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Abstract

Are laboratory safety practices a tax on scientific productivity? We examine this question by
exploiting the substantial increase in safety regulations at the University of California following the
shocking death of a research assistant in 2008. Difference-in-differences analyses show that relative
to “dry labs” that use theoretical and computational methods, the publication rates of “wet labs”
that conduct experiments using chemical and biological substances did not change significantly after
the shock. At the same time, we find that wet labs that used dangerous compounds more frequently
before the shock reduced their reliance on flammable materials and unfamiliar hazardous compounds
afterward, even though their overall research agenda does not appear to be affected. Our findings
suggest that laboratory safety may shape the production of science, but they do not support the
claim that safety practices impose a significant tax on research productivity.
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1 Introduction

Workplace accidents are one of the leading causes of death and disabilities.1 An important example of

hazardous working environments is academic research laboratories. During the past decade, growing

concerns have been voiced about the safety culture and protocols across universities in the United States,

Europe, and China (Silver, 2021). Several proposals to introduce stricter safety regulations have been

∗Weida Li, Shenye Liu, Yash Karani, Ehsen Tayyabi, and Bijan Miriabi provided excellent research assistance. We
are particularly grateful to Debbie Decker, Becky Grunewald, and Imke Schroeder for providing insightful details on the
responses by UCLA and UC Davis to the fatal incident. Alberto Galasso is grateful for financial support from the Social
Sciences and Humanities Research Council of Canada.

1A recent joint study by the World Health Organization and International Labour Organization estimates that almost
two million people die from work-related causes each year (WHO-ILO, 2021).
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put forward, including enhanced inspections, training, hazard documentation, and the use of safety

metrics in publications, promotion, and grant decisions (National Research Council, 2014).

Implementing stricter safety measures is challenging in part because of the widely held belief that

they may reduce research productivity. Time spent on safety training, risk assessment, and documen-

tation is time not spent on research. Supervision by experienced researchers and co-workers constrains

resources.2 This perception was highlighted in a 2014 National Research Council report on safe sci-

ence, which states that, “one of the most recalcitrant problems in many chemistry laboratories is the

attitude, unfortunately often reinforced by principal investigators, that safety practices are time-wasting

inhibitions to research productivity” (National Research Council, 2014). Russell Phifer, chair of Amer-

ican Chemical Society’s chemical health and safety division, commented that, “in the labs of many

competitive academic researchers, time and publication pressure favor productivity over performing and

documenting safety training” (Benderly, 2009). Indeed, survey evidence indicates that many academic

scientists see safety rules as a tax on scientific productivity, and the top listed reason for barriers to

improving safety in a lab is “time and hassle factors” (Van Noorden, 2013).

By contrast, proponents of stricter regulations have argued that a safe working environment is critical

for sustaining research productivity (Benderly, 2009; National Research Council, 2014). In hazardous

environments, adequate safety precautions allow scientists to focus on their research rather than worry

about injuries. Accidents not only threaten researchers’ health and safety but also result in research

projects being shelved or substantially delayed. Serious injuries and death may also affect a laboratory’s

reputation, making it difficult to attract new researchers.

These contrasting views, which often underlie the tension between researchers and laboratory safety

experts, highlight the need for empirical evidence. In this paper, we provide the first set of large-sample

evidence on the relationship between lab safety and research productivity. We focus on academic

chemistry laboratories. Hazardous chemicals impose health and safety risks for researchers, and they

are not as stringently regulated as radioactive or biological materials (Van Noorden, 2011). Our analysis

exploits a substantial and quasi-exogenous surge in academic lab safety regulations and examines its

2A 2010 survey by the American Chemical Society suggests that 70.5% of faculty and 52.1% of graduate students often
or occasionally work alone in laboratories, which is forbidden in the industry (Van Noorden, 2013).

2



impact on researchers’ productivity.

Specifically, on December 29, 2008, Sheharbano Sangji, a research assistant in an organic chemistry

laboratory at the University of California Los Angeles (UCLA), spilled a highly flammable compound

that ignited and severely burned over half of her body. Sangji died 18 days later. This incident received

extensive press coverage and close attention from the academic scientific community. Investigations

determined that inadequate safety training and not wearing personal protective equipment (PPE) were

among the causes of this tragic incident. This led to the first-ever criminal case against a university

professor due to lab safety. The UCLA incident was described as “a pivotal development” for academic

lab safety regulations that “had more impact on lab safety than anything else that’s happened in the

last 20 years” (Basken, 2012; Trager, 2014). UCLA, as well as the entire UC system, responded

by implementing major changes to its safety programs. These measures included more frequent lab

inspections, more stringent protocols for dangerous chemicals, and more safety training for laboratory

scientists (Gibson, et al. 2014).

From the perspective of principal investigators (PIs), who are the labs’ managers, these events have

led to two major changes. The first is a significant increase in the perceived risk and liability associated

with laboratory accidents, and the second is a significantly more stringent regulatory environment. To

guide our empirical analysis of the impact of these changes on research productivity, we develop a simple

model describing the relationship between risk/liability perception, safety levels, and research output.

The model builds on the multitasking literature (Holmstrom and Milgrom, 1991) and assumes that

researchers direct their efforts towards either conducting research or improving the safety of their labs.

The model first clarifies that even in the absence of stricter safety regulations, an increase in risk

perception alone incentivizes scientists to increase safety efforts. Ultimately, whether an increase in

safety leads to an increase or a decrease in research productivity depends on the relationship between

safety investments and the marginal cost of research. The debates surrounding safety regulations suggest

that safety investment may influence the marginal cost of research in multiple ways and potentially in

different directions. An increase in safety investment may crowd out research time, thereby increasing

marginal research costs and hurting research productivity. However, if a safer work environment moti-

vates researchers, reduces disruptions, and allows the PI to attract lab members, safety investment may

3



decrease the marginal cost of research and promote research productivity. The overall impact would

thus depend on the net effect of these various mechanisms.

Our empirical analysis relies on a sample of 592 chemistry labs affiliated with the University of

California (UC) between 2004 and 2017. For each lab, we retrieve its complete record of publications

from the Web of Science database. Importantly, we hire a team of chemistry PhD students to classify

each lab into one of two groups. The first group (treatment group) includes “wet labs,” in which

scientists conduct experiments on chemical and biological substances. The second group (control group)

includes “dry labs” that sspecialize in computational and theoretical research, which are not affected by

changes in safety regulations that resulted from the UCLA incident.

Our first key finding is that despite the implementation of more stringent safety regulations, we do not

see a significant decline in research productivity. Specifically, difference-in-differences estimations show

that, relative to dry labs, UC wet labs experienced a reduction of about 3% in their yearly publications

after 2008, but we cannot statistically distinguish this effect from zero. Event study analysis shows no

pre-trend differences between these two groups, and the small and insignificant effect is robust across a

variety of specifications and measurements.

Our second key finding relates to the shock’s impact on the direction of research. We find no broad

impact on the use of dangerous chemicals among wet labs at UCLA. However, for a small number

of labs that used dangerous chemicals intensely before the shock, we observe a decrease in the use of

these chemicals after the shock. Moreover, this reduction is mostly about flammable compounds and

dangerous chemicals that are unfamiliar to the researchers. Zooming in on these wet labs, even though a

textual analysis of their paper abstracts does not suggest an overall change in their research agenda, we

find that their more hazardous research projects appear to be more similar to their pre-shock research.

The empirical evidence presented here is relevant for the academic and policy debates regarding

the relationship between worker safety and productivity. Taken together, our results show that stricter

safety regulations may affect scientists’ behavior, increase lab safety levels, and affect the production

function of science. However, the results do not support the claim that stricter safety regulations impose

a significant tax on research productivity.

The rest of this paper is organized as follows. Section 2 discusses related literature. Section 3
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describes the UCLA incident and what happened to chemistry lab safety regulations in the wake of this

event. Section 4 presents the theoretical model. Section 5 describes the data and econometric methods.

Section 6 examines the impact of the shock on the rate of research, and Section 7 studies the impact on

the direction of research. Section 8 summarizes and discusses our main findings.

2 Related literature

Our paper relates primarily to two sets of literature: the first focuses on the relationship between worker

safety and firm performance and the second addresses the drivers of academic research.

2.1 Worker safety and firm performance

Studies in various disciplines, specifically economics and operations management, have investigated the

relationship between workplace safety and firm performance. A central debate in these studies is whether

there exists a significant trade-off between safety and productivity.3

On the one hand, many studies have suggested the existence of a significant trade-off; thus, an

increase in safety regulation, which induces more safety, would lead to a reduction in productivity. Gray

(1987) suggested that regulations such as those by the Occupational Safety and Health Administration

(OSHA) were responsible for about 30% of the economic slowdown in the 1970s. Gowrisankaran et al.

(2015) found that safety increases triggered by mining disasters were associated with an 11% decrease

in mines’ productivity. Pagell et al. (2020) found that organizations that provide a safer workplace

have significantly lower odds and shorter lengths of survival. Conceptually, this trade-off may emerge

from several sources. Financial and time constraints imply that safety investments may crowd out

investments in productive inputs. Moreover, a greater safety requirement imposes constraints on firms,

making it more difficult to take advantage of productivity-enhancing innovations. This latter argument

is consistent with the findings in several studies that adopting performance-based pay and innovative

production processes, such as faster work pace, short cycle time, and less slack is associated with an

3To this end, our paper relates to the so-called Porter Hypothesis debate on the impact of environmental regulation.
According to the traditional view, environmental regulations hurt firm productivity because they force firms to allocate
inputs to pollution reduction, which is unproductive (Palmer et al. 1995). Porter and van der Linde (1995) argue that
more stringent but properly designed environmental regulations can trigger innovation that may partially or even more
than fully offset the costs of complying with them.
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increase in workplace accidents (Perrow, 1984; Adler et al. 1997; Brenner et al. 2004).

On the other hand, other studies have suggested that an increase in safety requirements does not

necessarily decrease productivity and may even increase productivity. Leveraging experimental method-

ologies, Levine et al. (2012) found that more rigorous OSHA inspections did not have any significant

impact on firm productivity. Studies arguing for the positive effects of safety on performance highlight

the lost productive capacity and efficiency due to unsafe work environments. Goggins et al. (2008)

showed that improving the ergonomics of a workstation leads to decreases in turnover and absenteeism,

which increases productivity and quality. Building on the hierarchical motivation theory, Das et al.

(2008) argued that safety is a basic human need, and workers in unsafe environments are more likely

to engage in self-protection and are less motivated to pursue organizational goals. Consistent with this

motivation argument, McLain (1995) showed empirically that perceptions of a less safe work environ-

ment are associated with greater work distractions. Finally, because stability is critical for efficient

production, accidents would also hurt productivity by disrupting stability (Pagell et al. 2015).4

2.2 Drivers of the rate and direction of research

The second stream of literature to which our paper relates is the drivers of academic research. Stephan

(2010) provided a comprehensive survey on this topic. Largely, this literature has investigated demand-

side factors such as funding incentives (Azoulay et al. 2011) and supply-side factors such as the avail-

ability of research tools (Furman and Stern, 2011; Murray et al., 2016) and the loss of human capital

such as the death of prominent collaborators (Azoulay et al. 2010; Oettl, 2012) or physical assets such

as lab equipment (Baruffaldi and Gaessler, 2022).

This literature distinguishes between the rate of research—which is about productivity—and the

direction of research, which is about the type of research. The rate of research is typically measured by

the quantity of (which can be adjusted by quality) research outputs and is among the outcome variables

investigated by most of the studies in this literature. By contrast, the direction of research is much less

studied and its definition may differ by context. A set of papers focuses on the relatedness between

4A set of studies in operations management shows that the adoption of quality production systems may improve safety
and production performance at the same time (e.g., Levine and Toffel, 2010; Lo, et al. 2014). These studies, though
related, focus more on shifts to the production possibility frontier, rather than the trade-off faced on a specific frontier.
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research based on paper abstracts. For example, Azoulay et al. (2019) found that the premature death

of eminent life scientists allows more outsiders to enter a particular field and draw on new ideas. Myers

(2020) estimated how responsive life scientists are with respect to NIH funding in specific areas. Furman

and Teodoridis (2020) showed that technologies automating research tasks may induce researchers to

pursue ideas that are more diverse than and distant from their original trajectories. Another set of

papers focuses on the research input. Furman and Stern (2011) showed that institutional changes

facilitating access to research materials can increase researchers’ propensity to use knowledge associated

with these materials, and Murray et al. (2016) documented how IP restrictions on research tools may

lead to a reduction in the number of academic publications relying on those tools.

Whether rate or direction, this literature mainly focuses on a single aspect of the researcher’s per-

formance; that is, the research output. By contrast, dual performance objectives—safety and research

outcomes—are at the center of our study. In this regard, our paper relates to other studies that focus

on multiple objectives that compete for a researcher’s time and resources such as the impact of aca-

demic patenting on research productivity (Azoulay, et al., 2009) and that of academic entrepreneurship

on student mentoring (Roche, forthcoming). The multitasking theoretical framework that we use in

this paper can also apply to these other contexts; it allows the flexibility of either a competing or a

complementary relationship between the dual performance goals.

From the perspective of the safety objective alone, our paper relates to recent work that has studied

the diffusion of green chemistry (Anastas and Warner, 1998). Nameroff et al. (2004) documented this

phenomenon in the chemistry industry using patent data, and they relate this trend to changes in

environmental regulations. Howard-Grenville et al. (2017) studied how academic chemists encouraged

other chemists to practice green chemistry and the effectiveness and limitations of these efforts.

While not about academic research, another set of studies are also relevant to our work as they

examine how changes in liability risk and safety regulations shape innovation in the industry. Similar

to our context, these studies debate whether the impact is likely to be positive or negative. On the

impact of greater liability, existing empirical evidence—Viscusi and Moore (1993) and Galasso and Luo

(2017)—suggests that, on average, higher liability risk induces higher R&D spending and more patenting.

Galasso and Luo (2022) did find a significant chilling effect, but they showed that it is through a specific
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mechanism: a sudden increase in product liability risk suppliers faced may disrupt vertical chains and

negatively impact downstream innovation investments. Studies on the impact of safety regulations, such

as the FDA approval process, also found mixed results. On the one hand, Peltzman (1973) showed that

the 1962 drug amendments requiring proof of efficacy in addition to safety led to a significant decrease

in welfare. However, a recent paper by Grennan and Town (2020) found that for coronary stents, the

efficacy requirement in the US, which is more stringent than the European Union, is critical for reducing

quality uncertainty and facilitating adoption.5

3 The UCLA incident and subsequent events

On December 29, 2008, research assistant Sheharbano (Sheri) Sangji was conducting an experiment in

Professor Patrick Harran’s organic chemistry lab at UCLA. When she attempted to transfer a tert-

butyl-lithium solution, a highly flammable compound, from a bottle to a flask, the syringe plunger came

out of the barrel and the chemical burst into flames. Sangj was not wearing a protective lab coat at the

time, and her synthetic sweater caught fire. Sangj was rushed to the hospital with more than half of

her body severely burned. She died from her injuries on January 16, 2009 (Kemsley, 2009).

This incident received wide media coverage and close attention from the academic scientific commu-

nity, especially in chemistry. News outlets, including the Los Angeles Times, Chemical & Engineering

News, and Chemistry World reported the incident after Sheri Sangji’s death and followed up on subse-

quent events. This incident and laboratory safety became a major topic of discussion at the American

Chemical Society meeting in March 2009 (Benderly, 2009). Numerous editorials and blog posts in Sci-

ence, Nature, Scientific American, and other publications discussed the incident’s details and called for

actions to improve laboratory safety and prevent future incidents.

UCLA responded to the incident immediately. Within 30 days, an interdisciplinary team of experts

conducted comprehensive inspections of more than 300 laboratories, chemical storage rooms, and shops

within the Department of Chemistry and Biochemistry (Gibson et al., 2014). In the following six months,

a Laboratory Safety Committee was established, which conducted a thorough study of all aspects of

5For theoretical models in law and economics linking liability risk with innovation see Daughety and Reinganum (2013)
and Dawid and Muehlheusser (2022).
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lab safety at UCLA, including labs outside the chemistry department. In July 2009, the committee

submitted a comprehensive list of recommendations to the UCLA Chancellor.

The data Gibson et al. (2014) provided paint a clear picture of the strengthening of safety require-

ments at UCLA after the incident: the number of safety class participants increased from 3,327 in 2007

to 21,789 in 2012, with the number doubling in 2009 compared to 2008 (about 13,000 versus 6,000).

Similarly, the number of safety inspections at UCLA increased from about 1,100 in 2008 to about 2,000

in 2009 and to about 4,500 in 2012. Starting in 2010, scheduled inspections were complemented by

unannounced inspections.

Furthermore, the California OSHA conducted an investigation. In December 2009, the investigation

concluded that Sangji had not received adequate training for working with hazardous chemicals as the

State of California required. The report noted that UCLA’s environmental health and safety (EHS)

department “was well aware that research staff within virtually all laboratories at the University routinely

did not wear lab coats and other personal protective equipment while working in the labs.... The practice

was so well known by EHS that it was simply regarded ‘as part of the culture.’” (Baudendistel, 2009).

“Dr. Harran,” the report stated, “permitted victim Sangji to work in a manner that knowingly caused

her to be exposed to a serious and foreseeable risk of serious injury or death.” In December 2011, the

Los Angeles District Attorney filed criminal charges against the Regents of the University of California

and Patrick Harran for “willful violation of safety regulations.”

The case against the university was settled in July 2012. The terms of the settlement required UC to

accept responsibility for the event, establish a scholarship in honor of Sangji, pay the OSHA litigation

costs, and implement several specific laboratory safety practices throughout the entire UC system, not

just at UCLA. These practices encompassed lab safety manuals, hygiene plans, training of staff and

PIs, and following standard operating procedures for hundreds of chemical substances (Merlic, 2013).

Harran, if convicted, could have faced up to four and a half years in prison. In June 2014, Harran

reached a settlement under which he was required to: (1) teach organic chemistry to inner-city high

school graduates for five years; (2) complete 800 hours of non-teaching community service; (3) speak

to UCLA students about the importance of lab safety; and (4) pay a $10,000 fine to the regional burn

center where Sangji was treated (Trager, 2014). In September 2018, having determined that Harran
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had now met the terms of the agreement, a Los Angeles County Superior Court judge dismissed the

criminal charges against him (Maxmen, 2018).

Conceptually, the events presented above led to two major changes to the institutional environment

from a PI’s perspective . Although the magnitude of these changes evolved over time, they both started

shortly after the incident, making it challenging to empirically disentangle their specific effects. This

implies that the overall effect (or lack thereof) on research productivity that we investigate in this paper

will reflect the joint impact of the two changes.

The first major change was a significant increase in the awareness of the risk of working in academic

chemistry laboratories involving dangerous substances, as well as the PI’s personal liability in case of

safety events. Discussions with the EHS officers at both UCLA and UC Davis made it clear that the

incident was a huge shock to the chemistry community, especially those working at UCLA and other UC

campuses. They used the word “terrified” to describe the immediate reactions of many of the PIs, and

some PIs commented explicitly at the time that “it could have been my lab.”6 While the official criminal

charge against Harran was not issued until late 2011, many PIs started conjecturing about Harran’s

potential personal consequences, including jail time, immediately after the incident.

Apart from legal liability, laboratory safety issues may also have imposed greater costs to PIs’

reputations, statuses, and careers. Various proposals were made to take incident reports, laboratory

investigations, and safety policy compliance into account for promotion, tenure and the allocation of

grants and departmental resources. In December 2015, the American Association for the Advancement

of Science (AAAS) decided to withhold recognition of Patrick Harran. In an interview with Nature,

Langerman stated that “this action is huge, and impacts every scientist who aspires to be named for

national recognition or international recognition. . . . If I were a young chemist, and I set a career goal

to win a Priestley Medal [the highest honor conferred by the American Chemical Society] this says that

if my lab has a serious incident, I may never achieve my goal” (Hayden, 2015).

The second major change was the introduction of stricter laboratory safety rules. These mandated

6In 2009, after reviewing the reports on the UCLA and other similar incidents, Dr. Neal Langerman, former chair of
the Division of Chemical Health and Safety of the American Chemical Society (ACS), said that: “I have come to the
disheartening conclusion that most academic laboratories are unsafe venues for work or study” (Langerman, 2009). AA
2013 survey published by Nature and UCLA showed that 30% of the 2,400 responding scientists reported having witnessed
a lab injury that was severe enough to warrant attention from a medical professional (Van Noorden, 2013).
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rules directly added to the costs of operating a lab and can be largely categorized into one-off investments

and recurring costs. Examples of one-off investments include the redesign of laboratory space (e.g.,

removing improperly located safety showers) and updates to sprinkler systems. Recurring costs include

safety training, lab inspections, and documentation of lab procedures and materials used, all of which

became significantly more frequent and more thorough.7

The increase in safety requirements took place at UCLA immediately after the incident (Gibson et

al., 2014), and the requirements were strengthened further after the July 2012 settlement between the

University of California and LA County. For other UC campuses, our interviews confirmed that the

Sangji incident definitively spurred a strengthening of their safety regulations, even though the timing

may have lagged UCLA by several years. At UC Davis for example, a significant increase in training

and inspections did not take place until after the July 2012 settlement. That said, a UC Davis EHS

officer with whom we talked said that their office had substantial interactions with PIs in the Chemistry

Department immediately after the incident regarding the storage and inventory of hazardous materials.

It seems reasonable to conclude that such activities also took researchers’ time and effort, especially for

labs that used hazardous materials more intensely.

The increased focus on laboratory safety went beyond the UC system and spread to chemistry

departments across universities in the United States. Immediately after the UCLA incident, Russell

Phifer, chair of the American Chemical Society’s (ACS) chemical health and safety division, said in an

interview with Science: “I know for a fact that many universities immediately reviewed their protocols

for dealing with pyrophorics [materials inflammable when exposed to air] and many of them looked at

their documentation of safety training” (Benderly, 2009). In March 2011, the University of California

also established a Center for Laboratory Safety (CLS), with the goal of supporting research in laboratory

safety as well as diffusing best practices across UC campuses and other universities (National Research

Council, 2014). In 2012, the ACS issued the report “Creating Safety Cultures in Academic Institutions,”

which described best practices and provided recommendations to university departments. This was

7Following the incident, the university of California substantially expanded the use and enforcement of standard
operating procedures (SOPs) to cover approximately 1,000 chemicals. SOPs are written documents in which labs describe
their experimental procedures involving hazardous materials and their plans to handle, store, and dispose of dangerous
chemicals. According to the EHS officers with whom we talked, researchers perceive SOPs as a burdensome requirement,
especially at the beginning when SOPs were created in paper form for every single hazardous chemical.
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followed by an ACS presidential commission recommending the adoption of the best safety practices as

a key requirement for the advancement of graduate education in chemical sciences (ACS, 2012a; 2012b).

4 Theoretical considerations

In this section, we develop a simple theoretical model that helps illustrate the potential impact of the

UCLA incident and subsequent events. Section 3 suggests that these events led to two major changes

from a PI’s perspective: (1) a significant increase in the perceived risk (and liability) associated with

laboratory safety, and (2) stricter safety regulations implemented by the university. While our empir-

ical analysis focuses on research productivity, the model clarifies that these events influence research

productivity by affecting safety practices.

To illustrate this point, we use a multitasking model in the spirit of Holmstrom and Milgrom (1991),

in which a PI decides to allocate time and resources to two types of activities: r ∈ (0, 1) is the research

effort directed at conducting experiments and publishing new results, and s ∈ (0, 1) is the safety effort

aimed at reducing the risk of accidents and their consequences.

With efforts (r, s), the PI enjoys a benefit of

B(r, s) = r − δ(1− s)

where r represents the monetary and reputational rewards from publications, (1− s) is the risk level of

the lab, and δ captures the perceived costs associated with lab accidents. For PIs, δ > 0 includes both

the legal liability and reputational loss due to accidents and their internalization of harms to researchers

working in the lab. We also assume that δ < 1 to reflect the notion that from the PI’s perspective,

the marginal benefit of safety is typically less than that of research output. This issue was highlighted

prominently in the 2014 National Research Council report, which discussed how academic reputation

and decisions about promotions, salary, and space tended to focus on research productivity.

The cost of these efforts assumes a quadratic form, which is standard in the multitasking literature

(see Fryer and Holden, 2013; Benabou and Tirole, 2016; and De Philippis, 2021):

C(s, r) =
s2

2
+

r2

2
+ ρsr.
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The parameter ρ ∈ (−1, 1) reflects the notion that these two efforts may affect each other. Intuitively,

because resources are fixed, allocating more time and budget to implementing safety protocols means

less time and budget for research; that is, safety investment may increase the marginal cost of research.

This is consistent with the recurring theme that an important barrier to improving laboratory safety is

the perceived conflict between safety and research productivity. Harry J. Elston, editor of the Journal

of Chemical Health and Safety, wrote that the Sangji case was “a harbinger of things to come” unless

scientists devoted to accident prevention were willing to “stand in the gap between worker’s safety and

[scientific] productivity.”8 This view also emerged from the UCLA-Nature survey, with one-fifth of the

respondents indicating that lab safety rules had negatively impacted their research productivity (Van

Noorden, 2013).

On the other hand, arguments also exist that safety investment may actually decrease the marginal

cost of research; therefore, a safer work environment can promote research. Safer workspaces, by re-

ducing the risk of accidents, enable researchers to “focus on their tasks rather than worrying about

emergencies,” because “in addition to putting people at the risk of harm, these incidents ultimately de-

crease productivity, as they hinder the researchers’ ability to work” (Hersh, 2017). Labs with poor safety

records may find it difficult to attract post-docs and PhD students. Moreover, laboratory safety may

also affect a lab’s ability to obtain research funding, given the increasing calls to include safety records as

part of promotion decisions, as well as allocation of departmental resources, grants, and prizes (National

Research Council, 2014).

These mechanisms are not mutually exclusive, and ρ reflects the net effect. If, in aggregate, safety

investment increases the marginal cost of research, we have ρ > 0; if safety investment decreases the

cost of research, ρ < 0; and if safety investment does not affect the cost of research, we will have ρ = 0.9

8Journal of Chemical Health and Safety, in a lead editorial entitled “Recipe for disaster,” posted to the Internet on 31
March.

9Note that we can interpret ρ = 0 in two ways. One is that the various effects cancel each other out. The second is
that safety and research efforts are truly independent of one another and do not influence one another through any of the
aforementioned mechanisms.
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4.1 Empirical implications

We map the two institutional changes that the UCLA incident caused to the model as follows. First,

we capture the increase in risk and liability perception with an increase in the parameter δ. Specifically,

we assume that δ = δ before the incident, and δ = δ after the shock, with ∆δ = δ − δ > 0. Second, we

model the implementation of stricter safety protocols as an increase in minimum safety requirements.

For simplicity, we normalize the minimum safety level to zero before the incident and indicate the

requirement after the incident as s > 0.

In Appendix A1, we examine how, together, these two changes affect the research output and safety

level of a lab. Specifically, we compute the optimal safety level and research output the lab produced

before the shock, which are indicated by s∗(δ, 0) and r∗(δ, 0). These are functions of the pre-shock

risk perception and minimum safety requirement. Similarly, we compute the optimal safety level and

research output after the shock, s∗(δ, s) and r∗(δ, s). The effect of the shock on the safety level is thus

∆s = s∗(δ, s)− s∗(δ, 0), and that on the research level is ∆r = r∗(δ, s)− r∗(δ, 0).

The model delivers several implications. First, the safety level will increase after the shock; ∆s > 0.

Consistent with prior research (Galasso and Luo, 2021), an increase in risk perceptions would lead to a

voluntary increase in safety investment. Thus, even in the absence of stricter safety regulations mandated

by the university, labs are likely to change their safety practices to mitigate risk. The minimum safety

level mandated by the university, s, may or may not be binding. If s is not binding, the post-shock

safety level will be determined by the higher risk perception δ. Otherwise, the post-shock safety level

will be at the required level, s, which is more stringent than what PIs would find optimal.

Second, whether the shock increases or decreases research output (that is, the sign of ∆r) depends

on one specific parameter of the model: the (net) relationship between the two types of efforts, ρ.10 As

discussed in the previous paragraph, the shock causes scientists to increase their investment in lab safety.

This translates into a reduction in research output when ρ > 0 because safety investment increases the

marginal cost of research. However, the incident leads to an increase in research output when ρ < 0;

that is, when safety investments lower the marginal cost of research. Finally, the incident leads to no

10Mathematically, this result follows directly from the first-order condition for r, which is r = 1− ρs.
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changes in research output when ρ = 0.

Third, the model shows that the magnitude of the effect depends on some combination of ρ, ∆δ,

and s. This implies that, in principle, empirical estimates of a small magnitude could be driven by a

low level of interaction between the two types of efforts (ρ close to zero), by small changes in perception

and safety regulations (∆δ and s close to zero), or both. The evidence presented in Section 3 suggests

that in our empirical setting, the change in risk perception and the increase in safety requirements were

substantial. Thus, an empirical estimate of a small magnitude is likely to reflect a relatively small ρ.

Despite its simplicity, the model provides useful guidance for our empirical analysis. Specifically, it

clarifies that the relationship between research and safety efforts is key to understanding these events’

impact on research productivity. In the next section, we broaden our discussion in ways that are either

of general policy interests or helpful for understanding additional empirical results.

4.2 Discussion

This section extends our baseline analysis in three ways: (1) it clarifies the standalone effect of the policy

interventions; (2) it introduces heterogeneity in the lab hazard level; and (3) it discusses the possible

effects of the shock on research direction. We use the previously described model as the basis of the

discussion and extend it in simple ways when necessary.

4.2.1 Unbundling policy interventions

In our baseline analysis, we consider two changes in the economic environment—an increase in the risk

perception and an increase in minimum safety standards—at the same time. This is faithful to our

setting, which is not unusual as more stringent safety regulations often follow significant accidents. This

said, it is instructive to clarify the standalone effect of the policy interventions. Specifically, we consider

three separate policies: (1) an increase in a PI’s liability in the case of an accident, (2) an increase in

the minimum safety standards, and (3) a reduction in the cost of safety efforts.

Mathematically, the first two policy changes are modeled in similar ways as done in Section 4.1.

Specifically, an increase in liability is modeled as a marginal increase in δ. Minimum safety standards

are indicated by s, and policy (2) is modeled as a marginal increase in s. To study the impact of a
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reduction in the cost of safety efforts, we extend the model and revise the joint costs of research and

safety efforts as

C(s, r) = (1− ε)
s2

2
+

r2

2
+ ρsr.

Thus, policy (3) can be modeled as the effect of a marginal increase in ε and evaluated at ε = 0. For

simplicity, we do not include this third intervention in our baseline analysis, but it also occurred in

our empirical setting. Gibson et al. (2014) reported that the EHS office at UCLA invested in digital

tools to reduce the researchers’ costs of taking training classes and documenting materials purchased

and used. The EHS office also trained inspectors and revised the procedure to make inspections more

efficient. Moreover, the university centralized and paid for PPE. Thus, empirically, the interpretation

of our empirical results should also include these cost-reduction efforts, which took place over time.

We highlight three results from this exercise (see Appendix A2 for the details).11 First, each of these

three policy interventions, when considered alone, generates qualitatively similar results as our baseline

model. Specifically, they increase the level of safety investment. As a result, the directional impact of

each policy on research productivity r is uniquely determined by the sign of ρ. Thus, what we observe

in our empirical setting is the joint effects of all three changes.

Second, for each policy intervention, the magnitude of the impact on research productivity r is

smaller than that on safety investment s. This makes sense as these policy interventions have a direct

effect on the benefit or cost of s but an indirect effect on r through the interaction between r and s.

The third set of results emerges from comparing these three policies. When ρ > 0 (that is, safety

investment increases the marginal cost of research), increasing liability δ seems to have the greatest

marginal impact on safety investment s, as well as on r. Compared to a marginal increase in minimum

safety standards, for example, a marginal increase in liability has a greater impact because it allows

for a feedback loop. In particular, an increase in δ induces the PI to increase s, which stimulates a

reduction in r, which itself triggers a further increase in s, and so on. These additional adjustments are

not present when s is fixed at a binding level. When ρ < 0 (that is, safety investment decreases the

marginal cost of research), however, a reduction in the cost of safety may be the most effective policy to

11Note that the minimum safety standard needs to be binding to have an effect on safety (i.e., s > s∗). Moreover, the
net perceived benefits of safety are assumed to be large enough (i.e., δ− ρ > 0) to avoid a corner solution in which s∗ = 0
and r∗ = 1. Our discussion is based on comparative statics on interior solutions.
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increase safety investment and, in turn, research productivity. This is because the cost complementarity

amplifies the marginal reduction in cost by triggering an increase in r. When |ρ| is sufficiently large,

this amplification effect can lead to changes greater than those obtained by other policy interventions.

The comparisons between different policies are only illustrative and should not be overinterpreted.

Our model, built on the multitasking literature, is designed to speak mainly about how safety practices

affect research productivity and not to examine the optimal policy mix. To explore these policies

properly, one needs to consider a mechanism design approach in which the principal (the university) and

the agent (the PI) have different objective functions and possibly different information about the riskiness

of a research lab. Moreover, the model needs to consider the costs of different policy interventions, which

are not modeled here. We leave these investigations to future research.

4.2.2 Heterogeneous hazard levels

The discussion so far has considered an average lab. Labs, however, differ in their hazard levels. In

Appendix A3, we enrich our baseline model by decomposing the expected liability, δ, as the product

between the probability of an accident, p, and the expected liability cost incurred in the case of an

accident, L. In this revised model, we keep p fixed for a lab and let the events increase L.

Intuitively, labs with a greater hazard level (i.e., a higher p) may be more affected by the events

we study in this paper. This is indeed the case when L is the only parameter that changes because

changing L influences the marginal benefit of safety, which is roportional to the hazardous level of a

lab. However, this intuition does not necessarily hold if we also consider a change in minimum safety

standards. Consider an increase in minimum safety standard (i.e., an increase from 0 to s̄) alone first.

If s̄ is uniform and binding for all labs, we see the opposite result; that is, the change in research

productivity, r, actually decreases with a lab’s hazardous level. Meeting the new safety standards may

require more safety investments, and subsequently a greater readjustment of research investment, for

low-hazard labs because their optimal pre-shock level of s is lower. With multiple interventions taking

place at the same time, the impact with respect to a lab’s hazard level is likely to be ex-ante ambiguous.
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4.2.3 The direction of research

The prior discussion focuses primarily on the impact of these events on the rate of research. It is

reasonable to expect these events to also influence the type of research on which a lab works. Changes

in the type of research can be characterized in multiple ways, ranging from the input a lab uses to

the content of its research output. Given the plurality of modeling approaches, we primarily take an

empirical approach to this question. Nonetheless, it is instructive to provide a simple yet intuitive

extension of our model to illustrate how a lab may change its research direction after the shock (see

Appendix A4). Specifically, we assume that labs with underlying hazard p have the option to reduce

their hazard to p′ < p by choosing a different research project at the cost of c. In this case, we find that

higher-hazard labs have a greater incentive to redirect research toward safer research projects. In Section

7, we will build on this insight and empirically examine changes in research direction by comparing labs

using dangerous chemicals with different intensities.

5 Data

Our analysis relies on a sample of chemistry labs that were affiliated with UC and were active around

the time of the UCLA incident. We focus on UC labs for two reasons. First, while the incident had

a nation-wide impact, UC labs were affected most directly. Second, explained below, with the smaller

sample, we can manually collect information that is critical for our identification strategy.

5.1 Sample construction

To identify the sample of UC chemistry labs, we start with a set of natural publishing outlets for

chemistry researchers. These include: (1) journals in the top decile of the impact factor in each of the

nine chemistry subfields, as provided by the Web of Science (WoS) Journal Citation Reports database;

and (2) the ten multidisciplinary scientific journals with the highest impact factors such as Science,

Nature, and the Proceedings of the National Academy of Sciences. We download all the articles published

in these journals between 1998 and 2017 from the WoS. This step gives us 698,094 articles published in

105 journals.
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We then use the author and affiliation information provided by WoS to identify individual labs. In

chemistry, the author listed last is typically the PI of the lab that hosted most of the research, and the

corresponding author works at this lab (Venkatraman, 2010). We rely on this convention to identify the

primary PI of each article and the institution with which this PI is affiliated. We refer to each unique

PI-institution combination as a lab.12 Labs that are not very active—for example, those that publish

only one article or that are active only for a year or two—are likely to reflect errors in the PI names

or organizations with one-off publication projects. To capture meaningful research units, we drop labs

with an active life span of fewer than three years. Among the remaining labs, we further drop those

with a yearly publication rate below the median (0.6 articles per year in the 105 journals). This step

gives us 6,704 active chemistry labs based in the United States.

Among the labs identified from the previous step, we create the UC Sample to include labs affiliated

with the UC system. Leveraging information from sources such as lab websites and news releases, we

manually confirm that the labs in the UC Sample were indeed run by UC-affiliated PIs. To address

potential endogeneity concerns, we drop Patrick Harran’s lab from the sample. This step leads to a final

sample of 592 labs affiliated with UC. UC Berkeley accounts for about 24% of the labs in the sample,

UC San Diego for 15%, UCLA for 14%, and UC Davis for 11%. The remaining labs are affiliated with

UC Irvine, UC Riverside, UC San Francisco, UC Santa Barbara and UC Santa Cruz.

After identifying the sample of UC labs, we retrieve from WoS all of the journal articles (not just

those in the 105 journals mentioned) that these labs published between 2004 and 2017, as well as the

citations these articles received up until 2020. In total, the UC labs have published 50,341 journal

articles. We use these data to construct one of our key dependent variables—the level of publications—

that we examine in the next section. In Section 7, we describe the dependent variables that we use to

measure the type of research a lab conducts. Finally, we also collect information on the year in which

12Specifically, we used the following procedure. First, based on the author information provided by WoS, we identified
the last name and the first initial of each author of a given article, as well as the institution (university, firm, or government
agency) with which an author is affiliated. Second, we examined whether the last name and the first initial of the reprint
(corresponding) author—which is provided by WoS—matched one of the last three authors listed in the article. If there
was a match, we classified the re-print author as the PI. If there was not a match, we examined whether the affiliation of
any of the last three authors coincides with the affiliation of the reprint author. If this is the case, we classified the author
(among the last three authors) with the matched affiliation as the PI. Otherwise, we classified the re-print author as the
PI.
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the PIs joined and left their respective UC institutions, which we use to control for the PI’s tenure and

to construct a balanced panel for robustness analyses.

The journal-based method we use to identify labs has two advantages. First, relative to alternative

approaches such as manual collection from archival sources, this method relies on data that are sys-

tematically available. Second, with this method, it is not costly to scale the sample to include non-UC

universities, which we use to examine the external validity of our main findings in Section 6.2.

To confirm that our sample is reasonably comprehensive in capturing UC chemistry PIs, we con-

duct two empirical exercises. First, we retrieved the historical web page of the UCLA Chemistry and

Biochemistry department website in 2008, the year of the Sangji incident, using the internet portal Way-

back Machine. After excluding researchers who are not suitable for our analysis—for example, emeriti

professors inactive during our sample period and cross-appointed researchers who publish mostly out-

side chemistry—we find only seven additional PIs that were listed on the 2008 website but are not in

our UCLA sample.13 Second, we show that by expanding the list of journals down the impact factor

ranking, our ability to capture additional new PIs decreases significantly. Recall that our sample uses

105 journals, which yields 592 UC PIs. Adding ten more journals yields only 13 additional UC PIs and

including another ten journals yields only three additional UC PIs. These numbers suggest a limited

benefit of adding more journals.14

5.2 Wet and dry labs

To identify the effect of the shock, we distinguish between dry labs (the control group) and wet labs

(the treatment group). We use dry labs as the control group because the shock—both the increase in

risk perception of working with dangerous compounds and the more stringent safety regulations—has

a limited impact on dry labs. Discussion with the EHS officers at UCLA and UC Davis confirmed this

point. This is also supported by the UC Personal Protective Equipment policy guidelines, which state

that the safety regulations apply to a “location where the use or storage of hazardous materials occurs

or where equipment may present a physical or chemical hazard.”

13Our baseline analysis is robust to adding these seven PIs. It is useful to note that our sample also includes 18 PIs who
were not listed on the 2008 website. These include those who joined UCLA after (or left before) 2008, as well as UCLA
chemists that publish extensively in chemistry journals even if they are not members of this department.

14Our results are also robust to adding these 16 additional PIs.
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We hire a team of chemistry PhD students to classify labs based on the lab webpage, as well as the

PI’s CV and publications. A lab is classified as a wet lab if the available information indicates that it

is equipped to handle biological specimens, chemicals, drugs, and other materials used in experiments.

Otherwise, the lab is coded as a dry lab. An example of a wet lab is the one run by Professor Ohyun Kwon

at UCLA. Her research focuses on the transformation, catalyst, and synthesis of natural compounds.

Her research group uses various research equipment including fume hoods, solvent stills, and glove boxes

to manipulate hazardous materials. An example of a dry lab is the one run by Professor Anastassia

Alexandrova, also at UCLA. Professor Alexandrova’s research focuses on computational and theoretical

design and multi-scale description of new materials. Her work relies on quantum and statistical methods,

including artificial intelligence and machine learning algorithms. Of the 592 labs in the UC Sample, 512

(86.5%) are classified as wet labs, and 80 (13.5%) are classified as dry labs.

5.3 Econometric method

Our empirical strategy relies on difference-in-differences estimations in which the treatment group in-

cludes wet labs and the control group includes dry labs. The pre-treatment period is 2004-2008, and

the treatment period is 2009-2017. The unit of observation is a lab-year. Specifically, we estimate

Yl,t = α+ βWetLabl ×AfterAccidentt + θXl,t + δt + fl + εl,t, (1)

where the dependent variable, Yl,t, captures the publication level (or the type of research) of lab l in

year t. The treatment variable, WetLabl, is equal to one for wet labs. The dummy, AfterAccidentt,

is equal to one for the years after 2008. The term Xl,t captures time-varying controls at the lab level,

including the lab’s past productivity (measured as the total number of publications in the past three

years) and for the PI’s tenure at UC (in log). The terms δt and fl are year and lab fixed effects. The

coefficient β is a difference-in-differences estimator for the effect of the shock on the research output of

wet labs relative to dry labs. The baseline results are estimated by OLS regressions, with the standard

errors clustered at the lab level.

Table 1 provides summary statistics for the key empirical variables used in our empirical analysis.

On average, the labs published 7.374 articles each year during our sample period, which received about
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617 citations by 2020. Table A1 in the Appendix shows that wet and dry labs are not significantly

different in their pre-shock publication levels, even though an average dry lab PI joined UC later than

an average wet lab PI.15 It is, therefore, important to control for the scientists’ tenure in our regressions.

6 Impact on the rate of research

Table 2 presents the estimated effects of the shock on the level of publications. Column 1 shows that

relative to dry labs, UC wet labs reduced their publications by 0.28 papers per year, on average, after

2008 compared to before 2008. The estimate is not statistically significant at the 10% level. Assuming

the same difference between dry and wet labs before and after 2008, the decline for wet labs is about

3%.16 This is small relative to the estimates of other drivers of scientists’ productivity. For example,

Oettl (2012) estimated a 20% performance decrease associated with the unexpected loss of a highly

productive and helpful co-author, whereas Baruffaldi and Gaessler (2021) showed that the unexpected

loss of lab equipment leads to a publication decline of about 15%.

Column 2 focuses on the most impactful publications by counting only publications with citation

counts in the top decile of our sample. The estimated effect of the shock remains small and statistically

insignificant. In column 3, we again use the total number of publications as the dependent variable but

restrict the sample to only labs at UCLA. The estimated effects are even smaller than those estimated

for the full UC sample. Finally, column 4 re-estimates the effect of the shock in the UCLA sample using

the number of articles published per lab member as the dependent variable. It is difficult to recover

historical data on lab members. As a proxy, we use the number of unique researchers who published

with a PI in a given year and who were also affiliated with UCLA.17 We estimate a small, positive, and

statistically insignificant coefficient, which indicates that the shock had a limited impact not only on a

lab’s total research output but also on the productivity per lab member.

15On average, dry labs publish about 6.3 articles per year before the shock and 9.2 articles per-year after the shock. If
anything, this slight increase in dry lab publication rates may bias our analysis against finding a null effect.

16The average number of papers for dry labs after 2008 is 9.19, and the pre-2008 difference between wet and dry labs is
-0.30 papers per year. Thus, the hypothetical average for wet labs would have been 8.89 publications per year after 2008.

17Specifically, we first identify all the unique co-authors of the articles published by a focal PI in a given year. We then
keep those who are also affiliated with UCLA. Finally, we drop names that match PIs in our UCLA sample and names
with a relatively long tenure at UCLA—specifically, above the 95th percentile of the tenure distribution among all the
coauthors of UCLA PIs—to exclude potential faculty members in other departments at UCLA.
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6.1 Pre-treatment trend and time-specific treatment effects

The previously reported results show that relative to dry labs, wet labs do not experience a significant

decline in research productivity after the shock, on average. We also conduct a time-specific analysis

to examine both the pre-trends and the possibility of some time-specific treatment effects. The time-

specific coefficients and their 90% confidence intervals are illustrated in Figure 1. First, there are no

statistically significant differences in the yearly publication level between the two groups of labs before

2008, which supports the common-trends assumption.

Second, none of the post-treatment coefficients is statistically significant, confirming an overall null

effect. That said, it seems notable that there is a slight (though statistically insignificant) dip during the

period 2012-2015, followed by a recovery after 2015. This is consistent with the idea that introducing

stricter safety protocols has a chilling effect, but the effect is small and short-term. This may be

because labs adapt and develop routines that facilitate compliance. Similarly, the EHS offices also made

continual improvements to reduce compliance costs; for example, by simplifying the SoP templates,

making training videos more fun, and making inspections more efficient.18

Taken together, the results so far show that, wet labs do not appear to experience a significant

decline in research productivity after the UCLA incident, despite the significantly more stringent safety

regulations. Mapped to our theoretical model, this finding implies that we cannot reject that ρ = 0.

It is possible that the two tasks—safety and research—are truly independent of one another. It is also

possible that the null finding reflects a small net combined effect; that is, the positive and negative

effects of safety investment on the marginal cost of research compensate for one another. Regardless of

the interpretation, the overall conclusion is the same: the increase in safety investments does not appear

to affect research productivity.

18As discussed in Section 3, the two changes to the PIs’ work environment took place around the same time after the
shock and it is difficult to tease out the separate mechanisms. Unreported event studies show no evidence of significant
changes in the publication levels over time even when we estimate the effect separately for UCLA and non-UCLA PIs, even
though the slight (still insignificant) dip took place several years later at non-UCLA campuses. This is consistent with
the fact that more stringent safety regulations were introduced later outside UCLA, but the lack of statistical significance
prevents us from making meaningful conclusions.
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6.2 Robustness and extensions

In the remainder of this section, we show that our main finding is robust to alternative specifications

and extensions. The results are presented in Appendix Tables A2 and A3.

6.2.1 Alternative specifications

We first confirm that the shock’s null result on research productivity is robust to alternative econometric

models, including Poisson quasi-maximum-likelihood estimation and a weighted OLS model (where the

observations are weighted by the pre-2008 publication level of the lab). The result is also robust to

using the citation-weighted publication level as the dependent variable. Moreover, the result remains the

same using a subsample of labs run by scientists who remained at UC during the entire sample period.

Furthermore, the result is also robust to alternative ways to control for the researcher’s experience,

including using third-degree polynomials of tenure to account for life-cycle effects and controlling for

the experience of the researcher measured as years as a PI at any institution rather than just at the

current UC institution. Finally, adding additional controls of time-varying university characteristics

such as the market value of the university endowment, the number of chemistry PhD students enrolled

at the university, and federal science and engineering grants the institution received,19 or replacing these

time-varying controls with institution-year fixed effects also did not change the result.20

6.2.2 Journal-based lab classification

We also use an alternative method to distinguish between dry and wet labs. Instead of manually

classifying each lab based on information available from its webpage, we ask the team of chemistry

PhD students to identify the subset of journals (among the 105 described in Section 5) that specialize

in theoretical and computational work. We classify a lab as a dry lab if the fraction of its pre-2008

publications in these journals is in the top decile of the sample. We again find no significant difference

in the publication level between the treatment and control groups using this alternative definition of

19Endowment data are collected from the National Association of College and University Business Officers, the grants
and PhD student data are from surveys by the National Science Foundation. The information is missing for a few
institutions-years which explains the lower number of observations in this regression.

20We also confirm that the findings are robust to dropping from the sample the handful of labs for which the PhD
students disagreed on the wet/dry classification.
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dry versus wet labs in the UC sample.

6.2.3 Impact on non-UC universities

Finally, using the journal-based method to classify wet versus dry labs, we also find no differential

change in the publication level between dry and wet labs for non-UC universities before versus after the

shock. The coefficient, a precisely estimated zero, provides support for the external validity of our main

finding. This also suggests that the null effect estimated in the baseline is not driven by the small size

of the sample. Unreported results also show similar null results across the university size distribution

(measured by a university’s total number of labs in the US sample). This suggests that the shock also

did not translate into a large tax on research productivity for smaller institutions that may not have

had sufficient endowments or access to government funds to withstand potential disruptions of more

stringent safety regulations.

7 Impact on the direction of research

Apart from the level of publications, the shock may also affect the type of research a lab conducts.

A natural question to ask is whether the shock induced labs to redirect their research toward safer

projects. In the following, we first examine whether a lab changed its tendency to work with dangerous

compounds and then explore the shock’s impact on a lab’s overall research agenda.

7.1 Working with dangerous chemicals

We use two additional datasets to measure how much a lab works with dangerous compounds. The first

is Scifinder, a proprietary chemistry database that documents all the chemical compounds associated

with a journal article. Because Scifinder restricts the number of entries that can be downloaded in total

and during each session, we limit the analysis in this section to only ULCA labs. The second database

is the Laboratory Chemical Safety Summary (LCSS), which is publicly accessible via PubChem. LCSS

uses the Globally Harmonized System (GHS) to classify the hazard levels of a compound. We create a

variable “dangerous compound,” which equals one if GHS associates it with a “danger” signal and equals

zero if GHS either associates it with a “warning” signal or does not provide any hazardous information.
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Moreover, GHS classifies a hazardous compound into nine broad classes that are not mutually exclusive:

explosive, compressed gas, irritant, flammable, corrosive, health hazards, oxidizer, acute toxicity, and

environment. Using these two datasets, we are able to determine whether each article published by

UCLA researchers references dangerous chemicals as well as the types of hazards.21 On average, UCLA

dry labs published 2.65 articles a year referencing dangerous compounds, whereas wet labs published

3.30 articles per year referencing dangerous compounds.

Manual examination of several publications supports the idea that the references made by dry labs

capture the study of the theoretical properties of these compounds through mathematical or compu-

tational models. For example, the UCLA dry lab run by Anastassia Alexandrova published an article

titled, “On the mechanism and rate of spontaneous decomposition of amino acids” in the Journal of

Physical Chemistry B. The study relied on Monte Carlo simulations to examine the properties of methy-

lamine (CAS no 74-89-5), which is labeled by GHS as extremely flammable and as an irritant (may cause

skin and eye irritation). For wet labs, many of the compounds referenced typically capture the use of

these chemicals in experiments. For example, in 2014 the UCLA wet lab run by Ohyun Kwon published

a paper in the Asian Journal of Organic Chemistry titled “Phosphine-Initiated General-Base-Catalyzed

Quinolone Synthesis.” The method section of this article describes an experimental procedure in which

triphenylphosphine (CAS no 603-35-0) is mixed in a flask with other compounds and stirred. GHS

labels this compound as an irritant and with health hazards (may cause cancer).

7.1.1 Wet versus dry labs

In Table 3, we present a series of regressions examining whether UCLA wet labs changed their propensity

to publish research referencing dangerous compounds relative to dry labs after 2008. Publications from

dry labs that reference dangerous chemicals are used as a control for general trends of research interest

in these compounds. In column 1, the dependent variable is the number of publications involving any

kind of dangerous compound. In the remaining columns, we examine the number of publications that

21We merged the LCSS data and the SciFinder data using the CAS registry numbers, which are unique identifiers for
chemical substances. Using digital object identification (doi) information, we are able to find 80% of the WoS articles in
the UCLA sample in Scifinder. The fraction of unmatched papers appears fairly constant across sample years and is not
driven by specific labs. In Appendix Table A4, we replicate our analysis of the level of publications using the Scifinder
instead of the WoS data, and the estimates are in line with those presented in Section 6.
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involve specific types of compounds: acute toxic, explosive, and flammable. We find that on average,

wet labs do not reduce research referencing dangerous chemicals relative to dry labs. The coefficients of

the interaction term are all small in magnitude and statistically insignificant.22

7.1.2 Wet labs by their baseline hazard levels

Recall that an extension of our baseline model in Section 3.2.3 suggests that the shock may induce

greater-hazard labs to redirect research toward safer projects. Thus, even if wet labs on average may

not shift away from using dangerous compounds, their responses may vary by the baseline hazard level

(due to the nature of their research) of individual labs. We define labs as high-hazard if their fraction of

SciFinder publications referring to dangerous chemicals during the pre-shock period are among the top

20% of the sample.23 For this analysis, we focus on labs run by PIs affiliated with UCLA for the entire

sample period because we need a relatively long pre-period to define a lab’s intensity of using dangerous

chemicals. This leaves us with a sample of 42 wet labs, 8 of which are classified as high-hazard labs.

Table 4 reports a series of regressions comparing UCLA wet labs with high versus low hazard levels.

Consistent with our baseline finding in Section 6, column 1 shows that the publication level is not

statistically significant between the two types of labs. However, column 2 shows that compared to low-

hazard wet labs, high-hazard wet labs publish 1.17 fewer articles (significant at the 0.05 level) referring to

dangerous chemicals per year after the shock. Columns 3 through 5 examine different types of hazards.

The results show that the decline found in column 2 is driven primarily by flammable chemicals. High-

hazard wet labs, on average, experienced a decline of about 0.96 articles referring to flammable chemicals

per year after 2008 relative to the other wet labs (significant at the 0.01 level).24

In Figure 2, we illustrate a graphical representation of the dynamic evolution in the differential use of

flammable chemicals between UCLA high-hazard versus low-hazard wet labs. No evidence exists of pre-

trend differences between the two groups. After 2008, the coefficients become negative and significant (or

marginally significant) in most years until 2014. The reduction in the reliance on flammable chemicals

22In unreported regressions, we confirm this finding using other hazard categories reported in the LCSS data, which
include corrosive or irritant substances, and compressed gas.

23Our analysis is robust to using the absolute number of publications referring to dangerous compounds rather than the
fraction of publications to identify the labs with more intense use of hazardous chemicals.

24Unreported regressions show that the estimates for the other hazard types (corrosive substances, compressed gas, and
irritant substances) are much smaller in magnitude and statistically insignificant.
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could be driven either by the increase in the perception of risk/liability, which has led to a voluntary

shift away from the use of such chemicals, or by increasingly more stringent safety rules at the university,

which may have made the use of such chemicals more costly. The magnitudes are especially large in 2013

and 2014 after the settlement. The effects are smaller and statistically insignificant after 2015, suggesting

that the use of flammable chemicals recovered gradually after safter practices were implemented.

We also examine whether the 2008 incident is associated with a change in the propensity to use

chemicals that are unfamiliar to the lab. Specifically, we generate a dummy variable indicating that

a lab used compounds in a given year that had not previously been referenced by any of the UCLA

labs.25 Assuming that labs are more likely to be familiar with the properties of compounds they or their

local colleagues had already handled, working with these chemicals is likely to imply greater risk. The

regressions in Table 5 show no evidence of a decline in the use of unfamiliar compounds, on average.

However, separating safe compounds (column 2) from dangerous compounds (column 3) shows that

while no significant change is found in the use of unfamiliar safe compounds, a strong negative effect is

found for unfamiliar dangerous compounds. The magnitude of the decline is about 40% of the mean level

of the dependent variable. Column 4 confirms this result using the number of papers the lab published

in a given year that refer to unfamiliar dangerous compounds as the dependent variable. In this case,

the estimate also indicates a significant decline in the references to dangerous chemicals not previously

used at UCLA.26

Taken together, the results in this section thus far provide evidence for an increase in safety induced

by the shock and suggest that lab safety has some effect on the production of scientific research. That

said, such an effect is localized to a small subset of labs that use dangerous chemicals most intensely,

rather than broadly affecting the entire institution.

25We classify a publication as the first use of a compound at UCLA if we cannot find a reference to that compound in
previous publications (since 1998) of all the UCLA labs in our data.

26We also attempt to examine whether the shock changed the propensity of wet labs to discover new compounds (e.g.,
whether the publication is the first that has ever referenced a compound in the academic literature). This is a challenging
exercise because publicly available data sources that provide comprehensive historical bibliographical data for compounds
(such as PubChem) can only be matched to a small subset of the compounds in our data (roughly 20%). The available
data indicate an extremely low propensity of discovering new compounds for wet labs in our sample.
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7.2 Effect on research content

Does the reduced use of dangerous compounds found in some of the wet labs indicate a meaningful

change in the subject of the research? To explore this question, we construct a similarity measure

between a lab’s research published in a given year and its core research before the shock. Specifically,

we first use the Bidirectional Encoder Representations from Transformers (BERT) machine-learning

language model (Devlin et al., 2018) to convert paper abstracts to 768-dimensional vectors.27 For each

lab, we calculate the average of all the article vectors before 2008. This average vector represents the

“core research” the lab conducted before the shock. We then calculate the cosine similarity between

the vector representing each article the lab published and its pre-shock core research vector. Finally,

we aggregate these article-level similarity measures into a yearly measure (e.g., by taking the average).

Appendix B provides the details on the variable construction and describes several empirical exercises

that we conducted to validate the measure.

Armed with these yearly similarity measures, we examine how a lab’s research may have changed

after the shock relative to before. Table 6 presents a series of regressions that compare high-hazard to

low-hazard wet labs at UCLA. The dependent variable of column 1 is the average similarity score of

all the articles published in a given year by a lab, as described in the previous paragraph. Columns

2 through 5 focus on research that refers to dangerous compounds. The dependent variable is still a

yearly similarity measure, but the measure is constructed using only articles that refer to dangerous

compounds: column 2 uses articles that refer to at least one dangerous compound; columns 3 and 4 use

articles for which the fraction of dangerous compounds referenced exceeds 50% and 75%; and column 5

uses articles for which all the compounds referenced are dangerous.28

Table 6 yields two results. First, the small and largely insignificant estimates of columns 1 and 2

27The simplest way to construct a similarity measure is to use the actual vocabulary terms used in a textual document,
whereby each unique word in the entire corpus constitutes a dimension. A main shortcoming of these vocabulary-based
matrices is that they are very sparse. More importantly, such methods do not account for relationships between words.
Terms related to one another (e.g., “cars” and “automobiles”) are not treated as more similar than words that are not
(e.g., “cars” and “dogs”). BERT addresses both problems by reducing the dimensionality of the matrices and considering
the relationships between words.

28Notice that the sample size shrinks as we move from columns 3 to 5, because we need to drop lab-year observations
that do not include any article above the specific threshold. For consistency, in columns 2-5 of Table 6, we construct the
similarity measure using a benchmark ‘core research’ vector constructed only using all the articles a lab published before
the shock that refer to at least one dangerous compound.
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suggest that compared to low-hazard wet labs, the shock does not have a substantial impact on the

research content of high-hazard wet labs, even when we look at only articles that make some references

to dangerous compounds. Second, at the same time, columns 3 through 5 show that for articles that

refer more substantially to dangerous compounds, compared to low-hazard wet labs, those published

by high-hazard wet labs after 2008 become significantly more similar to their pre-shock core research.

Table A5 in the Appendix shows robustness to these two results using either the minimum or the median

similarity score of the articles published in a year.

Taken together, the results presented in this section show that the shock does not appear to have

substantially changed the research direction of wet labs in our sample. This is consistent with our

discussions with the UC EHS officers, who conjectured that the shock was unlikely to have altered a

lab’s research agenda or core experiments it runs. At the same time, our empirical results show that

on the margin, the shock did induce a subset of wet labs that more heavily use dangerous chemicals to

become relatively more conservative in their most hazardous research.29

8 Discussion and conclusion

In this paper, we study the relationship between lab safety and research productivity by examining

the impact of a substantial increase in safety regulations at the University of California following the

shocking death of a UCLA research assistant. We have two key findings. First, compared to dry

labs that use theoretical and computational methods, the publication rates of wet labs that conduct

experiments on chemical and biological substances did not change significantly after the shock. This

finding, thus, does not support the common view among academic researchers that “safety is a tax

on research productivity.” Second, while the shock had no broad impact on the type of research a lab

conducted, it led a small set of labs that worked intensely with dangerous materials before the shock to

be more conservative in their research with dangerous materials. This manifested in a reduction in the

use of flammable chemicals and dangerous chemicals that were unfamiliar to the researchers, as well as

29Interestingly, Gibson et al (2014) also document that the more stringent paperwork requirement after the incident has
induced more disposal of hazardous chemicals. Our conversations with the EHS officers confirmed that this is the case
and suggest that these disposed of materials are likely to be extra or old materials that the labs do not frequently use in
their current research.
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a reluctance to deviate from prior research in their new projects that involved dangerous chemicals.

It is important to recognize that these findings may have alternative explanations. Specifically, safety

investment may actually have a negative impact on research productivity, but this effect might have

been masked by a relative increase in research funding for wet labs versus dry labs around the same

time. We do not have data on the funding each lab received, but two pieces of evidence mitigate this

concern. First, we find that wet labs do not experience a significant change in the size of their labs

after the shock relative to dry labs. Second, surveys the National Science Foundation conducted showed

that after 2009, research funds (both federal and private) for computer sciences actually increased more

sharply than they did for chemistry. To the extent that computational fields in chemistry mirror the

general trend in computational sciences, this would make it easier, rather than harder, for us to find a

relative decline in wet labs’ productivity.

As for the second finding on the reduced use of dangerous chemicals, a possible explanation is

the contemporaneous diffusion of the green chemistry movement, which aims to minimize the use or

generation of hazardous chemicals.30 To address this concern, we first show that our key results are not

driven by articles related to green chemistry.31 Furthermore, leveraging the data on different hazard

types, we confirm that our shock does not lead to a significant reduction in the use of environmentally

hazardous compounds, which are central to the green chemistry movement. Instead, the reduction is

driven mostly by flammable compounds that are specific to the UCLA incident and the subsequent

revision of safety standards.

Our paper contributes to the literature and the policy debates on the trade-offs between safety

and productivity in several ways. First, it adds much-needed empirical evidence from an important

setting. Academic research fuels research and development and, ultimately, economic growth. While

the relationship between lab safety and research productivity has been much debated in the recent

30The green chemistry movement gained prominence in the late 90s, after the publication of a framework called “the
12 Principles of Green Chemistry” by Anastas and Warner (1998). While the movement has focused on environmental
hazards, Principle 12 of this framework does state that “substances and the form of a substance used in a chemical process
should be chosen to minimize the potential for chemical accidents, including releases, explosions, and fires.”

31To identify green chemistry articles, we followed one of the approaches developed by Nelson et al. (2014) and searched
for the phrase ’green chemistry’ in the title and abstract of the articles. We found that only a small set of articles published
by our UC PIs involved green chemistry (less than 50 articles). The baseline regressions (Table 2) and those showing a
reduction in the use of dangerous compounds (Table 4) are robust to controlling for the number of green chemistry papers
a lab published each year.
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decade, to the best of our knowledge, ours is the first study that provides large-sample evidence on

this topic. Second, this paper also adds new data—hazardous information at the compound level—to

examine changes in research direction. The safety dimension has been overlooked by the literature, even

though it is greatly relevant to researchers’ well-being and the type of research generated.

This study is not without limitations. First, rather than a random policy change, the increase in

safety regulations in our setting follows a high-profile incident. This makes it difficult to empirically

differentiate the effect of the mandated safety regulations from that of an increase in the perception of

risk and liability. This is a common problem for many studies examining changes in industry regulation

(Gowrisankaran et al., 2015; Nameroff, et al. 2004), because accidents, for better or worse, are typically

the impetuses for the strengthening of safety practices that we observe in practice (Barnett and King,

2008). In this paper, we make some progress in our understanding of this problem by clarifying the-

oretically the potential standalone impacts of these various changes. Second, we also cannot precisely

conclude whether our null finding reflects a truly independent relationship between safety investment and

research productivity or that various positive and negative effects of safety investment on the marginal

cost of research compensate for one another, leading to a small net effect. Given the contentious debates

about the relationships between safety and productivity in the literature and in practice, we favor the

latter interpretation. But we cannot rule out the former. We recognize all of these limitations, which

also point to interesting paths for future research.
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Figure 1: Annual treatment effects – total publications 

 

Note: The figure plots the coefficients (and the 90% confidence intervals) of the interaction terms between 
year dummies and the wet lab dummy, which equals one if the lab conducts experiments using chemical 
and biological substances.  

 

 

 

 

 

 

 

 

 

 



Figure 2: Annual treatment effects – publications referring to flammable chemicals 

 

Note: The figure plots the coefficients (and the 90% confidence intervals) of the interaction terms between 
year dummies and a dummy capturing wet labs with high use of dangerous chemicals (i.e., if the fraction 
of SciFinder publications referring to dangerous chemicals during the pre-shock period are among the top 
20% of the sample). The control group includes the remaining wet labs.  

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 1 - Summary statistics 

Panel A: UC sample obs. mean sd min max
Articles 6827 7.374 6.821 0 79
Wet Lab 6827 0.868 0.339 0 1
Year 6827 2010.825 3.933 2004 2017
Panel B: UCLA sample obs. mean sd min max
Articles 976 7.740 7.287 0 57
Wet Lab 976 0.826 0.380 0 1
Year 976 2010.826 3.920 2004 2017
NOTES: Unit of observation is a lab-year. Panels A and B report summary statistics for UC
and UCLA samples, respectively.Articles = the number of articles the lab published in year
t. Wet Lab = 1 if the lab conducts experiments using chemical and biological substances.



 

 

(1) (2) (3) (4)

Dep. Var. Articles Highly cited articles Articles Articles/lab members

Wet Lab × After Accident -0.279 0.003 -0.002 0.196
(0.488) (0.122) (1.048) (0.402)

Sample UC labs UC labs UCLA labs UCLA labs

Year effects YES YES YES YES
Lab effects YES YES YES YES

Observations 6827 6827 976 976

Table 2: Introduction of stricter lab safety regulations is not associated with changes in wet labs' 
publication levels relative to dry labs 

NOTES: OLS regressions. Articles = the number of articles the lab published in year t. Highly cited articles = the number of
articles the lab published in year t in the top decile of citations. Wet Lab = 1 if the lab conducts experiments using chemical
and biological substances. After Accident = 1 if after year 2008. All regressions control for the total lab publications in the
previous three years and the logarithm of the lab‘s tenure. Lab members = the number of unique local non-PI and non-faculty
researchers listed as coauthors in papers the lab published in year t. Robust standard errors clustered at the lab level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01



 

 

(1) (2) (3) (4)

Dep. Var.
Dangerous 
substances

Acute toxic 
substances

Explosive 
substances

Flammable 
substances

Wet Lab × After Accident 0.303 -0.112 -0.085 -0.118
(0.918) (0.734) (0.102) (0.887)

Sample UCLA labs UCLA labs UCLA labs UCLA labs

Year effects YES YES YES YES
Lab effects YES YES YES YES

Observations 976 976 976 976

Table 3: Introduction of stricter lab safety regulations is not associated with changes in 
references to dangerous chemicals in UCLA wet lab publications relative to UCLA dry labs

NOTES: OLS regressions. Acute toxicity substances = the number of articles referring to acute toxicity substances
the labs published in year t. Explosive substances = the number of articles referring to explosive substances the lab
published in year t. Flammable substances = the number of articles referring to flammable substances the lab
published in year t. After Accident = 1 if after year 2008. All regressions control for the total lab publications in the
previous three years and the logarithm of the lab’s tenure. Robust standard errors clustered at the lab level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.



 

 

(1) (2) (3) (4) (5)

Dep. Var. SciFinder articles
Dangerous 
substances

Acute toxic 
substances

Explosive 
substances

Flammable 
substances

High Hazard × After Accident -0.307 -1.171*** -0.303 -0.030 -0.967**
(0.782) (0.492) (0.390) (0.045) (0.477)   

Sample
UCLA wet labs 

active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

Year effects YES YES YES YES YES
Lab effects YES YES YES YES YES

Observations 588 588 588 588 588

Table 4: The introduction of stricter lab safety regulations is associated with a reduction in the use of flammable substances in 
UCLA wet labs with high use of dangerous substances relative to other UCLA wet labs

NOTES: OLS regressions. SciFinder articles = the number of articles in the SciFinder database the lab published in year t. Dangerous substances = the
number of articles referring to dangerous substances the lab published in year t. Acute toxicity substances = the number of articles referring to acute
toxicity substances the lab published in year t. Explosive substances = the number of articles referring to explosive substances the lab published in year
t. Flammable substances = the number of articles referring to flammable substances the lab published in year t. High Hazard = 1 if the lab is in the top
quintile in terms of publications referencing dangerous substances. After Accident = 1 if after year 2008. All regressions control for the total
publications by the lab in the previous three years and the logarithm of the lab‘s tenure. Robust standard errors clustered at the lab level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.



 

(1) (2) (3) (4)

Dep. Var.
Use of 

compounds 
new to UCLA

Use of safe 
compounds new 

to UCLA

Use of dangerous 
compounds new 

to UCLA

Articles 
referring to new 

dangerous 
compounds

High Hazard × After Accident 0.012 0.054 -0.174** -0.633**
(0.053) (0.065) (0.078) (0.247)

Sample
UCLA wet labs 

active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

UCLA wet labs 
active between 
2004 and 2017

Year effects YES YES YES YES
Lab effects YES YES YES YES

Observations 588 588 588 588

Table 5: Introduction of stricter lab safety regulations is associated with a reduction in the use 
of relatively unfamiliar dangerous compounds

NOTES: OLS regressions. Use of compounds new to UCLA = 1 if at least one of the compounds referenced in the labs’
publications in year t was never used before at UCLA. Use of safe compounds new to UCLA = 1 if at least one of the
safe compounds referenced in the labs’ publications in year t was never used before at UCLA. Use of dangerous
compounds new to UCLA = 1 if at least one of the dangerous compounds referenced in the labs’ publications in year
t was never used before at UCLA. Articles referring to new dangerous compounds = the number of articles with
dangerous substances first used at UCLA the labs’ published in year t. High Hazard = 1 if lab in top quintile in terms
of articles published using dangerous substances. After Accident = 1 if after year 2008. All regressions control for
the number of compounds referenced by the lab in year t, total lab publications in the past three years, and the
logarithm of the lab‘s tenure. Robust standard errors clustered at the lab level in parentheses. * p < 0.10, ** p < 0.05, 
*** p < 0.01.



 

 

 

(1) (2) (3) (4) (5)

Dep. Var.
Average semantic 

similarity score
Average semantic 

similarity score
Average semantic 

similarity score
Average semantic 

similarity score
Average semantic 

similarity score

High Hazard × After Accident -0.018 -0.021* 0.042** 0.090*** 0.115***
(0.011) (0.012) (0.020) (0.032) (0.037)

Publications sample All
Articles referring to 

dangerous compounds

Articles with fraction of 
dangerous compounds 

referenced > 50%

Articles with fraction of 
dangerous compounds 

referenced > 75%

Articles with fraction of 
dangerous compounds 

referenced = 100%

Lab Sample
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017

Year effects YES YES YES YES YES
Lab effects YES YES YES YES YES

Observations 517 517 144 75 65

Table 6: Introduction of stricter lab safety regulations is associated with an increase in textual similarity for articles referring to many dangerous 
compounds

NOTES: OLS regressions. Average semantic similarity score = average similarity score of all the articles published in a focal year by a lab relative to the same lab’s pre-shock core
research. High Hazard = 1 if lab in top quintile in terms of articles published using dangerous substances. After Accident = 1 if after year 2008. All regressions control for the total
publications by the lab in the previous three years and the logarithm of the lab‘s tenure. Robust standard errors clustered at the lab level in parentheses. * p < 0.10, ** p < 0.05, *** p
< 0.01
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Appendix A: Proofs and Model Extensions

A.1 Empirical implications of the model

The maximization problem for the scientist before the shock is

max
s;r

r + �s� � � s
2

2
� r

2

2
� �sr

s.t. s � 0 and r � 0:

The �rst-order conditions are:

r = 1� �s

s = � � �r:

Considering the constraint s � 0, the optimal solution for safety investment is

s�(�; 0) =

8<:
� � �
1� �2 if � � � > 0
0 if � � � � 0

;

and the optimal solution for research output is:

r�(�; 0) =

8<:
1� ��
1� �2 if � � � > 0
1 if � � � � 0

:

After the shock, this problem becomes

max
s;r

r + �s� � � s
2

2
� r

2

2
� �sr

s.t. s � s and r � 0:

Similar to before the shock, the optimal solutions depend on whether the minimum safety standard

is binding; that is, the optimal solution for safety investment is

s�(�; s) =

8>><>>:
� � �
1� �2 if

� � �
1� �2 > s

s if
� � �
1� �2 < s

;
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and the optimal research output becomes

r�(�; s) =

8>><>>:
1� ��
1� �2 if

� � �
1� �2 > s

1� �s if
� � �
1� �2 < s

:

It is straightforward to see that�s = s(�; s)�s(�; 0) is positive in each of the following four scenarios:

�s =

8>>>>>>>>>><>>>>>>>>>>:

��

1� �2 if � � � > 0 &
� � �
1� �2 > s

� � �
1� �2 if � � � � 0 &

� � �
1� �2 > s

s if � � � � 0 &
� � �
1� �2 < s

s� � � �
1� �2 if � � � > 0 &

� � �
1� �2 < s

:

The change in research output, �r = r(�; s)� r(�; 0), is:

�r =

8>>>>>>>>>><>>>>>>>>>>:

�� ��

1� �2 if � � � > 0 &
� � �
1� �2 > s

1� ��
1� �2 � 1 if � � � � 0 &

� � �
1� �2 > s

��s if � � � � 0 &
� � �
1� �2 < s

1� �s� 1� ��
1� �2 if � � � > 0 &

� � �
1� �2 < s

:

Inspections of the �rst and the third cases immediately imply that �r < 0 if � > 0 and �r > 0

if � < 0: For the second case, notice that �r =
1� ��
1� �2 � 1 =

(�� �)�
1� �2 and that this happens when

� � �
1� �2 > s. The latter condition implies that � � � < 0. Thus, we again have �r < 0 if and only if

� > 0. For the last case notice that this occurs when s � � � �
1� �2 . This implies that if � > 0

�r = 1� �s� 1� ��
1� �2 � 1� �(

� � �
1� �2 )�

1� ��
1� �2 = ��

��

1� �2 < 0:

Conversely, when � < 0, we have that

�r = 1� �s� 1� ��
1� �2 � 1� �(

� � �
1� �2 )�

1� ��
1� �2 = ��

��

1� �2 > 0:
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A.2 Unbundling the policy interventions

Building on the results from Appendix A1, the PI maximization problem gives the following �rst-order

conditions:

r = 1� �s

s = � � �r:

With interior solutions, the optimal e¤ort levels are:

r� =
1� ��
1� �2

s� =
� � �
1� �2 :

Notice that it is always the case that r� > 0 as 1 � ��:

We have s� > 0, as long as � < �. If � � � < 0, we have that s� = 0 and r� = 1: In this case, a

marginal increase in � has no impact on research and safety. In the analysis below we focus on the case

of an interior solution; that is, when � < �.

A.2.1 An increase in liability

We interpret the parameter �, which is the marginal bene�t of safety, as the expected liability. If s� > 0

the e¤ect of increasing � is:

dr�

d�
=
d

d�

�
1� ��
1� �2

�
= � �

1� �2 ? 0

ds�

d�
=
d

d�

�
� � �
1� �2

�
=

1

1� �2 > 0:

The impact on r� is positive when � < 0 and negative when � > 0. Moreover, given our assumption

that j�j < 1; the magnitude of the change in r is always lower than the magnitude of change in s. This

makes sense as the change in � has a direct e¤ect on the marginal bene�t of s but an indirect e¤ect on

r only through its relationship with s.
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A.2.2 An increase in minimum safety standards

Notice that when safety mandates are not binding, s < s� =
� � �
1� �2 , a marginal increase in s won�t have

an e¤ect. Thus, we focus on the binding case, in which

r� = 1� �s

s� = s

In this case,

dr�

ds
= �� ? 0

ds�

ds
= 1 > 0:

As with the previous policy, the directional impact on r� depends on the sign of � and that the change

in r is smaller in magnitude than that in s. Moreover, comparing
ds�

ds
in this section and

ds�

d�
in the

previous section shows that the magnitude of the change in s (as well as in r) due to a marginal change

in minimum safety standards is smaller than that of an increase in liability. This is because the increase

in � is ampli�ed by feedback e¤ects through a change in r. The case of mandated s does not have this

feedback e¤ect.

A.2.3 A reduction in the cost of safety

In the baseline model, the marginal costs for s and r are symmetric. Here, we add a " term to the

marginal cost of s as follows:

U(r; s) = r � �(1� s)� r
2

2
� (1� ")s

2

2
� �rs:

We examine what happens if " marginally increases from zero to " > 0. The optimal investment levels

are then

r� =
1� "� ��
1� "� �2

s� =
� � �

1� "� �2 ;
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which lead to the following comparative statics (evaluated at " = 0):

dr�

d"
= �� � � �

(�2 � 1)2
? 0

ds�

d"
=

� � �
(�2 � 1)2

> 0:

Similar to the previous two policies, the directional impact on r� depends on the sign of � and that

the change in r is smaller in magnitude than that in s.

To compare this policy to the other policies, we consider two di¤erent cases, depending on the sign

of �. Notice that the previous section shows that regardless of the sign of �, the magnitude of changes

due to a marginal change in minimum safety standards is smaller than that resulting from a marginal

change in liability. Thus, in the following, we focus on comparing only liability change to a change in

the cost of safety.

When � > 0, we have:
� � �

(�2 � 1)2
<

1

1� �2 ;

because this can be re-written as ��� < 1��2, which is satis�ed because � < 1 and � > �2: Comparing
ds�

d�
in this section and

ds�

d"
in Section A2.1 shows that the change in safety due to a marginal decrease

in the cost of safety is smaller than that due to a marginal increase in liability.

By contrast, when � < 0, it is possible that � � � > 1 � �2: Thus, if j�j is su¢ ciently large, acting

on the cost side may be more e¤ective than acting on the bene�t side.

A.3 Heterogeneous hazard levels

To capture di¤erent hazard levels of di¤erent labs, we assume that � = pL, where p is the expected risk of

an accident and L is the liability cost in the case of an accident. As in the baseline model, we normalize

the minimum required safety level to zero before the accident and indicate the requirement after the

accident as s > 0. We capture the increase in perceived liability with an increase in the parameter L.

Speci�cally, we assume that L = L before the accident, and L = L after the shock. Without loss of

generality, we assume a continuum of labs, each characterized by a hazard level p, distributed over the

interval
�
p; p
�
.
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Let�s �rst consider the case in which s is not binding for any p. As such, we have

�r = ��p(L� L)
1� �2 :

Thus, a greater L implies a greater safety investment by the labs with a higher p. This also translates

to greater changes in research investment for these labs.

When s is binding for all labs, however, we have:

�r = 1� �s� 1� pL�
1� �2

which implies that the magnitude of the change in research actually decreases in p. This is intuitive as

the binding safety standard pushes all labs to invest at 1��s. When � > 0; the lower p is, the higher is

the pre-shock research investment. This implies that the drop will be larger for less risky labs, because

they were doing more research and less safety investment before the shock. The intuition is similar for

the case in which � < 0: In principle, s may be binding for some labs but not for others, and this can

generate a non-monotonicity in p for the e¤ect of the shock.

A.4 Change in research direction

One simple but intuitive way to examine potential changes in research type is to give a lab with under-

lying hazard p the option to reduce its hazard level to p0 < p after the shock by choosing a di¤erent

research project. We assume that redirecting research toward a new project costs c.

Indicate the maximized utility of a PI with hazard level p and endogenously chosen r and s as

U(p; L; s), where L indicates the liability level and s the level of mandated safety. We make two

assumptions. First, U(p; L; 0)�U(p0; L; 0) < c. This assumption means that liability risk and minimum

safety requirement before the shock are su¢ ciently low such that even the riskiest lab does not �nd

it worthwhile to switch. This assumption simpli�es the analysis as it allows us to take the initial

distribution of p as exogenous. We will discuss the implications of relaxing this assumption later. The

second assumption is that U(p0; L; 0) � U(p; L; 0) > c: This assumption implies that the riskiest lab

would prefer to switch to a safer project with the post-shock level of liability risk, even in the absence

of mandated safety. This assumption guarantees that the shock is large enough to have some e¤ect.
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In the following, we analyze two separate cases, depending on whether the post-shock mandated

safety level, s, is binding.

When s is binding, Appendix A1 shows that r� = 1� �s and s� = s: This gives the following utility

to the PI:

U(p; L; s) = 1� �s� pL(1� s)� s
2

2
� (1� �s)

2

2
� �rs:

To make redirecting research fro p to p0 pro�table, we need to have U(p0; L; s)�U(p; L; s) = (p�p0)L(1�

s) > c. This implies that re-directing the research project is pro�table only if p is above a threshold:

p >
c

L(1� s)
+ p0:

When s is not binding, the utility of a PI with risk level p is

U(p; L; s) = U(p; L; 0) =
(1� pL)2
2(1� �2) �

pL�

(1 + �)
:

Notice that U(p; L; 0) decreases with p. Thus, U(p0; L; 0) � U(p; L; 0) is an increasing function of p.

Combined with the assumption that U(p0; L; 0) � U(p; L; 0) > c for the highest possible p, there exists

a threshold in p above which it is worthwhile for the PI to switch to the new project.

The analysis above provides a simple illustration of how the shock may induce high-hazard labs

to redirect research toward safer research projects. This was conducted under the assumption of no-

redirection before the shock, which is equivalent to assuming that a particular PI�s p before the shock was

exogenously given. To properly investigate a PI�s decision of research direction and the impact of a shock

of liability and safety regulation, we need to provide a substantive micro-foundation of why a researcher

chooses to work on projects of a certain risk level in the �rst place. There may be multiple factors

that in�uence a researcher�s choice, including the ability to manage risk, the intensity of competition

in a certain research area, a taste for risk-taking, and how much the PI cares about the potential harm

to the lab�s researchers. The impact of a liability and safety regulation shock is potentially di¤erent,

depending on which motivation is most salient. These topics, while interesting, are outside the scope of

this paper.
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Appendix B: Textual Similarity Measure

The method we use is called the Bidirectional Encoder Representations from Transformers (BERT)

language models published in 2018 by Jacob Devlin and his colleagues at Google (Devlin et al., 2018).

To the best of our knowledge, BERT models are among the state-of-the-art natural language processing

methods used in management and economics research.

The simplest way to construct a similarity measure is to use the actual vocabulary terms used in

a textual document, whereby each unique word in the entire corpus constitutes a dimension. A main

shortcoming of these vocabulary-based matrices is that they are very sparse. More importantly, such

methods do not account for relationships between words. Terms related to one another (e.g., �cars�

and �automobiles�) are not treated as more similar than words that are not (e.g., �cars�and �dogs�).

Recent word-embedding techniques such as word2vec and BERT models address both problems. They

reduce the dimensionality of the matrices and consider the relationships between words. For example,

BERT models convert texts into 768-dimensional vectors. Compared to word2vec, which is a group of

related earlier models, BERT models also factor in the semantic context of each word. For example,

BERT models will yield di¤erent vectors for the word �bank�as a �nancial institution from the bank

of a river, whereas word2vec models will produce the same vector.

Speci�cally, we used a pre-trained BERT model to construct our similarity measure in three steps:

1. We �rst convert each paper�s abstract into a 768-dimension vector.

2. For each lab, we compute a benchmark vector as the average of the vectors of all the papers this

lab published before 2008. Intuitively, this average vector characterizes the core research the lab

produced before the accident (Whalen, et al., 2020).

3. Then, for each of the lab�s publications, we construct the cosine similarity measure between the

focal article vector and the benchmark vector. The higher the similarity score, the more similar

the focal paper is compared to the same lab�s pre-shock core research. Note that this measure is

de�ned for all articles both before and after the shock.
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Validation of the measure

We use both a case study and a systematic approach to get a sense of how well the measure works.

Take the publications of Professor Michael Jung of UCLA for example. Jung specializes in synthetic

organic chemistry. Manually checking his publications before 2008, we noticed that �C1-C-11 FRAG-

MENT� is the most frequent keyword that WoS associates to his articles. (Keywords are a separate

�eld from abstracts that we use to construct the above measure.) C1-C-11 is a compound that could be

synthesized for anti-tumor purposes and is listed as a keyword for four articles Jung published before

the shock.

Among Jung�s publications after 2008, we �nd that articles with the highest similarity measures with

respect to his pre-shock average vector also list �C1-C-11 FRAGMENT�as a keyword. An example is

the article �Selectivity in Non-Aldol Aldol Rearrangements of Cyclic Epoxides� published in Organic

Letters in 2011 with a similarity measure of 0.86. Note that the title of an article is also a di¤erent

�eld from the keywords. By contrast, the articles with the lowest similarity measures not only do not

refer to �C1-C-11 FRAGMENT,�but they also have no keywords in common with any of the pre-2008

publications. An example is �Broad-spectrum antiviral JL122 blocks infection and inhibits transmission

of aquatic rhabdoviruses�published in Virology in 2018 with a similarity score of 0.55.

We also provide a more systematic validation of the measure using regression analysis. We construct

a dummy that equals one if the article refers to a compound that is not previously referenced by the

lab. Among all the articles published by UCLA wet labs in our sample, the raw correlation between the

dummy variable and our similarity measure is -0.004 (the standard error is 0.002). This indicates that

articles exploring new compounds have a lower similarity score with respect to the lab�s past research

than articles that do not. The correlation remains robust (and signi�cant at the 5% level) when adding

additional controls to the regression. The negative relationship is also robust to the inclusion of year

and PI �xed e¤ects in addition to the control variables.

10



 

  

 

 

Table A1 - Wet and dry lab comparison

Panel A: UC sample Wet Lab Dry Lab P-value
Articles per year before 2008 6.172 6.307 0.843
Highly cited articles per year before 2008 0.861 1.023 0.311
Year joined UC 1997.543 2000.863 0.017
Panel B: UCLA sample Wet Lab Dry Lab P-value
Articles per year before 2008 5.647 5.775 0.928
Highly cited articles per year before 2008 0.919 0.628 0.502
Year joined UC 1995.758 1998.429 0.452
NOTES: Unit of observation is a lab. Panels A and B report summary statistics for UC and UCLA
samples, respectively. Articles per year before 2008 = the average number of articles the lab
published each year before 2008. Highly cited articles per year before 2008 = the average number of
articles the lab published in the top decile of citations per year before 2008. Year joined UC = the
year the lab is established within the UC system. Wet Lab = 1 if the lab conducts experiments using
chemical and biological substances.



 

 

 

 

 

 

 

(1) (2) (3) (4) (5)

Dep. Var. Articles
Citation weighted 

articles
Articles Articles Articles

Model Poisson Poisson OLS
Weighted-

OLS
OLS

Wet Lab × After Accident -0.053 -0.176 -0.382 -0.464 -0.182
(0.061) (0.207) (0.619) (0.685) (0.500)

Sample UC labs UC labs
UC labs active 
between 2004 

and 2017
UC labs UC labs

Year effects YES YES YES YES YES
Lab effects YES YES YES YES YES
Tenure control UC UC UC UC FULL

Observations 6818 6818 4564 6234 6827

Table A2: Laboratory safety and publication levels -- Robustness to alternative econometric models and 
tenure controls

NOTES: Articles = the number of articles the lab published in year t. Citation weighted papers = the number of articles weighted by
citations received as of 2020 the lab published in year t. Wet Lab = 1 if the lab conducts experiments using chemical and biological
substances. After Accident = 1 if after year 2008. All regressions control for the total publications by the lab in the previous three
years. Columns 1-4 control for the logarithm of the lab's tenure and column 5 controls for the lab's full tenure since the PI's first
publication as a PI. Robust standard errors clustered at the lab level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.



 

(1) (2) (3) (4)

Dep. Var. Articles Articles Articles Articles

Wet Lab × After Accident -0.208 -0.244
(0.558) (0.486)

Endowment 0.000**
(0.000)

Chem PhDs 0.008
(0.008)

Science & Engineering Grants -0.000
(0.000)

 Journal Based Wet Lab × After Accident 0.131 -0.043
(0.540) (0.087)

Sample
UC labs with 

available 
data

UC labs UC labs
Non-UC US 
academic 

labs

Year effects YES YES YES YES
Lab effects YES YES YES YES
Institution-Year Effects NO YES NO NO

Observations 5553 6827 6827 38763

Table A3: Laboratory safety and publication levels -- Robustness to alternative controls and 
samples

NOTES: OLS regressions. Articles = the number of articles the lab published in year t. Wet Lab = 1 if the lab conducts
experiments using chemical and biological substances. After Accident = 1 if after year 2008. Endowment = total
market value of the endowment held by the institution in year t (in 1,000s USD). Chem PhDs = the number of
individuals receiving a research doctorate in the field of chemistry in the institution in year t. Science & Engineering
Grants = the amount of federal science and engineering (S&E) funding received by the institution in year t (in 1,000s
USD). Journal Based Wet Lab defines wet versus dry labs using classification of journals and publications between
2004 and 2008. All regressions control for the total publications by the lab in the previous three years and the
logarithm of the lab‘s tenure. In Column 4, the DV is constructed using the subset of WoS journals specialized in
chemistry and ten multidisciplinary science journals with the highest impact factors. Robust standard errors
clustered at the lab level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.



 

 

 

 

 

 

 

 

 

 

(1) (2) (3)

Dep. Var. Articles SciFinder articles SciFinder articles
Model OLS OLS Poisson

Wet Lab × After Accident -0.002 -0.039 -0.035
(1.048) (1.172) (0.087)

Sample UCLA labs UCLA labs UCLA labs

Year effects YES YES YES
Lab effects YES YES YES

Observations 976 976 975

Table A4: Laboratory safety and publication levels -- Robustness using SciFinder 
data

NOTES: Articles = the number of articles the lab published in year t. SciFinder articles = the number
of articles recorded by the SciFinder database the lab published in year t. Wet Lab = 1 if the lab
conducts experiments using chemical and biological substances. After Accident = 1 if after year
2008. All regressions control for the total publications by the lab in the past three years and the
logarithm of the number of years that the lab has existed as of year t. Robust standard errors
clustered at the lab level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 



 

 

 

 

 

(1) (2) (3) (4)

Dep. Var.
Minimum semantic 

similarity score
Median semantic 
similarity score

Minimum semantic 
similarity score

Median semantic 
similarity score

High Hazard × After Accident 0.050** 0.043** 0.083** 0.090***
(0.022) (0.020) (0.033) (0.032)

Publications sample 
Articles with fraction of 
dangerous compounds 

referenced > 50%

Articles with fraction of 
dangerous compounds 

referenced > 50%

Articles with fraction of 
dangerous compounds 

referenced > 75%

Articles with fraction of 
dangerous compounds 

referenced > 75%

Lab Sample
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017
UCLA wet labs active 

between 2004 and 2017

Year effects YES YES YES YES
Lab effects YES YES YES YES

Observations 144 144 75 75

Table A5: Lab research direction after the shock -- Robustness checks

NOTES: OLS regressions. Minimum semantic similarity score = minimum similarity score of all the articles published in a focal year by a lab relative
to the same lab’s pre-shock core research. High Use = 1 if lab in top quintile in terms of articles published using dangerous substances. Median
semantic similarity score = median similarity score of all the articles published in a focal year by a lab relative to the same lab’s pre-shock core
research. High Hazard = 1 if lab in top quintile in terms of articles published using dangerous substances. After Accident = 1 if after year 2008. All
regressions control for the total publications by the lab in the previous three years and the logarithm of the lab's tenure. Robust standard errors
clustered at the lab level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01


	Accidents_March 24 2023
	figures_tables_March_2023
	Appendix_March 13 2023_blind
	Appendix_ figures_tables_March_2023



