealth effects and balance-sheet constraints

The risk aversion of arbitrageurs in the baseline VV model can be viewed as a reduced form

that arises from contracting frictions between specialized bond arbitrageurs and the highly

diversified investors who ultimately provide these arbitrageurs with capital. Specifically, due

to moral hazard problems, specialized bond arbitrageurs can only raise capital from more

diversified investors if arbitrageurs’ compensation is tightly linked to the returns on their

bond portfolios. Arbitrageur risk aversion can also be viewed as a reduced form for the

constraints that regulators impose on arbitrageurs. Researchers have extended VV in two

directions to account more explicitly for how contracting frictions and regulatory constraints

affect arbitrageurs’ demand and the term structure.

Kekre et al. (2023) assume that the risk aversion of arbitrageurs is inversely proportional

to their wealth, instead of being a constant as in VV. Risk aversion that decreases in wealth

can be a better reduced form for contracting frictions than constant risk aversion because

it captures the notion that arbitrageurs become more constrained following losses. Risk

aversion that is inversely proportional to wealth also results from intertemporal optimization
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of arbitrageurs who have log utility over their consumption.

With wealth-dependent risk aversion, the model can be solved analytically only in discrete

time and with 1- and 2-period bonds. Otherwise, arbitrageur wealth becomes a state variable

and only numerical solutions are possible. A key insight is that when arbitrageurs hold bond

portfolios with positive duration, an unexpected drop in the short rate revalues wealth in

their favor, lowering bond risk premia, and causing long rates to over-react relative to the

EH. Wealth effects thus provide an alternative explanation to a downward-sloping supply

curve (Section 2.3) for the over-reaction of long rates to the short rate.

He et al. (2022), Hanson et al. (2023) and Greenwood et al. (2023) maintain the VV

assumption that arbitrageur risk aversion is constant but introduce balance-sheet costs,

which further limit arbitrageurs’ willingness to absorb supply shocks. These costs often

stem from regulations and, importantly, can apply even to completely riskless trades. For

example, since the 2008 Global Financial Crisis, large dealer banks have been subject to a

non-risk-based equity capital requirement called the Supplemental Leverage Ratio (SLR).

When the SLR binds, banks are required to finance even riskless trades using some amount

of equity capital, which banks perceive as being costly.

In He et al. (2022), shocks to bond supply can be absorbed by two types of arbitrageurs:

dealer banks, which are subject to non-risk-based equity capital requirements, and hedge

funds, which are not. Hedge funds can finance their positions in bonds by borrowing from

banks in the repo market. Banks’ balance-sheet costs limit banks’ willingness to hold posi-

tions in bonds and to lend to hedge funds in the repo market. In the presence of balance-

sheet costs, shocks to bond supply push the spread between long and short rates and the

spread between Treasury and overnight-index swap (OIS) yields—a failure of the Law of

One Price that reflects bank balance-sheet costs—in the same direction. Balance-sheet costs

also steepen the aggregate demand curve for short-rate risk, amplifying the impact of bond

supply shocks on bond risk premia and yields. He et al. (2022) use the model to explain

the sharp rise in long rates and the rise in Treasury yields relative to OIS yields during the

COVID-19-induced “dash for cash” in March 2020.

A simple way to introduce balance-sheet costs in the model of Sections 2 and 3, and

capture the key insights in He et al. (2022), is to assume that arbitrageurs are homogeneous

and that balance-sheet costs enter directly into their objective function. Suppose that the

arbitrageurs’ objective function is

Et[Ŵt+1]−
a

2
Vart[Ŵt+1]−

ψ

2
(Et)

2, (98)

where Et is equity capital and ψ > 0 is a constant that captures the notion that equity

capital is costly for banks. Suppose additionally that arbitrageurs are subject to a binding
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equity capital requirement of the form

Et = k
∑T

τ=2
|X(τ)

t |, (99)

where k > 0 is a constant. The constraint (99) requires that arbitrageurs hold equity capital

against their bond positions for maturities 2 to T . We are excluding maturity 1 from the

constraint (99), interpreting the one-period interest rate as a swap rate. Under current

regulatory capital rules, interest-rate swaps indeed barely impact the amount of required

equity capital. The absolute value in (99) captures the notion that banks are required to

hold the same amount of equity capital against long and short positions in bonds. The

constant k is approximately equal to 6% for U.S. banks.

For simplicity, we focus on the case of random and inelastic supply. We assume addition-

ally that supply is always positive—i.e., X
(τ)
t = S

(τ)
t > 0 for all t and τ . This assumption

ensures that arbitrageurs hold always long positions in all bonds in equilibrium and that

the absolute-value constraint in (99) becomes linear.10 We finally parameterize the function

θ(τ) so an increase in the supply factor st raises aggregate bond supply for maturities 2 to

T—i.e.,
∑T

τ=2 θ
(τ) > 0.

Arbitrageurs’ first-order condition for τ -period bonds is

µ
(τ)
t − rt = ct + A(τ−1)

r λr,t + A(τ−1)
s λs,t, (100)

where ct is the marginal cost of equity capital, given by ct = ψk2
∑T

τ=2(ζ
(τ) + θ(τ)st), and

λf,t for f = r, s are the prices of factor risk, given by (42). Equation (100) shows that in the

presence of balance-sheet costs, expected excess bond returns reflect not only a compensation

for risk but also a time-varying cost of equity capital ct for arbitrageurs. An increase in ct
raises the expected returns on all bonds by the same amount irrespective of their maturity

and, hence, of their risk.

Supply shocks have larger effects on bond yields in the presence of balance-sheet costs.

This is because the shocks raise the marginal cost ct of equity capital, thus raising expected

bond returns and yields. Because the effect of supply shocks on bond yields is larger in the

presence of balance-sheet costs, supply risk is also larger, and so is the persistence ρ∗s of the

supply factor under the risk-neutral measure. As a result, the effect of supply shocks in the

presence of balance-sheet costs may be more pronounced for longer-term bonds. Countering

this effect is the fact that, not being risk-based, shifts in balance-sheet costs can have large

effects on short-term bonds. As a result, the effects of supply shocks on short-term yields

can be more pronounced than those on long-term yields when supply shocks are transient.

The simple model presented above can also capture the effect of supply shocks on the

10Supply is always positive if the shocks εs,t to the supply factor st are drawn from a distribution with
bounded support and the function ζ(τ) is sufficiently positive.
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spread between bond yields and swap rates. We treat swaps as if they require zero equity

capital, which is a good approximation of current regulatory capital rules. While swaps

do not entail balance-sheet costs, they still expose arbitrageurs to interest-rate risk. If

arbitrageurs hold no swaps in equilibrium, then the equilibrium swap curve can be obtained

by recomputing the equilibrium with ct = 0. Thus, the model predicts that swap yields

will be below government bond yields with the same maturity—i.e., swap spreads will be

negative. Moreover, if dealers are required to absorb a large supply shock, as they arguably

were during the March 2020 dash for cash, then the model predicts that both swap and

Treasury yields will rise, but that Treasury yields will rise more.

Hanson et al. (2023) build a supply-and-demand driven model of swap spreads in the VV

tradition where there are separate shocks to arbitrageurs’ capital and to the bond supply

that arbitrageurs must hold in equilibrium. The baseline model in that paper is affine, but

the authors show how the theory can be extended to deal with the non-linearities that stem

from balance-sheet constraints that bind only occasionally and from arbitrageurs’ positions

that switch sign over time.

6.6 Convenience yields

Starting with Krishnamurthy and Vissing-Jorgensen (2012), a large literature over the past

decade has shown that U.S. government bonds and other safe securities may command a non-

risk-based convenience yield. Convenience yields are straightforward to incorporate into the

VV framework by adding non-pecuniary benefits of holding safe securities to the objective

function of arbitrageurs. Suppose that the arbitrageurs’ objective function is

Et[Ŵt+1]−
a

2
Vart[Ŵt+1] +m(Xt), (101)

where m(Xt) is a convenience benefit from holding an aggregate value Xt ≡
∑T

τ=2X
(τ)
t of

government bonds with maturities 2 to T . We interpret the one-period interest rate as a

swap rate as in Section 6.5, and assume that swaps carry no convenience benefits. We assume

that the function m(Xt) is increasing and concave. For simplicity, we adopt the quadratic

specification m(Xt) = αmXt − (βm/2)X
2
t .

As in Section 6.5, we focus on the case of random and inelastic supply. We assume that

the aggregate supply St ≡
∑T

τ=2 S
(τ)
t for maturities 2 to T is always smaller than αm/βm, so

that the marginal convenience benefit m′(Xt) = m′(St) > 0 is always positive in equilibrium.

Arbitrageurs’ first-order condition for τ -period bonds is

µ
(τ)
t − rt = −mt + A(τ−1)

r λr,t + A(τ−1)
s λs,t, (102)

where mt is the marginal convenience benefit, given by mt = αm − βm
∑T

τ=2(ζ
(τ) + θ(τ)st),

and λf,t for f = r, s are the prices of factor risk, given by (42).
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Convenience benefits and balance-sheet costs have opposite implications for the average

level of yields but identical implications for the response of yields to supply shocks. Conve-

nience benefits push bond yields down, while balance-sheet costs push yields up. However,

both convenience benefits and balance-sheet costs lead supply shocks to have larger effects

on bond yields than they otherwise would. And, both lead bond supply shocks to have

larger effects on bond yields than on like-maturity swap rates. In the presence of balance

sheet costs, this is because supply shocks raise the marginal cost ct of equity capital. In

the presence of convenience benefits, this is because supply shocks lower the marginal con-

venience benefit mt. Formally, the function A
(τ)
s is the same in Sections 6.5 and 6.6 when

ψk2 = βm—i.e., when supply shocks raise ct by the same amount as they lower mt. However,

convenience benefits and balance-sheet costs have opposite effects the function C(τ).

6.7 Real versus nominal yields

Many developed countries issue both nominal and inflation-indexed bonds. Greenwood et al.

(2023) show how the VV framework can be extended to model both nominal and real yield

curves. Specifically, one would assume that there are separate, but potentially correlated,

exogenous processes for the short-term real interest rate and for inflation. The process for

the real rate is correlated with the process for inflation, following a standard Taylor rule.

The model is closed by adding separate but potentially correlated shocks to the net supply

of nominal and real bonds.

In such a model, the so-called break-even inflation rate—i.e., the difference between the

yield on duration-matched nominal and real bonds—reflects both expected future inflation

and the difference in risk premia between nominal and real bonds—i.e., an inflation risk

premium. The inflation risk premium responds to differential net supply shocks between

nominal and real bonds. For instance, holding expected inflation fixed, if the net supply of

real bonds increases relative to the net supply of nominal bonds, this increases long-term real

yields relative to nominal yields, pushing down break-even inflation. Such a model might

prove useful in understanding the disruptions to the TIPS market that often seem to occur

during periods of significant macro-financial distress such as the Fall of 2008 and March 2020

(see Campbell et al. (2009)). In both periods, real yields fell significantly less than nominal

yields, so inflation break-even yields plummeted. Practitioner accounts suggest that these

dynamics were driven by supply-demand imbalances, rather than expected deflation.

7 Other applications

In this section, we describe a number of further extensions that apply the VV framework

beyond the domain of default-free bonds.
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7.1 Foreign exchange

To study foreign exchange rates, Gourinchas et al. (2022) and Greenwood et al. (2023) both

extend the VV framework to a two-country setting, say the U.S. and the Eurozone. There are

short- and longer-term bonds in both countries as well as an exchange rate between the two

countries’ currencies. The short rate in each country follows an exogenous AR(1) processes

and the two short rates can be correlated. As in VV, specialized bond arbitrageurs must

absorb random shocks to the supply of long-term bonds in each country as well as random

shocks to the supply of foreign exchange. Gourinchas et al. (2022) work in continuous time

and consider a continuum of long-term bonds in each country. Greenwood et al. (2023) work

in discrete time and consider a single class of perpetual long-term bonds in each country.

However, the underlying economics is similar.

These models predict that shifts in the supply of long-term bonds impact not only bond

term premia, but also the expected returns on the foreign exchange (FX) trade that borrows

in dollars and lends in euro. For example, an increase in the supply of long-term U.S. bonds

raises both the expected excess return on long-term U.S. bonds and the expected return on

the FX trade, leading to a depreciation of the euro versus the dollar. Conversely, reductions

in the supply of long-term U.S. bonds, such as those that result from quantitative easing,

will lead the dollar to depreciate against the euro, matching recent evidence in Bauer and

Neely (2014), Neely (2015), Swanson (2017), and Bhattarai and Neely (2022).

The intuition for this result is that long-term U.S. bonds and the borrow-in-dollar lend-

in-euro FX trade have similar exposures to U.S. short-rate risk. Specifically, when the U.S.

short rate rises unexpectedly, (i) EH logic implies that yields on long-term U.S. bonds rise and

their prices fall and (ii) uncovered-interest-rate-parity logic implies that the euro depreciates

against the dollar so the borrow-in-dollar lend-in-euro FX trade also suffers losses.

Consider now the effect of an increase in the net supply of long-term U.S. bonds. Follow-

ing this supply shift, bond arbitrageurs become more exposed to future shocks to the U.S.

short rate. As a result, the price of bearing U.S. short-rate risk rises. Since long-term U.S.

bonds are exposed to U.S. short-rate risk, this leads to a rise in the risk-premium component

of long-term U.S. yields. It also leads to a rise in the risk premium on the borrow-in-dollar

lend-in-euro FX trade, which is similarly exposed to U.S. short-rate risk. As a result, the

euro depreciates against the dollar and is expected to appreciate going forward.

These models make several additional predictions. First, bond supply shocks should

have a larger impact on the bilateral exchange rate when the correlation between the two

countries’ short rates is lower. For example, the JPY-USD exchange rate should be more

responsive to U.S. QE than the EUR-USD exchange rate because Japanese short rates are

less correlated with U.S. short rates than are Euro short rates. Second, these models match

the otherwise puzzling finding in Lustig et al. (2019) that the return to the FX trade declines

if one borrows long-term in one currency to lends long-term in the other. This pattern arises
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because the “long-term” FX trade has offsetting exposures to short-rate shocks, making it

less risky for arbitrageurs than the standard FX trade involving short-term bonds. Third,

if one assumes that the supply of bonds and the supply of foreign exchange are increasing

in their price, these models offer a unified explanation that links the predictability of FX

returns documented by Fama (1984)—i.e., a larger short-rate differential predicts higher FX

returns—with the predictability of long-term bond returns documented by Fama and Bliss

(1987) and Campbell and Shiller (1991)—i.e., a steeper yield curve predicts higher bond

excess returns.

7.2 Credit risk

There are several ways to introduce credit risk into VV-style models. Greenwood et al. (2018)

develop an approach that is appropriate for modelling a diversified portfolio of defaultable

bonds where it is reasonable to assume that portfolio-level default losses follow an AR(1)

process in discrete time or an OU process in continuous time. However, their approach is not

appropriate for modelling the term structure of yields for an individual corporate or sovereign

borrower where default is a binary event. Costain et al. (2022) outline an approach that

is appropriate for individual borrowers where a binary default event arrives at some hazard

rate. Focusing on the Eurozone, they model the term structures of two sovereigns that are

subject to the same movements in riskless short rates—i.e., from the European Central Bank.

However, the term structure for one sovereign is free of default risk, while the term structure

for the other is subject to the arrival of Poisson default events.11 In both frameworks, both

default-free and defaultable bonds are exposed to short-rate shocks, but only defaultable

bonds are exposed to default losses. Thus, shocks to the supply of either default-free or

defaultable bonds will shift the market price of short-rate risk. However, only shocks to the

supply of defaultable bonds will shift the market price of default risk. Gilchrist et al. (2021)

study the impact of the Federal Reserve’s purchases of corporate bonds.

7.3 Further market segmentation

There is segmentation in the VV model in the sense that the marginal investors in bonds are

specialized bond arbitrageurs. However, further segmentation is possible—particularly seg-

mentation across different asset classes within fixed-income markets—which has implications

for how supply shocks impact prices. Segmentation of this sort is explored in Greenwood

et al. (2018) and Greenwood et al. (2023).

Suppose there are two classes of long-term bonds—say, government bonds that are free

of default risk and corporate bonds that are exposed to default risk. Suppose that not

11The default hazard rate can evolve deterministically over time. It cannot evolve stochastically if the
model is to remain affine.

41



all bond arbitrageurs are able and willing to substitute between all assets. Specifically, a

fraction π of bond arbitrageurs are highly specialized. Of these specialists, a fraction ϕ

specialize in government bonds and only substitute between short-term and longer-term

government bonds, and a fraction 1 − ϕ specialize in corporate bonds and only substitute

between short-term government bonds and longer-term corporate bonds. Fraction 1 − π of

bond arbitrageurs are generalists who substitute between short-term government bonds and

both types of long-term bonds.

When π = 1 the government and corporate bond markets are completely segmented, when

π = 0 they are fully integrated, and when π ∈ (0, 1) they are partially segmented. In this

setting, one can show that own-market price impact—i.e., the impact of a shock to the supply

of an asset class on prices of that asset class—is greatest when markets are highly segmented

(approaching π = 1) and declines as markets become more highly integrated (approaching

π = 0). Cross-market spillovers of supply shocks—e.g., the way that corporate bonds react

to shocks to the supply of government bonds—depend on two key factors. First, on the

degree of fundamental substitutability between the two asset classes as captured by their

covariance. Second, on the degree of segmentation between the two markets. Specifically,

spillovers are greatest when the markets are tightly integrated and all arbitrageurs are able

and willing to substitute between the two asset classes (approaching π = 0). Spillovers

decline if some arbitrageurs do not substitute between the two asset classes (increasing π).

8 Conclusion

In this review, we develop a model of the term structure based on supply and demand.

After laying out the main results and intuitions, we show that the model can help explain

a number of empirical findings. In addition, the model can be adapted to handle a number

of extensions, including forward guidance, wealth effects, convenience yields, exchange rates

and credit risk. Our hope is that this presentation can help researchers adapt the VV model,

or ones similar to it, in other settings.

While the VV approach has been widely adopted in finance settings, it has made more

limited inroads into macroeconomics. Consider the question of how QE affects the real

economy, as noted by Woodford (2016). The VV approach can rationalize why a reduction

in net bond supply held by the public leads to a flattening of the yield curve. But it is

another step to go from the impact on long-term bond yields to an account of how QE

impacts firm investment, household consumption, and the broader real economy. Similarly,

consider the case of QE by the European Central Bank leading to depreciation of the Euro

relative to the dollar, as noted by Gourinchas et al. (2022) and Greenwood et al. (2023).

What are the corresponding implications for exports and total output, and what are the

feedback loops into bond prices? Ray (2019) and Ray et al. (2023) make progress on some

of these questions by embedding a VV segmented bond markets block into a New Keynesian
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model. Macroeconomic models with bond market segmentation also include Andres et al.

(2004) and Sims et al. (2023). Much more remains to be done, both in characterizing

how financial shocks affect the macroeconomy when capital markets are segmented, and in

deriving optimal monetary and fiscal policy in these settings.
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