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Abstract—This study explores the role of U.S. ethnic scientific and
entrepreneurial communities for international technology transfer to their
home countries. U.S. ethnic researchers are quantified through an ethnic-
name database and individual patent records. International patent citations
confirm knowledge diffuses through ethnic networks, and manufacturing
output in foreign countries increases with an elasticity of 0.1-0.3 to
stronger scientific integration with the U.S. frontier. Specifications ex-
ploiting exogenous changes in U.S. immigration quotas address reverse-
causality concerns. Exercises further differentiate responses by develop-
ment stages in home countries. Ethnic technology transfers are
particularly strong in high-tech industries and among Chinese economies.

I. Introduction

HE adoption of new technologies and innovations is a
primary engine for economic growth, improving
worker productivity and spurring higher standards of living.
Invention, however, is concentrated in advanced economies.
OECD countries account for 83% of the world’s R&D
expenditure and 98% of its patenting (OECD, 2004). Even
within the OECD, a disproportionate share of R&D is
undertaken in the United States. Diffusion of new innova-
tions from technologically leading nations to following
economies is thus necessary for the economic development
of poorer regions and the achievement of global prosperity.
Economic models often describe a worldwide technology
frontier, where new ideas and innovations travel quickly to
all countries.! Rapid diffusion may be a good approximation
for industrialized economies, but many advances are either
not available or not adopted in poorer countries. Case
studies in the business sociology and economic history
literatures suggest this poor adoption may result from inad-
equate access to the informal or practical knowledge that
complements the codified details of new innovations. Be it
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! For example, Mankiw, Romer, and Weil (1992) and Heckscher-Ohlin
trade theory. Recent descriptions of multiple technology frontiers build on
geographic distances to major R&D nations (for example, Keller, 2002b),
the innovations of trading partners (such as, Grossman & Helpman, 1991;
Coe & Helpman, 1995; Coe, Helpman, & Hoffmaister, 1997), or interna-
tional patenting decisions (for example, Eaton & Kortum, 1999). Keller
(2004) reviews the technology transfer literature.

The Review of Economics and Statistics, August 2008, 90(3): 518-537

between two people or two countries, knowledge transfer is
much more complicated than sharing blueprints, process
designs, or journal articles. Intellectual spillovers are often
thought to be important for the formation of cities and
high-tech clusters, and perhaps heterogeneous access to the
codified and tacit knowledge associated with new innova-
tions shapes the effective technology sets of following
countries.?

Recent research stresses the importance of ethnic scien-
tific communities in frontier countries for conveying new
technologies to their home countries. In surveys of Silicon
Valley, 82% of Chinese and Indian immigrant scientists and
engineers report exchanging technical information with
their respective nations; 18% further invest in business
partnerships (Saxenian, 2002a, 2002b). Studies of software
offshoring suggest 30% of India’s systems workforce ro-
tates through the United States to obtain the tacit knowledge
necessary for their work (Piore, 2004). Moreover, some
observers believe the success of India versus Mexico and
other countries in this field derives in part from India’s
strong U.S. entrepreneurial community. More generally,
explorations of knowledge diffusion find countries with a
common language have larger R&D spillovers and interna-
tional patent citation rates (for example, Keller, 2002b; Jaffe
& Trajtenberg, 1999).

Ethnicity thus offers an observable channel for exploring
the extent to which international networks transmit the
codified and tacit knowledge of new inventions. This study
examines whether a larger ethnic research community in the
United States improves technology diffusion to foreign
countries of the same ethnicity. U.S. ethnic research com-
munities are quantified by applying an ethnic-name data-
base to individual U.S. patent records (for example, identi-
fies inventors with Chinese versus Hispanic names). These
matched records describe the ethnic composition of U.S.
scientists and engineers with previously unavailable detail.
These trends are joined with industry-level manufacturing
data for foreign countries (for example, Chinese computer
research in the United States is paired with China’s com-
puter industry) in an econometric framework that isolates
the role of scientific integration by exploiting within-
industry variation.

2 Marshall (1890) and Jacobs (1970) describe the forces contributing to
spatial agglomeration, while Rosenthal and Strange (2003) and Ellison,
Glaeser, and Kerr (2007) provide more recent empirical tests. Other
country-specific differences that inhibit adoption include barriers to tech-
nological investment, capital-labor or human capital disparities, differ-
ences in the organization of production, and the appropriateness of
technology. Representative papers in this literature are Parente and Pres-
cott (1994), Atkinson and Stiglitz (1969), Nelson and Phelps (1966),
Banerjee and Newman (1993), and Acemoglu and Zilibotti (2001), re-
spectively.
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To clarify this empirical methodology, the next section
develops a theoretical model where a technology follower
depends on the imitation of frontier innovations for techni-
cal progress in its manufacturing sector. In order to imitate
these frontier technologies, however, scientists in the fol-
lowing country require codified and tacit knowledge with
respect to the frontier inventions. This knowledge is ac-
quired and transferred through the scientists of the follow-
ing country’s ethnicity who work in the frontier economy.
The model thereby relates the technology follower’s man-
ufacturing output and productivity growth to its scientific
integration with the leader. The primary estimating equa-
tions employed in this study are determined within this
framework.

Section III then describes the ethnic patenting data set
constructed, and a first characterization of ethnicity’s role in
international knowledge transfer is undertaken through ci-
tation patterns. Foreign researchers are found to cite U.S.
researchers of their own ethnicity 30%-50% more fre-
quently than researchers of other ethnicities, even after
controlling for detailed technology classes. A further exam-
ination divides the sample into different time lags from the
filing dates of the cited U.S. patents to the dates of the citing
foreign patents. This analysis reveals that the own-ethnicity
effect is most important during the first five years of the
diffusion process. After peaking in the fifth year, the higher
ethnic citation rates decline to the tenth year.

While informative, citation patterns do not quantify the
extent to which following countries realize economic ben-
efits from better access to U.S. innovations. To characterize
foreign output and productivity realizations, the U.S. ethnic
patenting data are combined with industry-level manufac-
turing data for foreign countries in section IV. Ethnic re-
search communities are quantified at the industry-year level
by aggregating individual patent records. Panel estimations
then test whether output increases in foreign countries as
their respective ethnic research communities in the United
States develop. The specifications only exploit within-
industry variation. The results suggest growth in U.S. ethnic
scientific communities increases foreign output with elas-
ticities of 0.1-0.3 depending upon how the data are
weighted. These parameter estimates are economically and
statistically significant, and the output expansion is decom-
posed into employment and labor productivity gains.

The inclusion of multiple countries and industries affords
a more structured characterization of ethnicity’s role for
technology diffusion and economic growth than case-based
or survey-based research. This platform also allows us to
test the robustness of the results to other explanatory factors
and to assess the extent to which the well-documented
transfers of Asian high-tech enclaves in Silicon Valley
generalize to other settings. The measured elasticities are
moderately robust to further incorporating human capital
and physical capital developments abroad, general country
trends, and so on. Performance in these tests is weakened by

519

the less variation in growth of U.S. research communities
that exists across industries within an ethnicity than across
ethnicities. Sample decompositions further find that the
outcomes are especially strong in high-tech sectors and
within the Chinese ethnicity. While measurable growth
effects are present in the broader sample, they are substan-
tially weaker than the showcase examples often discussed.

Reverse causality is a prominent concern in these types of
specifications, where human capital developments in the
foreign country could simultaneously result in higher output
growth and more ethnic researchers emigrating to the
United States. Section V returns to the theoretical model to
highlight how immigration quotas offer a foothold for
addressing these issues. The resulting reduced-form strategy
is applied in the context of the Immigration Act of 1990, a
major revision of the U.S. quotas system, that led to a surge
in the immigration of scientists and engineers from previ-
ously constrained countries. The immigration quotas exer-
cise suggests that growth in U.S. ethnic research communi-
ties increases foreign output with elasticities of 0.3-0.4.
While the immigration experiment cannot resolve omitted
variable biases, the qualitative findings of this exercise
support the results found with the ethnic patenting approach.

Finally, the diverse set of countries studied affords addi-
tional insights regarding how the benefits accruing to tech-
nology followers differ by development stage. An extension
to the theoretical model allows sector reallocation from
agriculture to manufacturing. After a transition point to full
employment in the manufacturing sector, greater technology
transfer raises labor productivity and output levels with
constant employment. This is the steady-state description
developed in section II. Prior to this transition, however, the
following country responds with growth in manufacturing
employment as well as labor productivity gains. Consistent
with these predictions, interactions with development stage
show labor productivity growth is mostly concentrated in
economies that have transitioned to full manufacturing em-
ployment (for example, the Asian tiger economies); coun-
tries with large agricultural sectors instead increase industry
output through higher employment levels (for example,
Mainland China, India).

The results of this project suggest poor access to the
codified and tacit knowledge regarding new innovations
does contribute to slow technology diffusion. Ethnic scien-
tific and entrepreneurial channels are important for the
transfer of this practical or informal information, and thus
differences in ethnic research communities in frontier econ-
omies are partly responsible for the heterogeneous technol-
ogy opportunities of developing or emerging countries. In
addition to characterizing technology diffusion, a better
understanding of these ethnic linkages provides an impor-
tant contribution to the “brain drain” versus “brain circula-
tion” debate. While a full cost-benefit analysis (such as
Kapur & McHale, 2005) is beyond this paper’s scope, the



520

technology transfer results highlight a potential benefit from
high-skilled immigration to advanced countries.

II. Theoretical Framework

This section outlines a simple leader-follower model of
technology transfer. Both economies feature a manufactur-
ing sector characterized by an expanding-product-variety
production function where technological progress occurs
through the adoption of new intermediate products used in
production of final goods. Entrepreneurial scientists living
in each country supply these new technologies for profit,
and they can either invent the intermediate products them-
selves or imitate foreign innovations. Spillovers from past
innovations increase the research productivity of current
scientists for invention and generate endogenous growth.3
Knowledge is local, however, in that a country’s researcher
productivity for invention builds only on its own past
research. That is, the capabilities of the two nations to
invent evolve separately.

Researchers can alternatively imitate foreign inventions
for use in their own country. Their effectiveness in doing so,
however, depends upon their codified and tacit knowledge
with respect to the foreign country’s innovations. In prepa-
ration for the empirical analysis, ethnicity is incorporated
into the framework to model this knowledge network. Spe-
cifically, the following country is of homogeneous ethnicity;
the frontier country is primarily of another ethnicity but is
home to some researchers of the following country’s eth-
nicity. These frontier expatriates acquire and transmit the
knowledge necessary for effective imitation in the following
country.

Variables for the leader’s economy are denoted by a tilde
(for example, ¥), while the follower’s variables are in plain
font (for example, Y). Superscripts and subscripts further
distinguish ethnicity and sector as required. The first section
outlines the core elements of the follower’s economy, fol-
lowed by differences in the leader’s economy. The steady-
state outcome is then characterized.*

A. Follower’s Economy

The technology follower’s economy contains L workers
of homogeneous ethnicity F employed in manufacturing
and research. Its labor market is competitive, such that
workers are free to move between the two sectors and are
paid their marginal products of labor in each. Denote the
workers employed in manufacturing and research by L, and
Ly, respectively. The behavior of the manufacturing sector is
first described, followed by the research sector and consum-
ers.

3 For example, Romer (1990), Rivera-Batiz and Romer (1991), and
Barro and Sala-i-Martin (1995).

4 Section IV discusses transitional dynamics to this steady state when
labor reallocation from an agricultural sector is introduced. Technology
flows are the only interactions between the two countries. The model
abstracts from trade, and immigration is restricted in the base scenario.

THE REVIEW OF ECONOMICS AND STATISTICS

The competitive manufacturing sector produces final
goods Y), that can be consumed or used to make interme-
diate manufacturing goods. The price of final goods is
normalized to 1. Production for a representative firm i that
employs labor Ly, and nondurable intermediates X;; of type
Jj takes the form

N

Yy, = ALA;“ZI (X)) (1)

a is the elasticity of output with respect to intermediate
inputs (0 < a < 1), A is a common manufacturing produc-
tivity parameter, and N is the number of intermediate prod-
uct varieties currently available in the follower. In equilib-
rium, firms employ equal amounts of all intermediate inputs
(X; = X; Vj) and equation (1) can be simplified to Yy, =
ALy “XiN = ALy, “(NX;)*N'~*. Thus, the production func-
tion exhibits constant returns to scale in labor and total
intermediate inputs NX;, but a larger number N of interme-
diate goods increases output by distributing the total inter-
mediate inputs over more goods and thereby raising the
marginal product of each.

Technical progress takes the form of increases in N, either
through inventions / or imitations M of the leader’s inven-
tions (N = I + M). Entrepreneurial research firms choose
between invention and imitation by comparing the produc-
tivity of the two techniques. The research productivity for
invention in the follower is determined by the existing stock
of the follower’s inventions, or 9/t = I - L. There are no
international knowledge spillovers in the sense that re-
searchers in the follower cannot build on the the leader’s
stock of inventions directly in innovation. The follower’s
researchers can alternatively imitate the leader’s inventions
at a rate

oM ( M ~FB)
ot Lb[i:|(H) * L,

(2)

where [ is the leader’s invention stock and H' is the
follower’s human capital stock with respect to the leader’s
inventions. A larger stock of frontier inventions affords a
larger pool of technologies that can be imitated, thus raising
the imitation productivity for the follower’s researchers.
The imitation of products exhausts the available pool, how-
ever, and the function {s decreases with the ratio of imitated
products to the available frontier stock, ' < 0. ¢s[1] = 0
when all available products have been imitated, and {s[0] is
sufficiently large to ensure some imitation occurs with
human capital for foreign technologies. The (HF)® spec-
ification models that tacit knowledge of frontier inven-
tions is necessary for successfully adopting them in the
follower. This human capital stock depreciates at a rate 3,
and the population of follower’s ethnic researchers in the
leader undertaking inventive activity adds to it: dH/at =
—dH" + L},
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Regardless of how new products are acquired, the entre-
preneurial research firms gain perpetual monopoly rights
over the production and sale of new intermediate goods in
the follower. The present discounted value of these rents for
a good j at time 7 is V(1) = J© (P; — C)) Xje 760 * 60ds,
where P; is the selling price and C; is the cost of producing
the intermediate good. The average interest rate between
times ¢ and s is T (s,7), which is constant in equilibrium. C; =
1 for research firms as one unit of Y, is required to produce
one unit of intermediate input.

Monopoly rights afford research firms the power to set P;
in each period to maximize (P; — 1)X;. As price takers, the
manufacturing firms equate the marginal product of an
intermediate good, 0¥y, /0X;; in equation (1), with its price P;
for a demand of X; = (AOL/P/-)”(“"‘)LM‘,. Substituting this
demand function into the research firm’s maximization
problem, summing across final-goods producers, and taking
the derivative with respect to P; yields the monopoly price
P; = o~ !. Thus, research firms charge the same price (P; =
P) and face similar aggregate demands of X = AV~
o=, The constant interest rate, price, and aggregate
demand relationships simplify the value of inventing or
imitating a new technology V() to

1l -« 1
V= ( . )Al/(la)OLZ/(la) o LM- (3)

r

Constant intermediate demand functions also simplify the
follower’s aggregate output,
YM — Al/(lfoc)a2oc/(lf<x)LMN' (4)
On the consumer side, households maximize a linear
lifetime utility function U = J;” c(t) * e~*'dt, where p is the
rate of time preference. Consumers earn wage w and receive
the interest rate r on savings. In equilibrium, p =

B. Leader’s Economy

Before the equilibrium for the follower’s economy can be
determined, the frontier economy must be described. The
leader’s economy is identical to the follower’s except in its
ethnically heterogeneous labor force and in its invention of
new intermediate goods. Workers of both the leader’s and
follower’s ethnicity live in the leader. Workers of the lead-
er’s ethnicity move between the manufacturing and research
sectors, but the follower’s expatriates work only in the
research sector (I, = Ik, Lx = L% + [%). The follower’s
ethnic population in the leader is small enough to ensure
some scientists of the leader’s ethnicity are always required.
The aggregate populations of the two countries are equal
(L=10L).

Researchers of both ethnicities contribute to and utilize
the existing frontier invention stock 7 in developing new
intermediate products: dIf/ot = I - [k and oI* /ot = T - [k,
where I = I + [-. This research specification again high-
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lights the role of past inventions / in making current re-
searchers more productive, and assumes inventions made in
the follower do not contribute to the leader’s researcher
productivity for invention. More subtly, ethnicity does not
matter for invention in the leader—both types of scientists
are symmetric with respect to the frontier invention stock.
Finally, frontier researchers of the follower’s ethnicity can
imitate products made in the follower with a productivity
analogous to equation (2).

C. Steady-State Description: Leader Invents, Follower
Imitates

This case determines the core estimating equation for this
study. Without invention in the follower, the frontier econ-
omy operates in isolation, and imitation does not occur (N =
). The leader’s research sector is competitive with respect
to labor markets, and scientists earn the marginal product of
their innovative efforts. Denote by V the present discounted
value of making a new invention in the leader. As research-
ers invent I new products each period (that is, (9I/0t)/Lz =
1), the wage paid to scientists is V- I. Likewise, wages in the
manufacturing sector are equal to the marginal product of
labor (1 — «)¥y/Ly. Labor mobility between sectors re-
quires that these wages be equal, V- T = (1 — «)¥y/Ly.
Substituting into this free-entry condition the leader’s ver-
sions of the value of innovations (3) and aggregate output
(4), and noting r = p, the steady-state allocation of labor
in the frontier economy is found to be L), = p/a and Ly =
L — p/a. Thus, the growth rate of both the stock of
frontier intermediate technologies and manufacturing
output is L — p/a.

Returning to the follower’s economy, all intermediate
products come through imitation of the leader (N = M).
Labor mobility again requires wage equality for the fol-
lower, V- (IW[M/I|(HF)?) = (1 — a)Y)/Ly. Substituting in
the value of new intermediates V from equation (3) and
aggregate output Y), from equation (4),

I M| _.
"= Lb[i} (H")PacLy. (5)

With identical preferences and aggregate populations, the
follower’s interest rate and allocations of labor to manufac-
turing and research are the same as the leader.® Equation (5)
further shows the steady-state ratio of the follower’s imi-
tated products to available frontier products M/I is constant
and increases with the follower’s human capital stock with
respect to the leader’s technologies (' < 0). Stronger

3 The potential crowding out of U.S. workers and students from science
and engineering fields by immigrants is often debated (for example,
Borjas, 2005; Freeman, 2005). This model incorporates a crowding-out
effect for analytical convenience only.

¢ These conditions hold for more general utility functions. As Barro and
Sala-i-Martin (1995) note, technological diffusion can equalize rates of
return without other interactions between economies.
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knowledge transfer improves researcher productivity for
imitation in the follower and closes the steady-state gap to
the frontier.

Simplifying equation (5) for economies of equal size
relates the follower’s imitated technology stock to the tech-
nology frontier and the follower’s knowledge for frontier
innovations, M = Rs[M/I|(H")P. Substituting this relation-
ship into the follower’s manufacturing output (4), taking
logs, and collapsing time-invariant terms into a constant ¢,
the follower’s manufacturing output depends upon its hu-
man capital stock with respect to frontier research with
elasticity B: In(Yy,) = & + In(/) + B In(f4"). The human
capital stock is 8~ !Lf in steady state, so that

In(Yy) = & + In(D) + B In(Ly), (6)
where 87! is absorbed into the constant. Equation (6) is the
basis for the estimating equations employed in sections IV
and V. The statistical framework will return to the intricacies
of empirically estimating this relationship, but the outlook is
promising that the relationship will be directly identified if
this scenario holds.

The follower’s imitation-versus-invention decision deter-
mines the condition required for this steady-state descrip-
tion. Specifically, the productivity of the follower’s re-
searchers for invention must be less than the researcher
productivity for imitating frontier innovations in equilib-
rium,

M

I<I¢[i] (A7), (7)
The assumption / = 0 requires that equation (7) hold
forever; without a knowledge stock on which to build, a first
invention is impossible. While this may describe extremely
poor regions, the more interesting implication for develop-
ing or emerging countries is that, even with a small inven-
tion stock, the comparative benefit to imitation can be
sustained so long as access to the codified and tacit knowl-
edge for a growing stock of frontier innovations is main-
tained. Section V discusses the case where equation (7) no
longer holds.”

III. Ethnic Patenting and International
Citations Analysis

The above model is applied to technology transfer from
the United States through ethnic networks. Estimation of the
B parameter requires quantifying each ethnicity’s human
capital stock with respect to U.S. research. This section
outlines the data set built for this exercise, and presents an
analysis of knowledge flows using international patent ci-
tation records. The ethnic patenting data are then joined

7 Immigration is restricted in this framework. Moreover, the follower’s
workers would prefer to emigrate to the leader as the frontier wage rate is
higher ceteris paribus because of the larger stock of intermediate goods.

THE REVIEW OF ECONOMICS AND STATISTICS

with foreign output metrics in section IV to evaluate equa-
tion (6) directly.

A. Ethnic Patenting Records

Ethnic technology development in the United States is
quantified through the NBER Patent Data File originally
compiled by Hall, Jaffe, and Trajtenberg (2001). This data
set offers detailed records for all patents granted by the U.S.
Patent and Trademark Office (USPTO) from January 1975
to December 1999. Each patent record provides information
about the invention (for example, technology classification,
citations of prior art) and the inventors submitting the
application (name, city, and so on). To estimate ethnicities,
a commercial database of ethnic first names and surnames is
mapped into the inventor records. Kerr (2007¢) documents
the name-matching algorithms, lists frequent ethnic names,
and provides extensive descriptive statistics. The match rate
is 98% for U.S. patent records, and the process affords the
distinction of nine ethnicities: Chinese, English, European,
Hispanic, Indian, Japanese, Korean, Russian, and Vietnam-
ese.

Table 1 describes the 1985-1997 U.S. sample, while
figure 1 illustrates the evolving ethnic contribution to U.S.
technology development as a percentage of patents granted
by the USPTO. The trends demonstrate a growing ethnic
contribution to U.S. technological development, especially
among Chinese and Indian scientists. Ethnic inventors are
more concentrated in high-tech industries like computers
and pharmaceuticals and in gateway cities relatively closer
to their home countries (for example, Chinese in San Fran-
cisco, European in New York, and Hispanic in Miami). The
final three rows demonstrate a close correspondence of the
estimated ethnic composition to the country-of-birth com-
position of the U.S. science and engineering workforce in
the 1990 Census.

B. International Patent Citation Analysis

The ethnic-name database is also applied to foreign
patent records registered in the United States. Inventions
originating outside the U.S. account for just under half of
USPTO patents, with applications from Japan comprising
45% of this foreign total. Kerr (2007c) presents the matched
characteristics for countries grouped to the ethnicities iden-
tifiable with the database. From a quality-assurance perspec-
tive, the results are very encouraging. First, the ethnic-name
database assigns ethnicities to 98% of foreign records.
Second, the estimated inventor compositions are quite rea-
sonable, with the own-ethnicity contributions in all but three
regions being greater than 80% (for example, 89% of
inventors filing from Chinese countries and regions are
classified as ethnically Chinese). Like the United States,
own-ethnicity shares should be less than 100% because of
foreign researchers.

In addition to serving as a quality-assurance check, pat-
ents registered with the USPTO by foreign inventors afford
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TABLE 1.—DESCRIPTIVE STATISTICS FOR INVENTORS RESIDING IN THE UNITED STATES
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Ethnicity of Inventor (Percent Distribution)

English Chinese European Hispanic Indian Japanese Korean Russian Vietnamese
A. Ethnic Inventor Shares Estimated from U.S. Inventor Records

1985-1990 Share 79.7 3.7 7.3 3.3 2.9 0.8 0.7 1.5 0.2
1990-1997 Share 76.4 54 6.9 3.7 3.7 0.9 0.8 1.7 0.4
Chemicals 74.4 6.5 7.5 3.6 4.3 0.9 0.9 1.6 0.3
Computers 75.2 6.4 6.2 3.5 4.7 0.9 0.8 1.7 0.7
Pharmaceuticals 75.5 5.2 7.5 4.1 3.8 1.1 1.0 1.6 0.3
Electrical 75.0 6.3 7.0 3.6 3.7 1.0 0.9 1.9 0.5
Mechanical 81.9 2.5 7.2 3.2 24 0.6 0.5 1.5 0.2
Miscellaneous 82.6 24 7.0 3.5 2.0 0.5 0.5 1.3 0.2
Top MSAs as a KC (89) SF (12) NYC (11) MIA (17) NYC (6) LA (2) BAL (3) BOS (3) AUS (2)

percentage of MSAs WS (89) LA (7) NOR (11) SD (8) BUF (6) SD (2) COL (2) NYC (3) LA (1)

patents MEM (86) NYC (7) STL (11) WPB (6) AUS (6) SF (2) SF (2) PRO (3) SF (1)

B. Ethnic Scientist and Engineer Shares Estimated from 1990 U.S. Census Records

Bachelor’s share 87.6 2.7 2.3 2.4 2.3 0.6 0.5 0.4 1.2
Master’s share 78.9 6.7 34 2.2 5.4 0.9 0.7 0.8 1.0
Doctorate share 71.2 13.2 4.0 1.7 6.5 0.9 1.5 0.5 0.4

Notes: Metropolitan statistical areas (MSAs)—AUS (Austin), BAL (Baltimore), BOS (Boston), BUF (Buffalo), COL (Columbus), HRT (Hartford), KC (Kansas City), LA (Los Angeles), MEM (Memphis), MIA
(Miami), NOR (New Orleans), NYC (New York City), PRO (Providence), SA (San Antonio), SD (San Diego), SF (San Francisco), STL (St. Louis), WPB (West Palm Beach), and WS (Winston-Salem). MSAs are
identified from inventors’ city names using city lists collected from the Office of Social and Economic Data Analysis at the University of Missouri, with a matching rate of 98%. Manual coding further ensures all
patents with more than 100 citations and all city names with more than 100 patents are identified. 1990 Census statistics are calculated by country of birth using the country-ethnicity groupings listed in table 2;

English provides a residual in the Census statistics.

an initial characterization of international knowledge flows
through ethnic scientific networks. Each patent record in-
cludes citations of prior inventions on which the current
patent builds, and the pattern of these citations can be
informative about communication channels between re-
searchers.® This first exercise simply compares the ethnic
composition of cited U.S. inventors across different foreign
inventor ethnicities. That is, do Chinese inventors living
outside of the United States tend to cite more Chinese
inventors living in the United States than their technology
field would suggest?

Inventor names are only included with patents granted
from 1975 to 1999, and the data are cut in two ways to form
a uniform sample. First, only the citations of foreign patent
applications to the USPTO from 1985 to 1997 are consid-
ered. Second, the application year of the cited U.S. patent
must be within ten years of the application date of the citing
foreign patent. That is, citations of 1975-1984 U.S.
domestic patents are considered for foreign patents ap-
plied for in 1985, while 19761985 is the appropriate
ten-year window for 1986 patents. In addition, all within-
company citations and patents with inventors in multiple
countries are excluded.’

8 Jaffe, Trajtenberg, and Fogarty (2000) and Duguet and MacGarvie
(2005) discuss using patent citations to study knowledge transfer. Jaffe,
Trajtenberg, and Henderson (1993), Peri (2005), Hu and Jaffe (2004),
Agrawal, Cockburne, and McHale (2006), and MacGarvie (2006) are
examples of applications in an international distance context.

9 Patents may have multiple inventors with different ethnicities. The
reported regressions only consider citations for which a dominate ethnicity
can be assigned to both patents (that is, a single ethnicity accounts for
strictly more than 50% of multiple inventors). English-ethnicity inventors
abroad are excluded. These restrictions are required for the cells con-
structed for the citations estimations and are not carried forward into the
output and productivity analyses. The results are robust to alternative
techniques like Thompson (2006) below.

From this sample, citation counts are developed by cells
that contain four dimensions: (i) the ethnicity of the citing
foreign inventor, (ii) the ethnicity of the cited U.S. inventor,
(iii) the technology class of the citing foreign inventor, and
(iv) the technology class of the cited U.S. inventor. The
latter two dimensions are necessary for isolating ethnicity’s
role since patents cite other patents within their technology
field far more frequently than those outside of their field. If
ethnicities concentrate in different industries in the United
States and abroad, measured ethnic flows could be merely
capturing that technologies build upon prior art in their own
discipline.

Almost 100,000 cells are formed with this organiza-
tion, and many cells contain zero values. The zero values
are due to both the small sizes of some ethnicities (such
as, Vietnamese inventors outside of the United States)
and that researchers in a given field simply do not cite the
universe of technologies in their work. Count data con-
taining zero values can be appropriately handled with a
negative-binomial model. The counts are regressed on an
indicator variable for whether the citing foreign ethnicity
and cited U.S. ethnicity are the same, as well as vectors
of fixed effects for each of the four dimensions on which
cells are formed. These fixed effects remove basic levels
differences between the series (for example, English in
the United States receiving uniformly more citations,
Vietnamese researchers abroad making uniformly fewer
inventions and citations). An indicator variable is also
included for whether the cited and citing technology
categories are the same.

The coefficient on the indicator variable for same-
ethnicity is transformed into an incidence rate ratio that
gives the higher rate of citations within an ethnic group. The
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FIGURE 1.—U.S. ETHNIC PATENTING
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Ethnic inventor shares are for granted USPTO patents grouped by application years. Only inventors residing in the United States at the time of patent application are included. Additional ethnic groups, including
the English majority, are omitted from the figure for visual clarity. Ethnicity is determined through inventor names on patents as described in the text and Kerr (2007c).

incidence rate ratio for all citations is 1.496 with a standard
error of 0.052. This coefficient is statistically different from
1, the level where own-ethnicity citations have the same
frequency as citations of other ethnicities, and suggests a
moderate effect that own-ethnicity citations are 50% higher
than citations to other ethnicities once the basic levels and
industry effects are removed. This ethnic differential is a
couple of orders of magnitude less than the within-
technology field effect, and Kerr (2007a) shows that tighter
technology controls by disaggregating the sample can

weaken the own-ethnicity differential to 20%-30%. The
tighter specifications, however, remain economically and
statistically important. To further study the time path of
these knowledge flows, the negative-binomial regressions
are performed separately for each citation lag of one to ten
years, rather than collapsing the data into a single regres-
sion. The coefficients from these regressions and their
confidence bands (two standard deviations) are presented
graphically in figure 2. Common ethnicity appears most
important for international technology diffusion in the first

FIGURE 2.—OWN-ETHNICITY CITATION RATE
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transformed into the reported incident rate ratios. The solid line represents coefficient estimates and the dashed lines show the confidence bands (two standard deviations).
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few years after an invention, peaking in a citation lag of four
to five years.!0

C. Codified and Tacit Knowledge Transfer

The international patent citation exercises confirm that
knowledge diffusion occurs at an uneven rate across coun-
tries and further suggest that ethnic scientific networks are
important for short-run technology transfer from the United
States. The declining importance to common ethnic ties
over time in many respects resembles the declining impor-
tance of geographic distance in knowledge diffusion over
time (for example, Keller, 2002b). While the citation regres-
sions explicitly measure inventor-to-inventor knowledge
flows, the short-term differentials are more generally repre-
sentative of the transfer of codified and tacit knowledge.

The heightened transfer of codified knowledge can arise
from several factors. Most simply, ethnic networks aid
awareness of new technologies that are developed. Even
with modern communications advances, information con-
tinues to diffuse through professional networks and word of
mouth. Second, ethnic business networks can aid trust and
informal contracts where traditional legal enforcement is
uncertain. Ethnic diasporas have facilitated trade flows for
centuries (for example, Rauch, 2001; Rauch & Trindade,
2002), and frontier ethnic expatriates can serve as reputation
intermediaries for the transfer of new technologies, too.
These transfers are understandably cautious given weaker
international intellectual property protections. Kapur (2001)
notes that U.S. ethnic scientists and entrepreneurs are likely
to play a greater role as reputation intermediaries in indus-
tries where tacit knowledge is important with respect to
quality. U.S. Indian entrepreneurs have substantially en-
hanced the brand reputation of India’s programmers.

The transfer of the practical knowledge necessary for
using or adapting new innovations is also aided by frontier
expatriates. This tacit knowledge applies to both the specific
technologies developed and the broader context of innova-
tion. Often times, the technology diffusion encouraged by
cross-border ethnic transfers encourages the formation of
new firms seeking to integrate into industries characterized
by decentralized production and cross-firm collaborations.
In these environments, informal knowledge regarding com-
ponent integration and the industry’s future direction are
critical; these insights can moreover illuminate pitfalls to
avoid. The importance of this tacit knowledge cannot be
overestimated. Lester and Piore (2004) describe how a
Japanese communications equipment manufacturer with-
drew from the U.S. market after being excluded from
standards hearings held by the Federal Communications

10 Kerr (2007a) tabulates these negative-binomial regression results.
This unpublished appendix also contains results using the data set and
techniques developed by Thompson (2006). After assigning ethnicities to
inventors in Thompson’s data set, estimations using Thompson’s tech-
nique yield a quantitatively similar role for own-ethnicity in international
citations of 40%—-60% depending upon the specification.
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Commission (FCC), despite the fact that the FCC published
the transcripts of its sessions! The Japanese vendor felt it
would not understand adequately the unspoken or implicit
decisions being made.!!

Finally, this study has interesting parallels to two recent
papers regarding knowledge diffusion through Indian entre-
preneurial and scientific networks. In a study of India’s
software industry, Nanda and Khanna (2006) find that en-
trepreneurs outside of software hubs rely more on the Indian
diaspora than those working within centers like Bangalore.
These findings suggest that diaspora networks may serve as
substitutes for local institutions and technology opportuni-
ties. Looking within a single economy, Agrawal, Kapur, and
McHale (2007) jointly examine knowledge diffusion
through co-location and co-ethnicity using domestic patent
citations made by Indian inventors living in the United
States. While being in the same city or the same ethnicity
both encourage knowledge diffusion, their estimations sug-
gest that the marginal benefit of co-location is four times
larger for inventors of different ethnicities. This substitut-
ability between social and geographic proximity can create
differences between a social planner’s optimal distribution
of ethnic members and what the inventors themselves would
choose.!?

IV.  Output and Productivity Analysis

This section turns to the next question of whether this
greater transfer of knowledge for U.S. innovations through
ethnic networks produces measurable economic improve-
ments for foreign countries. The U.S. ethnic patenting
trends are joined with data on foreign manufacturing indus-
tries, and an empirical extension of specification (6) is
developed and estimated.

A. Foreign Manufacturing Data

The benefit of knowledge integration for foreign devel-
opment is evaluated through the Industrial Statistics Data-
base of the United Nations Industrial Development Organi-
zation (UNIDO). The UNIDO collects industry-level
manufacturing statistics for the International Yearbook of
Industrial Statistics and specialized publications on topics
like development and competition. Researchers at the
UNIDO supplement the data resources of the OECD with

' A second intuitive example is the construction of an atomic bomb.
While the basic designs are available on the Internet, efforts to stem
nuclear weapons proliferation focus extensively on the scientists with the
tacit knowledge necessary for implementation. Other examples are drawn
from Amsden (2001), Feinstein and Howe (1997), Kim (1997), Lim
(1999), and Saxenian (2006). Polanyi (1958, 1966) introduces tacit knowl-
edge; Granovetter (1973) highlights the strength of weak ties.

12 Technology diffusion is also facilitated by foreign direct investment
and multinational enterprises (for example, Branstetter, 2006; Singh,
2004). Foley and Kerr (2007) find growth in the U.S.-based ethnic
researchers within U.S. multinational firms is correlated with larger FDI
into countries of the researchers’ ethnicity. Moreover, the organizational
form of the FDI shifts toward more direct entry versus joint ventures.
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TABLE 2.—UNIDO INDUSTRY SAMPLE

1980 Agr. UNIDO3 Output 1980 Agr. UNIDO3 Output
Country Share Panel Level  Growth Country Share Panel Level  Growth
Single Ethnic Mappings: Chinese Economies:
India 70% 85-97 117,950 6% China, Mainland 74% 85-97 327,173 11%
Japan 11% 85-97 2,053,048 7% Hong Kong 1% 85-97 30,520 3%
Russia 16% 93-97 109,729 12% Macao 6% 85-97 1,209 8%
South Korea 37% 85-97 230,942 14% Singapore 2% 85-97 37,830 16%
Soviet Union 16% 85-89 1,087,914 7% Taiwan 8% 85-96 145,055 11%
European Economies: Hispanic Economies:
Austria 10% 85-97 73,524 5% Argentina 13% 85-90, 93-96 66,160 11%
Belgium 3% 85-92, 95-97 31,958 5% Bolivia 53% 85-97 1,474 7%
Denmark 7% 85-91 38,198 9% Brazil 37% 90, 92-95 127,807 11%
Finland 12% 85-97 52,510 4% Chile 21% 85-97 20,604 10%
France 8% 85-96 517,276 8% Colombia 40% 85-97 20,099 5%
Germany 7% 91-97 870,625 7% Costa Rica 35% 85-97 3,264 5%
Germany, East 85-92 233,905 12% Cuba 24% 85-89 10,531 —1%
Germany, West 85-89 734,523 12% Ecuador 40% 85-97 4,372 3%
Italy 13% 85-94, 96-97 390,266 7% Honduras 57% 90-95 989 8%
Luxembourg 5% 85-97 2,952 3% Mexico 36% 85-97 61,612 4%
Netherlands 6% 85-97 117,868 6% Panama 29% 85-94, 96-97 1,468 4%
Norway 8% 85-97 37,467 4% Peru 40% 85-92,94-96 13,944 8%
Poland 30% 90-97 54,895 6% Philippines 52% 85-97 23,238 11%
Sweden 6% 85-97 93,727 6% Portugal 26% 85-97 36,365 8%
Switzerland 6% 86-96 37,827 7% Spain 18% 85-97 201,951 8%
Uruguay 17% 85-97 4,648 6%
Venezuela 15% 85-97 24,174 1%

Notes: Output values are expressed in millions of 1987 U.S. dollars. Levels and growth rates are unweighted averages of yearly country-level aggregates derived from the industry data used in the UNIDO3 panel.
See Kerr (2007a) for additional descriptive statistics and data preparation steps. ISIC rev. 2 industries: Food products (311), Beverages (313), Tobacco (314), Textiles (321), Wearing apparel, except footwear (322),
Leather products (323), Footwear, except rubber or plastic (324), Wood products, except furniture (331), Furniture, except metal (332), Paper and products (341), Printing and publishing (342), Industrial chemicals
(351), Other chemicals (352), Petroleum refineries (353), Misc. petroleum and coal products (354), Rubber products (355), Plastic products (356), Pottery, china, earthenware (361), Glass and products (362), Other
nonmetallic mineral products (369), Iron and steel (371), Nonferrous metals (372), Fabricated metal products (381), Machinery, except electrical (382), Machinery, electric (383), Transport equipment (384),
Professional & scientific equipment (385), and Other manufactured products (390). Industry 390 is excluded.

national records for non-OECD members, creating a unique
global resource. The UNIDO'’s stated objective is the com-
pilation of internationally comparable and internally consis-
tent series (such as, variable definitions, accounting units,
collection procedures).

Table 2 describes the sample and lists the three-digit ISIC
industries. The panels include all country-industry observa-
tions surveyed at least four times from 1985 to 1997 that
correspond to non-English ethnicities identifiable with the
ethnic-name database (for example, Canada, the United
Kingdom, Africa, and the Middle East are excluded). Three
industry characteristics are considered: output, employment,
and labor productivity measured as output per employee.
Table 2 aggregates the annual industry-level data to describe
the country-level manufacturing sectors. While direct com-
parisons across countries are limited with an unbalanced
panel, the output and labor productivity differences between
industrialized countries (such as, Japan) and developing
nations are clearly evident. The underlying industry-level
metrics also agree with published UNIDO and World Bank
statistics.'3

13 Kerr (2007a) documents additional descriptive statistics for this sam-
ple, the data set development process, and alternative UNIDO panels
considered. The appendix also describes the mapping of USPTO technol-
ogy classifications to ISIC industries, building on Johnson (1999) and
Silverman (1999).

B. Output and Productivity Estimation Framework

The combined data set affords an industry-level analysis
of technology transfer with multiple countries and ethnici-
ties. Extending equation (6) to industry i and country ¢ of
ethnicity e,

1n(Yci) = d)ci + 11'1(7,) + B ln([’R,ei)a (8)
where L., is the size of the U.S. research community of
ethnicity e in industry i. While analytically convenient, this
steady-state description must be adapted for the empirical
exercises. The ethnic human capital stocks for U.S. tech-
nologies change over the 1985-1997 period—the source of
identification for the 3 parameter. The citation regressions
in figure 2 highlight that ethnic ties have an important lag
structure, especially for the first five years of knowledge
dissemination. Rewriting equation (8) in discrete time to
model this five-year dependency,

5
In(Y,;) = by + In(T,) + B In| Xlpers |-

s=1

%)

Ethnic patenting data provide an empirical foothold for
estimating these U.S. ethnic scientific research communi-
ties. Rewriting the U.S. researcher productivity function
into a discrete-time form for industry i and ethnicity e,
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Itlw = I, + Ly The measured patenting of ethnicity e in
year t again depends upon the overall stock of U.S. knowl-
edge and the size of the ethnic research group in the United
States (measured at the beginning of the year). By abstract-
ing from the endogenous growth stimulus, the researcher
productivity becomes time-invariant: I, = I . Thus, the
U.S. ethnic research community can be inferred from the
patent flow divided by the constant researcher productivity
(Leir = Iy - Itjo). Substituting this simplified form into
equation (9), the time-invariant researcher productivity [ ,-;01
is separated from the patent sum and incorporated with
In (I,) into an industry-year fixed effect m;. Likewise, the
base productivity constants ¢; are extended into country-
industry fixed effects.

To keep the exposition simple, define PATY; to be the
five-year sum of recent U.S. ethnic patenting in an industry.
The core estimating equation becomes

ln(Ycit) =at B ln(PATZf) + d)ci + Nir + 8cin (10)
where ¢.; and m);, are the vectors of country-industry and
industry-year fixed effects, respectively. These fixed effects
warrant careful discussion. First, the country-industry ef-
fects &.; remove levels differences between series. Without
b, a positive B would be found if output in China’s
computer industry and U.S. Chinese research in the com-
puter industry are higher than average. Incorporating &,
instead requires the output growth in China’s computer
industry be above average if the U.S. Chinese computer
research growth is above average. Focusing on relative
growth rates removes time-invariant factors that potentially
confound the analysis (for example, the productivity param-
eters A, ethnicity size).

The derivation of equation (10) highlights two impor-
tant roles for the industry-year fixed effects m;. First, n;,
extract the overall growth in the U.S. knowledge stock
for an industry (for example, the strong increase in
computer and pharmaceutical research vis-a-vis mechan-
ical research). Second, m;, control for the invention pro-
ductivity of researchers, so that ethnic patenting flows are
viable proxies for ethnic research in the United States.
More generally, the industry-year effects remove all
industry-level trends common to the countries (such as,
demand shifts, price changes) and fluctuations in patent
statistics due to changes in USPTO resources (for exam-
ple, Griliches, 1990).

These fixed effects are crucial for the interpretation of the
B parameter. This project does not estimate the effect of
U.S. patenting on foreign output and productivity; indeed,
isolating that specific channel from other knowledge flows
between countries is not feasible with industry-level out-
comes. Moreover, the substantial increase in the number of
patents granted by the USPTO over the last two decades is
difficult to interpret. Instead, equation (10) forces variation
to be within industries, isolating the size of ethnic commu-
nities from aggregate industry trends. A positive 3 coeffi-
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cient requires that higher relative growth of Chinese com-
puter research compared to Indian computer research in the
United States correlate with higher relative output growth in
China’s computer industry compared to India’s computer
industry.

C. Ethnic Patenting Estimator

The five-year patent sums PATY; are developed for each

ethnicity-industry from the patent database. The matched
USPTO records describe the ethnic composition of U.S.
scientists and engineers with previously unavailable detail:
incorporating the major ethnicities working in the U.S.
scientific community; separating out detailed technologies
and manufacturing industries; and providing annual metrics.
The panel econometrics (10) require this level of cross-
sectional and longitudinal variation to estimate general
elasticities. The procedure does, however, have three poten-
tial limitations that should be discussed before presenting
the results.

First, the approach does not distinguish foreign-born
ethnic researchers in the United States from later genera-
tions working as scientists and engineers, especially for the
European contribution. While research on social and busi-
ness networks finds the strength of ties to home countries
declines for later generations, the ethnic patenting approach
can only estimate total ethnic scientific populations. The
panel econometrics employed for the output and productiv-
ity analyses, however, identify off of relative changes in
these community sizes. Census and Immigration and Natu-
ralization Service (INS) records confirm these changes are
primarily due to new immigration for the period studied,
substantially weakening this overall concern. Moreover, the
immigration reform exercises in section V yield similar
results when focusing specifically on new arrivals through
U.S. quotas changes.

On a related topic, recent surveys of ethnic technology
transfer from the United States to China and India suggests
technical exchanges are particularly aided by the circular
labor movements of U.S.-trained researchers and entrepre-
neurs (for example, Saxenian, 2006; Nanda & Khanna,
2006). The ethnic patenting technique cannot quantify the
magnitudes of reverse migration and circular migration
flows, instead being restricted to net growth in U.S. ethnic
researcher populations. In this metric’s defense, the scien-
tific integration it captures likely embodies circular flows
too, and the 1985-1997 period predates most large-scale
return migration decisions. If anything, the extent to which
return migrations are important should lead to finding a
negative 3 coefficient in the estimations. Return migration
and circular movements are rapidly growing in importance,
however, and it is hoped that future research will illuminate
these issues further.

Finally, the name-matching technique does not distin-
guish finer ethnic and linguistic divisions within the nine
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major ethnic groupings. It would be advantageous to sepa-
rate Mexican from Chilean scientists within the Hispanic
ethnicity, to distinguish Chinese engineers with ties to
Taipei versus Beijing versus Shanghai, and so on. These
distinctions are not possible for this study’s large-scale
analysis, and several countries will map into the Chinese,
European, and Hispanic ethnicities for the output and pro-
ductivity analyses below. The empirical analysis accounts
for this multiplicity by conservatively clustering standard
errors at the ethnicity-industry level; this cross-sectional
clustering further addresses the serial-correlation concerns
of Bertrand, Duflo, and Mullainathan (2004). Despite the
clustering, measurement error from the broader ethnic divi-
sions may still bias the estimated coefficients downward.
The positive elasticities evident will nevertheless support
the conclusion that technology following countries experi-
ence economic growth due to stronger technology transfer
from the United States.

D. Basic Output and Productivity Regressions

As a final preparation step, the levels specification (10) is
first-differenced for estimation,

Aln(Y,) =« + B AIn(PATG?) + my, + & (1)
where €., = €. — €.-1."* Table 3 reports the primary
results. The top row finds that output rises with strong
scientific integration to the United States. As both vari-
ables are in logs, the 0.091 coefficient in the upper-left
corner finds a 10% increase in U.S. ethnic research is
associated with a 1% increase in foreign output. Industry
output expansion can come through both labor produc-
tivity gains and expansion in employment. Disaggregat-
ing the output regression, panels B and C find labor
productivity growth facilitates most of the manufacturing
development captured in this sample.

Three weighting schemes are tested: no weights,
weighted by the 1985-1987 industry-level patenting in
the United States, and weighted by the 1985-1987 size of
the foreign manufacturing industry. The 8 coefficients in
the weighted regressions are larger than the unweighted
specification, measuring an output elasticity of approxi-
mately 0.3. The patent weights emphasize high-tech in-
dustries and the strong interactions of the Chinese and
Indian research communities with their home countries.
The output weights instead focus on the largest industries
and offer a sense of the average treatment effect for
industries. Coefficient estimates tend to be marginally

14 The efficiency of this first-differences form versus the levels specifi-
cation turns on whether the error term €, is autoregressive. If autoregres-
sive deviations are substantial, the first-differences form is preferred; a
unit root error is fully corrected. If there is no serial correlation, however,
first-differencing introduces a moving-average error component. Estima-
tions of the autoregressive parameter in the levels specification for this
study find serial correlations of 0.5-0.6, while —0.1 is evident in the
first-differences form.
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TABLE 3.—UNIDO FIRST-DIFFERENCES SPECIFICATIONS

No Patent Output
Weights Weights Weights

6] 2 3

A. A Log Foreign Output

A log U.S. ethnic 0.091 0.340 0.285
research community (0.056) (0.133) (0.074)
Observations 8,736 8,736 8,736
B. A Log Foreign Labor Productivity

A log U.S. ethnic 0.087 0.214 0.217
research community (0.049) (0.114) (0.072)
Observations 8,736 8,736 8,736

C. A Log Foreign Employment

A log U.S. ethnic 0.003 0.127 0.068
research community (0.036) (0.084) (0.047)
Observations 8,736 8,736 8,736

Notes: Row titles document the dependent variable studied; column titles document the weighting
scheme employed. Panel estimations consider country-industry-year observations taken from the 1985—
1997 UNIDO manufacturing database. Log U.S. ethnic research communities are estimated at the
ethnicity-industry-year level from the U.S. ethnic patenting data set. Regressions include industry-year
fixed effects. Standard errors are conservatively clustered at the ethnicity-industry level.

smaller with the output weights than the patent weights
because of the output weights’ greater emphasis on tra-
ditional economic sectors (such as food products, tex-
tiles). Both approaches, however, yield more consistent
results than the unweighted regressions by focusing at-
tention on larger countries and industries and reducing
measurement error in the ethnic patenting estimator. The
weighted estimations are the preferred specifications of
this study.!®

The basic estimations reported in table 3 are consistent
with technology following countries realizing economic
gains from stronger scientific integration with the United
States. These benefits appear to extend beyond the inventor-
to-inventor flows evident with the citations analysis, as
these U.S. ethnic research communities facilitate broader
manufacturing output growth through superior access to the
U.S. technology set. The remainder of this section further
tests this finding by incorporating country-level controls,
examining sector reallocations, and so on.'®

E. Foreign Country Development Controls

The industry-year fixed effects create an empirical envi-
ronment where U.S. ethnic patenting serves as a viable
metric for the strength of ethnic research communities.

15 The elasticities are larger and more uniform in the levels estimation
(10). The unweighted output elasticity is 0.241 (0.126), while the patent-
and output-weighted elasticities are 0.420 (0.228) and 0.400 (0.147),
respectively. Kerr (2007a) documents equivalent results using the levels
specifications for all of the tables presented below.

16 The differential technology transfer explains 1%—2% of the sample’s
output and productivity growth variation after removing aggregate indus-
try trends. The percentage accounted for rises to 3%—-5% with the sector
reallocation specifications studied below. These percentages provide order-
of-magnitude estimates for the total growth accounted for, although
calculations after removing industry-year effects likely understate the total
impact due to technology transfer. These technology gains in turn produce
comparative advantages for trade (Kerr, 2007b).
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TABLE 4.—UNIDO COUNTRY CONTROLS SPECIFICATIONS

No Patent Output
Weights Weights Weights
) (@) 3
A. Base Foreign Output Regression
A log U.S. ethnic 0.091 0.340 0.285
research community (0.056) (0.133) (0.074)
Observations 8,736 8,736 8,736

B. Including Foreign PhD Students in the United States

A log U.S. ethnic 0.061 0.313 0.210
research community (0.035) (0.073) (0.065)

A log foreign PhD
students in United 0.038 0.050 0.053
States (0.068) (0.081) (0.073)

Observations 7,780 7,780 7,780

C. Including Foreign Physical Capital Stocks

A log U.S. ethnic 0.026 0.275 0.209
research community (0.069) (0.173) (0.091)

A log foreign capital 0.069 0.112 0.059
stock (0.030) (0.047) (0.034)

Observations 4,866 4,866 4,866

D. Including Country Time Trends

A log U.S. ethnic 0.000 0.130 0.153
research community (0.061) (0.102) (0.068)

Observations 8,736 8,736 8,736

E. Including Country-Year Effects

A log U.S. ethnic —0.092 0.149 —0.022
research community (0.048) (0.107) (0.059)

Observations 8,736 8,736 8,736

Notes: See table 3. Panel A replicates the foreign country-industry output regressions from table 3.
Panels B through E incorporate the country controls indicated by the row titles. All regressions maintain
industry-year fixed effects and the clustering of standard errors.

Moreover, the focus on within-industry variation circum-
vents many problems in interpretation that could arise from
different industry trends (such as, rapid high-tech growth).
As the constructed panel includes multiple industries within
a country, additional tests can be performed that further
control for countrywide development. Table 4 undertakes
four such tests, with panel A simply replicating the base
first-differences regressions for foreign output from table 3.

An immediate concern is whether the results are captur-
ing only foreign human capital development, which could
reasonably lead to an expansion in foreign manufacturing
and the emigration of researchers to the United States. The
NSF collects annual data on the U.S. PhD science and
engineering graduates by country of birth. As an initial
robustness check on the general human capital development
story, panel B adds the log trend in these graduates as an
additional covariate. The role of the U.S. ethnic scientific
community remains strong and significant. (The immigra-
tion analysis in section V returns to these PhD trends and the
reverse-causality concern.)

Panel C next explores the role of physical capital devel-
opment in explaining the output growth. The theory in
section II only models nondurable intermediate inputs, a
simplification that removes the need to track two state
variables. Labor productivity and output growth occur with
capital deepening as well as technology adoption, however.
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This investment in physical machinery and structures is
clearly endogenous to technology transfer from the frontier
economy, because of both the larger available technology
set and the general equilibrium economic development
experienced. Nevertheless, additional confidence for the
role of frontier scientific communities can be established
through joint tests with this factor input. The output-
weighted coefficient retains most of its economic magnitude
and statistical strength; the patent-weighted coefficient re-
tains 80% of its original economic importance but is no
longer statistically significant.!”

More generally, panels D and E incorporate into equation
(11) linear country time trends and nonparametric country-
year fixed effects, respectively. These additional controls
remove trends common to the industries within a country,
including the overall growth in each ethnicity’s U.S. re-
search community (for example, the strong increases in
Chinese and Indian patenting in the United States). For
foreign output, the country effects extract national business
cycles, trend manufacturing gains, trade agreements, and so
on. A positive 3 coefficient in these estimations requires that
higher relative growth of Chinese computer research to
Chinese pharmaceutical research in the United States be
partially correlated with higher relative output growth in
China’s computer industry to its pharmaceutical industry
(after worldwide industry trends are removed).

The inclusion of both country-year and industry-year
fixed effects in a first-differenced specification is a very
stringent test, and much of the variation is removed from the
sample. While the positive correlations are preserved in
three of the four weighted regressions, only one coefficient
is statistically significant. Moreover, the correlations are 0
or negative in the unweighted specifications. These declines
in coefficient magnitudes are partly explained by the rela-
tively uniform growth (versus levels) in each ethnicity’s
U.S. research communities across industries in a log expan-
sion. That is, much greater variation exists across ethnicities
than across industries within an ethnicity (Kerr, 2007c¢). To
the extent that this uniform growth is what is being captured
by the country-year fixed effects, the core estimations cor-
rectly measure the general elasticity. This study cannot
reject, however, that the base elasticities are upward biased
due to presence of an omitted variable operating at the
country-year level too.

F. Sample Decompositions

The core objective of these empirical exercises is quan-
tifying the mean output gains from U.S. technology transfer
through ethnic networks across a diverse group of countries

17 The UNIDO data unfortunately lack capital records for almost half of
the sample. Moreover, the available capital stocks are measured with
substantial error, downward biasing the capital coefficients. Kerr (2007a)
details the construction of the capital stocks and provides additional tests.
These results can be extended to include labor in a production function
estimation, although the employment response is even more endogenous
to technology transfer as discussed below.



530

TABLE 5.—UNIDO SAMPLE DECOMPOSITIONS

No Patent Output
Weights Weights Weights
) (@) 3
A. Base Foreign Output Regression
A log U.S. ethnic 0.091 0.340 0.285
research community (0.056) (0.133) (0.074)
Observations 8,736 8,736 8,736
B. Excluding Computers and Drugs
A log U.S. ethnic 0.058 0.126 0.207
research community (0.054) (0.076) (0.063)
Observations 7,991 7,991 7,991
C. Excluding Mainland China
A log U.S. ethnic 0.059 0.308 0.258
research community (0.061) (0.166) (0.086)
Observations 8,518 8,518 8,518
D. Excluding All Chinese Economies
A log U.S. ethnic 0.059 0.195 0.238
research community (0.058) (0.131) (0.082)
Observations 7,616 7,616 7,616
E. Excluding All Advanced Economies
A log U.S. ethnic 0.117 0.386 0.255
research community (0.080) (0.116) (0.079)
Observations 5,549 5,549 5,549
F. Excluding All Hispanic Economies
A log U.S. ethnic 0.055 0.334 0.243
research community (0.071) (0.162) (0.091)
Observations 4,821 4,821 4,821

Notes: See table 3. Panel A replicates the foreign country-industry output regressions from table 3.
Panels B through F exclude the observations indicated by the row titles. All regressions maintain
industry-year fixed effects and the clustering of standard errors.

and industries. It is informative, however, to identify which
observations are most responsible for the aggregate find-
ings. Table 5 investigates this question through several
sample decompositions.

Case studies of successful technology diffusion often
focus on the computer and pharmaceutical industries, and
the exceptional outcomes of Asian scientific communities in
Silicon Valley are widely noted. While the industry-year
effects control for the overall growth in each industry’s
research and output (for example, Griliches, 1994), ethnic
differences in high-tech industries alone could still be re-
sponsible for the positive correlations. To some extent, the
stronger coefficients in the patent-weighted regressions sug-
gest this is true, and panel B begins by directly excluding
the computer and pharmaceutical industries from the sam-
ple. The results are mixed. On one hand, both the un-
weighted and patent-weighted coefficients decline substan-
tially in economic magnitude. On the other hand, the patent-
weighted coefficient does remain statistically significant and
the output-weighted elasticity is broadly robust. These
mixed results suggest the gains are concentrated in high-
tech sectors, but that they are not entirely exclusive to them.

Chinese economies, more often than not, are also the
centerpieces of technology transfer stories. The U.S. Chi-
nese research community experiences strong growth during
the sample period, and Mainland China has exceptional
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manufacturing gains too. When excluding Mainland China
in panel C, the unweighted elasticity loses a third of its
magnitude and its statistical significance, but the weighted
regressions deliver fairly similar results. Unreported regres-
sions further find that the weighted parameter estimates do
not depend significantly on the inclusion of any one country
in the sample. Panel D of table 5 demonstrates, however,
that excluding the full Chinese ethnicity can be important
even for the weighted estimations. Given that the Chinese
grouping includes three of the four Asian tiger economies
(Hong Kong, Singapore, and Taiwan) and Mainland China,
it is not too surprising that the effect is sensitive to their
inclusion. Further tests find that the decline in the coefficient
size is mostly linked to dropping the computer and drug
industries for the Chinese economies. This cautions that the
well-documented outcomes for Silicon Valley are in some
sense special even for the Chinese, with the benefits of
scientific collaboration for manufacturing being weaker in
most other contexts.!'®

The UNIDO sample also includes several industrialized
economies that are undertaking extensive R&D themselves.
For example, Japanese inventors living in the United States,
who are well identified with the ethnic-name database,
patented less than 10,000 inventions from 1985 to 1997,
almost 300,000 USPTO patents were awarded to Japanese
inventors living outside of the United States during this
period." Positive correlations of foreign country growth to
U.S. ethnic research may simply be capturing reverse tech-
nology flows, intracompany patenting, or defensive patent-
ing from these advanced economies. Exploring this issue,
panel E excludes Japan, European countries, and Russia and
finds similar results to the full sample. Likewise, the last
row drops the large bloc of Hispanic countries and finds
similar coefficients in the weighted regressions.

To summarize, the unweighted elasticities are clearly
sensitive to the sample composition, while the weighted
elasticities are more robust across sample compositions. The
ethnic technology transfer mechanism is especially strong
for high-tech and Chinese outcomes, reflective of the dis-
proportionate number of case studies written. The weighted
specifications suggest, however, that some transfer benefits
extend beyond these special outcomes to other ethnicities
and more traditional industries. The next section refines the
main effects to characterize further differences in outcomes
by development stage.

G. Sector Reallocation

The theoretical framework presented in section II builds
on the assumption of full employment in the technology

18 Dropping only the computer and drug industries for Chinese econo-
mies yields coefficients slightly larger than those in panel D that are
statistically significant in the two weighted regressions.

19 The estimates are sums over inventor ethnicity percentages at the
patent level. Japanese inventors are associated with more patents because
of multiple inventors.
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follower’s manufacturing and research sectors. While the
estimating equation (6) relates the follower’s output to its
research presence in the leader, the same elasticity 8 would
hold for labor productivity specifications. With full employ-
ment, output gains can only come through labor productiv-
ity enhancements. Many developing economies have large
agricultural sectors, however, and the migration from agri-
culture to manufacturing is important for characterizing
economic development (for example, Harris & Todaro,
1970).

Kerr (2007a) incorporates into the basic model an agri-
cultural sector in the follower. In this extension, technology
transfer from the leader to the follower induces sector
reallocation, with labor shifting from agriculture to the
manufacturing and research sectors. Thus, output growth
occurs through both labor productivity gains, as in the
steady-state scenario, and through employment growth
along the transition path. After a sufficient number of
frontier innovations are imitated, the follower’s economy
transitions to full employment in the manufacturing and
research sectors. Thus, the steady state of the expanded
economy is the same as the basic framework described in
section 1.0

To test these transition path predictions for developing
economies, table 2 lists the 1980 share of national employ-
ment in agriculture for each economy. The three smallest
agricultural sectors are found in Hong Kong (1%), Singa-
pore (2%), and Belgium (3%), while the three largest
sectors are India (70%), Vietnam (73%), and Mainland
China (74%). A modified form of equation (11) interacts the
ethnic scientific community regressor with this preperiod
agricultural share,

A In(Y,;,) = o + BA In(PATY}
+vA ln(PATZf) *AGR%. 1950 + My + €eins

where the main effect for the agricultural share is absorbed
into the first-differencing. The main effects are demeaned
prior to the interaction to restore the [3 coefficient to close to
its base level. A positive y coefficient indicates output
growth due to scientific integration is stronger in countries
with larger agricultural workforces in 1980.

Table 6 reports the results from these interacted regres-
sions. Foreign country output growth due to stronger U.S.
ethnic research integration is higher in economies with large
agricultural shares in 1980. Panels B and C again disaggre-
gate the output regression into labor productivity and em-
ployment shifts, respectively. Labor productivity gains are
weaker in the less developed economies, though the differ-
ence is usually not statistically significant, while substantial

20 The output gains through labor productivity and employment growth
are of similar magnitude in the numerical simulations Kerr (2007a)
models. In alternative models, output growth would come only through
labor reallocation (such as, fixed physical capital stocks and constant
outside wages).
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TABLE 6.—UNIDO SECTOR REALLOCATION SPECIFICATIONS
No Patent Output
Weights Weights Weights
(D 2 3)
A. A Log Foreign Output
A log U.S. ethnic research 0.043 0.315 0.252
community (0.062) (0.153) (0.086)
A log US ethnic comm. 0.765 0.442 0.647
X 1980 agriculture share (0.185) (0.353) (0.242)
Observations 8,736 8,736 8,736
B. A Log Foreign Labor Productivity

A log U.S. ethnic research 0.105 0.225 0.228
community (0.047) (0.106) (0.068)

A log U.S. ethnic comm. —0.284 —0.191 —0.216
X 1980 agriculture share (0.097) (0.162) (0.120)
Observations 8,736 8,736 8,736

C. A Log Foreign Employment

A log U.S. ethnic research —0.062 0.091 0.024
community (0.037) (0.084) (0.047)
A log U.S. ethnic comm. 1.049 0.633 0.863
X 1980 agriculture share (0.146) (0.266) (0.198)
Observations 8,736 8,736 8,736

Notes: Row titles document the dependent variable studied; column titles document the weighting
scheme employed. Panel estimations consider country-industry-year observations taken from the 1985—
1997 UNIDO manufacturing database. 1980 agriculture shares for foreign countries are listed in table 2.
Log U.S. ethnic research communities are estimated at the ethnicity-industry-year level from the U.S.
ethnic patenting data set. Main effects are demeaned prior to interactions. Regressions include industry-
year fixed effects. Standard errors are conservatively clustered at the ethnicity-industry level.

sector reallocation through employment growth is clearly
evident in panel C. The interacted regressions thus support
the model’s predictions regarding the stage of development
being important for how technology transfer gains are
realized. Economies with large agricultural sectors facilitate
employment reallocation across sectors that aid manufac-
turing output expansion.?!

V. Exogenous Changes from U.S. Immigration Reforms

While OLS regressions establish partial correlations
present in the data, they frequently fail to identify causal
relationships because of the endogenous relationships be-
tween outcomes or because of omitted variable biases.
Domestic human capital developments in Chinese econo-
mies, for example, could lead to both higher productivity
and output growth at home and the export of scientists to the
United States. Alternatively, R&D in Japan might be re-
sponsible for the growth of its Asian neighbors and feed into
higher U.S. research output. Despite the strong fixed-effect
specifications employed, further exercises can aid in the
interpretation of the positive outcomes evident in patent-
based regressions.

The earlier model helps us to understand and address
these concerns. Consider the initial transition from the
equilibrium described in section II following an industrial-
ization push in the follower. The follower’s government

21 These sector reallocation findings are robust to the earlier sample
decompositions. Notably, the interactions are more robust than the main
effects to dropping high-tech industries and the Chinese ethnicity (Kerr,
2007a).
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temporarily subsidizes invention until condition (7) no
longer holds. As I > I'W[M/I)(HF)®, it is more profitable for
researchers in the follower to invent rather than imitate; the
follower’s output growth and sector reallocation are now
driven solely by domestic innovations. In the leader, re-
searchers of the follower’s ethnicity switch from inventing
to imitating, as the latter is initially very easy (that is, W[0]
is high). If international property rights are weak, so that
ethnic researchers in the leader can register their imitations
with the leader’s patent office, a positive 8 coefficient will
be found in the core estimating equations even though the
follower’s manufacturing gains no longer depend on its
frontier research community. In fact, data trends will show
contemporaneous accelerations in the growth of foreign
output and the leader’s ethnic patenting.??

The leader’s population of the follower’s ethnic research-
ers is a foothold for establishing greater confidence in the
direction of technology flows as the expatriates only influ-
ence the follower’s development through their transmission
of knowledge regarding frontier innovations. If the size of
this research population is exogenously determined by im-
migration restrictions, a reduced-form strategy for the size
of the ethnic research community can be developed within
the quotas system. In this paper’s context, U.S. immigration
law does not control the population size of foreigners in the
United States, but it does control the inflow of new immi-
grants. Define the quota on the follower’s inflows of re-
searchers to the United States to be QUOTAg,,. Assuming
that only the previous three years of immigration matter for
a research stock,” a reduced-form immigration estimator
for ethnic scientific integration to the United States is
modeled as

5

In(IMMEL,) = In| 2 (QUOTA,,—,

s=1

(12)

+ QUOTA, -1 + QUOTA,,—,») |-

The summation over the previous five years maintains the
human capital stock modeling technique employed with the
ethnic patenting data set. This section designs and imple-
ments an empirical version of equation (12) using exoge-
nous changes in U.S. immigration quotas.

A. The Immigration Act of 1990

The disproportionate influence of immigrant scientists
and engineers (ISEs) in the United States is staggering:
while immigrants account for 10% of the U.S. working

22 The follower’s economy still depends on previously imitated products,
as well as new inventions. Kerr (2007a) further discusses the transitions
following this disturbance.

23 The reform below produced a very sharp immigration surge that
makes this assumption more reasonable.
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population, they represent 25% of the U.S. science and
engineering workforce and 50% of those with doctorates.
Even looking within the PhD level, immigrant researchers
have made an exceptional contribution to science as mea-
sured by Nobel Prizes, election to the National Academy of
Sciences, patent citation counts, and so on.?* Yet, the U.S.
immigration system significantly restricted the inflow of
ISEs from certain nations prior to its reform with the
Immigration Act of 1990 (1990 Act).

Immigrants can obtain permanent residency in the United
States through numerically unrestricted categories (such as,
immediate family members) or numerically restricted cate-
gories (such as, extended family members, employment-
based applications). The immigration exercises focus on the
numerically restricted categories that admit 75% of ISEs,
versus 43% of all immigrants. U.S. immigration law applies
two distinct quotas within these restricted categories. Both
of these quotas were increased by the 1990 Act, and their
combined change dramatically released pent-up immigra-
tion demand from researchers in constrained countries.

The first quota governs the annual number of immigrants
admitted per country. This quota is uniform across nations,
and the 1990 Act increased the limit from 20,000 to
approximately 25,620. Larger nations are more con-
strained by country quotas than smaller nations and
benefited most from these higher admission rates. Sec-
ond, separately applied quotas govern the relative admis-
sions of family-based versus employment-based immi-
grants. Prior to the 1990 Act, the quotas substantially
favored family-reunification applications (216,000) to
employment applications (54,000). The 1990 Act shifted
this priority structure by raising employment-based im-
migration to 120,120 (20% to 36% of the total) and
reducing family-based admissions to 196,000. Moreover,
the relative admissions of high-skilled professionals to
low-skilled workers significantly increased within the
employment-based admissions.?

The uniform country quotas and weak employment pref-
erences constrained high-skilled immigration from large
nations, and long waiting lists for Chinese, Indian, and
Filipino applicants formed in the 1980s. When the 1990 Act
simultaneously raised both of these quotas, the number of
ISEs entering the United States dramatically increased.
Figure 3 uses records from the INS to detail the response.
This graph plots the number of ISEs granted permanent

2 For example, Stephan and Levin (2001), Burton and Wang (1999),
Johnson (1998, 2001), and Streeter (1997).

25 Kerr (2007a) describes the 1990 Act in greater detail and discusses
ISE immigration through temporary visas and numerically unrestricted
categories. This supplement further catalogues the construction of the INS
data employed in this section. The worldwide ceiling for numerically
restricted immigration now fluctuates slightly year-to-year based on past
levels; maximum immigration from a single country is limited to 7% of
the worldwide ceiling. The employment limit increased to 140,000, but
120,120 corresponds to the previously restricted categories. Jasso, Rosen-
zweig, and Smith (2000) also discuss behavioral responses to the 1990
Act.



ETHNIC SCIENTIFIC COMMUNITIES AND INTERNATIONAL TECHNOLOGY DIFFUSION

533

FIGURE 3.—SCIENCE AND ENGINEERING IMMIGRATION
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Science and engineering immigration trends are calculated from INS surveys of permanent residency admissions at the immigrant level. The solid line marks the passage of the Immigration Act of 1990 that took
effect in 1991. Science and engineering categories are defined as engineers, natural scientists, and mathematical and computer scientists. Ethnic trends sum over the countries within each ethnicity. Kerr (2007a)

discusses different admission categories and low-skilled immigration during this period.

residency in the United States from 1983 to 1997 for
selected ethnicities (summed over countries within each
ethnicity). Prior to the 1990 Act, no trends are evident in
ISE immigration. The 1990 Act took effect in October 1991,
and a small increase occurred in the final three months of
1991 for Chinese and Indian ISEs. Immigration further
surged in 1992-1995 as the pent-up demand was released.
Low-skilled immigration did not respond to the 1990 Act.

The extremely large Chinese response and sharp decline
is partly due to a second law that slightly modified the
timing of the 1990 Act’s reforms. Following the Tiananmen
Square crisis in June 1989, Chinese students present in the
United States from the time of the crisis until May 1990
were permitted to remain in the United States until at least
1994 if they so desired. The Chinese Student Protection Act
(CSPA), signed in 1992, further granted this cohort the
option to change from temporary to permanent status during
a one-year period lasting from July 1993 to July 1994. The
CSPA stipulated, however, that excess immigration from the
CSPA over Mainland China’s numerical limit be deducted
from later admissions. The timing of the CSPA partly
explains the 1993 spike, and the ability of graduating
Chinese science and engineering students to remain in the
United States in 1990 should factor into the timing of the
reduced-form estimator.

Finally, NSF surveys of graduating science and engineer-
ing doctoral students—the group most important for devel-
oping human capital with respect to U.S. innovations—
confirm the strong responses evident in the INS data. The
questionnaires ask foreign-born PhD students in their final
year of U.S. study about their plans after graduation. Figure
4 exhibits the percentage intending to remain in the United
States after graduation for available countries. The 60% to

90% jump for Mainland China from 1990 to 1992 is
striking. Substantial increases are also apparent for India
and Western Europe.

B. Immigration Responses

The reduced-form strategy exploits differences in the
extent to which countries were affected by the 1990 reform.
It is inappropriate, however, to use the outcomes exhibited
in figures 3 and 4 to determine treatment and control groups.
A proper designation of the affected countries requires a
more formal analysis of researcher immigration responses
to the legislation change. Kerr (2007a) undertakes such an
analysis and further characterizes immigration waiting lists
around the time of the reform. From this analysis, the
treated groups are determined to be India, Mainland China,
the Philippines, and Taiwan. The reduced-form immigration
estimator (12) then takes the form

5
In(IMMEL) = In| 2 (QUOTAE_ + QUOTA®!__

s=1

+ QUOTAY

c,t—s—2

(13)

where QUOTA is the effective quota for country ¢ in year
t. Raising the numerical ceilings did not change the effective
quotas for nations unconstrained by the former immigration
regime, and their effective quotas are held constant at the
prereform theoretical limit. For constrained countries, the
effective quota increases to reflect both the higher country
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FIGURE 4.—U.S. SE PHD GRADUATES STAYING
PERCENTAGE OF GRADUATES FROM COUNTRY EXPECTING TO STAY IN THE UNITED STATES

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

1985 1986 1987 1988 1989

1990

1991 1992 1993 1994 1995 1996

=+=China = ¢ Taiwan =-#=|ndia —#=Korea =—Mexico =% \Western Europe

Trend lines show percentages of graduating foreign doctoral students from U.S. science and engineering PhD programs who intend to remain in the United States after graduation. Shares are calculated from NSF
surveys for available countries. The solid line marks the passage of the Immigration Act of 1990 that took effect in 1991.

limit of 25,600 and the larger employment preference allo-
cation of 36% (that is, 120,120/336,000). This quota in-
crease occurs in 1991 and is moved forward to 1990 for
Mainland China to account for the CSPA.

This simple reduced-form approach abstracts from sev-
eral issues: return migration (such as, Taiwanese scientists
in the mid-1990s), occupational or industry changes by
ISEs, second-generation immigrant demographics, shifts in
researcher productivity, and others. If these types of con-
cerns are overwhelming, panel regressions of U.S. ethnic
patenting on the reduced-form estimator will yield weak
coefficients. Unreported regressions find this relationship is
quite strong, however, despite the design’s simplicity. How-
ever, two more serious reservations regarding the estimator
should be addressed before viewing the results.

First, the quota change affected all skilled workers seek-
ing admission into the United States, not just researchers,
and the impact of other occupations should be considered.
The reduced-form estimator should only influence foreign
manufacturing output and productivity through the devel-
opment of human capital with respect to U.S. technologies.
Most skilled occupations can be dismissed immediately, yet
immigration of business executives and lawyers also in-
creased after the 1990 Act. It is possible this business group
might influence foreign output growth through better sales
contacts or higher foreign investment independent of tech-
nology transfer. The relative volumes argue against this
concern, as the size of the influx relative to the existing base
for advanced-degree researchers dwarfs other occupations.
The planned inflow of Chinese science and engineering
PhDs for 1991-1995, as measured by the NSF surveys,
would have doubled the existing Chinese-born PhD stock in
the 1990 Census. The business inflow over this period is
only about 20% of the 1990 stock.

A second liability is that the reduced-form estimator may
be correlated with other factors. Here, the simplicity of its
design is a concern. While determined by the data, the
quotas technique only distinguishes between the treatment
group (that is, India, Mainland China, the Philippines, and
Taiwan) and the remainder of the sample. Other changes
occurring around 1991 that affect the output growth of the
treatment group differentially from the control group could
confound the analysis. As with any country-level change,
possible confounding factors can be hypothesized for each
treatment member. While the results are robust to excluding
any one country from the treatment group, it is of course not
possible to drop them all.

These concerns are why the U.S. quotas are employed for
a reduced-form estimator rather than in an instrumental
variables specification. Immigration quotas directly influ-
ence the size of ethnic research communities in the United
States, and thus the unobserved human capital stocks. As
such, these quotas offer a nice complement to and check on
the earlier metrics derived from ethnic patents; moreover
the quotas-based metric is more robust to reverse-causality
criticisms. The estimator does not resolve omitted variable
concerns, however, and lacks industry-level variation that
can be exploited. As the exclusion restriction for two-stage
least squares would not hold, this study concentrates on the
reduced-form outcomes.

C. Reduced-Form Results
The reduced-form regressions for 1985-1997 mirror the

patent-based approach,

AIn(Y.) = o + BA In(IMMEF) + m, + €40, (14)
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with In(/ M MZF) defined by equation (13). Table 7 exhibits
the main results in a format similar to that of table 3. The
reduced-form estimator suggests foreign output increases
with an elasticity of about 0.3 to higher ethnic research in
the United States. While the (3 coefficients should not be
directly compared to the patent-based approach, the inter-
pretation that greater scientific integration with the United
States boosts foreign manufacturing development is sup-
ported. The lower variance in table 7’s estimates across
weights reflects the country-level design of the immigration
estimator.

In contrast to the patent-based results, panels B and C find
output growth comes mainly through higher employment
levels rather than labor productivity gains. This difference is
easily explained with the sector reallocation model. Three of
the four treated economies had large agricultural sectors in
1980 that supported significant expansions in employment;
Taiwan is the one exception at 8%. The immigration esti-
mator contrasts the outcomes in these economies with the
control sample and thus emphasizes the sector reallocation
process. The patent-based regressions, on the other hand,
paid greater attention to the outcomes of Hong Kong,
Macao, and Singapore through the application of the U.S.
Chinese ethnic patenting series to all economies within the
Chinese ethnicity. Without an agricultural sector from which
to draw labor, these economies experienced sharper labor
productivity gains.

Table 8 next turns to robustness checks on the output
growth finding. As a test of the foreign human capital
development story, panel B again incorporates the log trends
in foreign graduates from U.S. science and engineering PhD
programs. The technology transfer coefficients hold up well
in the augmented specification. Panel C finds that Mainland
China can again be excluded from the sample with only
minor shifts in the outcomes. The results are also robust to
dropping any other country, the computer and drug indus-

TABLE 7.—IMMIGRATION QUOTAS SPECIFICATIONS

No Patent Output
Weights Weights Weights

(1 (2) 3)

A. A Log Foreign Output
A log U.S. immigration 0.294 0.370 0.320
quotas estimator (0.044) (0.086) (0.057)
Observations 8,736 8,736 8,736
B. A Log Foreign Labor Productivity
A log U.S. immigration 0.054 0.135 0.086
quotas estimator (0.069) (0.080) (0.073)
Observations 8,736 8,736 8,736
C. A Log Foreign Employment

A log U.S. immigration 0.240 0.236 0.234
quotas estimator (0.045) (0.052) (0.037)
Observations 8,736 8,736 8,736

Notes: Row titles document the dependent variable studied; column titles document the weighting
scheme employed. Panel estimations consider country-industry-year observations taken from the 1985—
1997 UNIDO manufacturing database. Log U.S. immigration quotas estimators are developed from
quotas changes due to the 1990 Act. Regressions include industry-year fixed effects. Standard errors are
conservatively clustered at the ethnicity level.
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TABLE 8.—IMMIGRATION QUOTAS COUNTRY CONTROLS SPECIFICATIONS

No Patent Output
Weights Weights Weights
(D 2 3)
A. Base Foreign Output Regression
A log U.S. immigration 0.294 0.370 0.320
quotas estimator (0.044) (0.086) (0.057)
Observations 8,736 8,736 8,736
B. Including Foreign PhDs in the United States
A log U.S. immigration 0.280 0.350 0.297
quotas estimator (0.057) (0.110) (0.078)
A log foreign PhD
students in the 0.033 0.054 0.054
United States (0.068) (0.088) (0.076)
Observations 7,780 7,780 7,780
C. Excluding Mainland China
A log U.S. immigration 0.210 0.306 0.252
quotas estimator (0.094) (0.152) (0.111)
Observations 8,518 8,518 8,518
D. Including Ethnic Time Trend
A log U.S. immigration 0.317 0.385 0.327
quotas estimator 0.077) (0.135) (0.101)
Observations 8,736 8,736 8,736
E. Including 1987 Counterfactual
A log U.S. immigration 0.262 0.335 0.287
quotas estimator 0.047) (0.061) (0.050)
A 1987 counterfactual 0.296 0.326 0.311
quotas estimator (0.199) (0.262) (0.232)
Observations 8,736 8,736 8,736
F. Including 1995 Counterfactual
A log U.S. immigration 0.266 0.439 0.345
quotas estimator (0.081) (0.096) (0.067)
A 1995 counterfactual 0.069 —0.170 —0.063
quotas estimator (0.152) (0.099) (0.110)
Observations 8,736 8,736 8,736

Notes: See table 7. Panel A replicates the foreign country-industry output regressions from table 7.
Panels B through F incorporate the country controls indicated by the row titles. All regressions maintain
industry-year fixed effects and the clustering of standard errors.

tries, the full Chinese ethnicity, and the other sample de-
compositions studied above.?¢ Panel D incorporates a linear
ethnic time trend that removes the trend growth in both the
foreign country output and the U.S. immigration estimator.
By doing so, the framework emphasizes the discontinuity of
the 1990 Act for identification of the 3 parameter. The
coefficients remain economically and statistically signifi-
cant in this stringent specification, providing confidence
against the estimator reflecting a spurious correlation.

The last two rows incorporate into equation (14) two
counterfactual estimators that move the 1991 effective date
of the immigration reform earlier to 1987 or later to 1995.
The results with the 1987 counterfactual are mixed. Encour-
agingly, the coefficients on the true estimator retain most of
their value and are still statistically different from 0. More-
over, the standard errors for the placebo estimators are
400% larger than those of the true estimator, and the placebo
estimators are not statistically significant. The coefficient

26 These decompositions are more stable than those with the patent-
based metric due to the country-level design of the estimator.
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estimates on the 1987 estimator, however, are of similar
magnitude to the true reform, and it cannot be rejected that
the coefficients are the same. Panel F, on the other hand,
shows better performance with the 1995 counterfactual.
These results support the conclusion of stronger scientific
integration leading to foreign output growth, but also high-
light that the estimated elasticity with the immigration
estimator may be partly capturing an earlier differential
change for the treatment group.

Establishing the causal direction of international technol-
ogy flows is a very daunting task. The reduced-form quotas
estimator offers more confidence than the patent-based
approach that coefficient estimates are not determined by
reverse causality (especially foreign human capital devel-
opments). The price for this exogenous determinant, how-
ever, is the loss of industry variation that can be exploited.
This reduced variation may leave the quotas estimator
exposed to omitted variable biases contemporaneous to or
slightly preceding the reform, although the multiple robust-
ness checks suggest spurious correlations are not solely
responsible for the outcomes measured. Overall, the reduced-
form regressions support the conclusion in section IV that
foreign manufacturing output increases with stronger ethnic
scientific integration to the U.S. frontier.

VI. Conclusions

The international diffusion of new innovations from fron-
tier countries is necessary for broad economic growth.
Successful transfer, however, is complicated by the difficult
dissemination of the codified and tacit knowledge necessary
for adoption. This project considers the role and importance
of knowledge networks for exchanging this information
through the observable channel of ethnicity, examining the
ties between U.S. ethnic research and entrepreneurial com-
munities and their home countries. The findings suggest that
these frontier expatriates do play an important role in
technology transfer, and more generally that inadequate
access to the codified and tacit knowledge complementing
new frontier innovations can slow development in following
regions.

This study concentrates on estimating the general elas-
ticities for technology transfer across multiple ethnicities
and manufacturing industries. The platform, however, iden-
tifies particular strength for high-tech industries and Chi-
nese communities. While still measurable, the responses are
weaker elsewhere. Future work should investigate whether
these patterns hold in other samples too. Chinese economies
experienced exceptional manufacturing development during
the 1985-1997 period. The extent to which these results
extend to nonmanufacturing sectors will shed light on
whether the strong Chinese outcomes are due to the manu-
facturing focus, as all data sets have above-average out-
comes, or due to unique qualities of this ethnicity’s network
(for example, size and network effects). Likewise, charac-
terizing portions of nonmanufacturing sectors like financial

THE REVIEW OF ECONOMICS AND STATISTICS

and business services that are conducive to technology
transfer will refine our understanding of the traits of indus-
tries (such as, vertical integration, product cycles) where
U.S. ethnic scientists and entrepreneurs can most aid their
home countries.
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