AGGLOMERATIVE FORCES AND CLUSTER SHAPES
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Abstract—We model spatial clusters of similar firms. Our model high-
lights how agglomerative forces lead to localized, individual connections
among firms, while interaction costs generate a defined distance over which
attraction forces operate. Overlapping firm interactions yield agglomera-
tion clusters that are much larger than the underlying agglomerative forces
themselves. Empirically, we demonstrate that our model’s assumptions are
present in the structure of technology and labor flows within Silicon Valley.
Our model further identifies how the lengths over which agglomerative
forces operate influence the shapes and sizes of industrial clusters; we
confirm these predictions using variations across patent technology clusters.

I. Introduction

GGLOMERATION—industrial clustering—is a key
feature of economic geography. A vast body of research
now documents the prevalence of agglomeration in many
industries and countries, and a number of studies have estab-
lished agglomeration’s particular importance for firm and
worker productivity.! Moving from these measurements,
researchers have recently sought to identify the economic
rationales for firm collocation and thereby the sources of the
associated productivity gains. While the list of potential sus-
pects dates back to Marshall (1920)—most notably, labor
market pooling, customer-supplier interactions, and knowl-
edge flows—we are just beginning to separate the relative
importance of these forces.
Research on the spatial horizons over which different
agglomerative forces act often takes one of two approaches.
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I Duranton and Puga (2004) and Rosenthal and Strange (2004) provide
theoretical and empirical reviews, respectively.
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A first approach considers regional evidence. Examples
include Rosenthal and Strange (2001, 2004), Duranton and
Overman (2005, 2008), and Ellison, Glaeser, and Kerr (2010).
This approach begins by measuring the degree to which each
industry is agglomerated across a chosen spatial horizon (e.g.,
counties, cities, states). A second step then correlates differ-
ences in observed agglomeration to the traits of the industries.
For example, when using counties or cities as a spatial unit,
we might observe that industries intensive in R&D efforts
are more agglomerated than industries that do not depend on
R&D. Similarly, we might observe that industries with strong
customer-supplier linkages are agglomerated at the regional
level. A common inference from these patterns, as one exam-
ple, is that knowledge flows act over a shorter spatial distance
than input-output interactions, as the knowledge-intensive
industries are more heavily grouped together at the county
level.

In parallel, a second strand of work considers local evi-
dence on agglomerative interactions. Rather than discerning
agglomerative forces from region—industry data, this line of
research attempts to measure productivity gains directly at
the establishment level. Prominent examples include Rosen-
thal and Strange (2003, 2008) and Arzaghi and Henderson
(2008). A common approach is to estimate a plant-level pro-
duction function that includes as explanatory variables the
count of plants in the same industry observed within 5 miles
of the focal plant, within 10 miles, and so on (or within
the same county, city, and state). These studies often con-
clude that spillover effects decay sharply with distance, with
the forces being orders of magnitude stronger over the first
few city blocks than they are when firms are 2 to 5 miles
apart. These productivity studies are just the tip of the ice-
berg, however, with many related research strands measuring
directly the distances over which humans or firms interact
(e.g., patent citations, commuting). As agglomerative forces
depend on these interactions, these studies also describe the
local interactions that give rise to the clusters that we observe.

There is a substantial gap between these two approaches.
Despite their individual progress, we have very little under-
standing of how the local interactions aggregate up into
regional shapes and sizes of industries we observe in the
data. The easiest way to observe this gap is to consider
the spatial distances discussed by the two approaches. The
regional literature often concludes that technology spillovers
have a shorter spatial horizon than labor market pooling by
comparing county- and city-level data. But counties have
populations over 75,000 people on average, and the spatial
size of counties is much greater than what local interactions
suggest is the relevant range. If studies find that knowledge
flows decrease sharply within a single building (e.g., Olson &
Olson 2003), why would we believe that we can infer useful
comparisons of knowledge spillovers and labor pooling from
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FIGURE 1.—TECHNOLOGY SOURCING FROM SILICON VALLEY

Top Patenting Zip Codes outside of the Core and Their Sourcing Zones
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Technology flows for the San Francisco area. The core of Silicon Valley is depicted with the shaded triangle. The Silicon Valley core contains 76% of the patenting for the San Francisco region. This map describes
the technology sourcing for three of the four largest postal codes for patenting not included in the core itself. Technology sourcing zones are determined through patent citations.

The boxes indicate the focal postal codes, and the shape of each technology sourcing zone is determined by the three codes that firms in the focal postal code cite most in their work. Zone 1 for Menlo Park extends
deepest into the core. Zone 2 for Redwood City shifts up and encompasses Palo Alto but less of the core. Zone 3 for South San Francisco further shifts out and brushes the core.

These technology zones are characterized by small, overlapping regions. None of the technology sourcing zones transverse the whole core, and only the technology zone of the closest postal code (Menlo Park)
reaches far enough into the core to include the area of the core where the greatest number of patents occur. Transportation routes and geographic features influence the shapes and lengths of these sourcing zones.

The empirical appendix contains additional maps that show these small, overlapping regions are also evident in the core itself and in other areas outside the core.

regional data when the spatial scales of our data swamp the
microinteractions by orders of magnitude?

This project examines these issues theoretically and empir-
ically. The core of our work is a location choice model that
connects limited, localized agglomerative forces with the for-
mation of spatial clusters of similar firms. Agglomerative
forces in our model are localized because firms face interac-
tion costs. Spillover benefits exceed these interaction costs at
short distances, and thus firms choose to interact. Beyond
some distance, however, interaction becomes unprofitable
and firms no longer engage with each other. For example,
while a firm could learn useful technologies from another
firm 20 miles away, the costs of doing so may be too great
to justify the effort. Clusters are then the product of many
small, overlapping regions of interaction. By building clus-
ters up from microinteractions, we obtain additional insights
into the structure of clusters and the regional data we observe.

Silicon Valley is the world’s most famous cluster, and many
observers credit its success to technology spillovers. Figure 1
illustrates the foundations of our theoretical framework using
technology flows in Silicon Valley. Downtown San Francisco
and Oakland are to the north and off the map. The triangle
in the bottom right corner of the map is the core of Silicon
Valley. This core contains 76% of industrial patents filed from
the San Francisco Bay area and 18 of the top 25 postal codes
in terms of patenting.

To introduce our model, we describe the primary technol-
ogy sourcing zones for three of the four largest postal codes
for patenting in the San Francisco area that are outside the
core. Each focal postal code is marked with a box, and the
other points of the shape are the three postal codes that firms
in the focal postal code cite most in their work. Zone 1 for
Menlo Park extends deepest into the core. Zone 2 for Red-
wood City shifts up and encompasses Menlo Park and Palo
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Alto but less of the core. Zone 3 for South San Francisco
further shifts out and brushes the core.

These technology zones are characterized by small, over-
lapping regions. None of the technology sourcing zones
transverse the whole core, much less the whole cluster, and
only the closest postal code (Menlo Park) even reaches far
enough into the core to include the area of Silicon Valley
where the greatest number of patents occur. While technol-
ogy sourcing for individual firms is localized, the resulting
cluster extends over a larger expanse of land.2

Our model replicates these features and makes explicit
that empirical observation of cluster size in the data does
not indicate the length of the microinteractions that produce
the cluster. We show, however, that cluster shape and size
does depend systematically on whether the localized interac-
tions for firms in an industry are longer or shorter in length.
We demonstrate that a longer effective spillover region, due
to either weaker decay in benefits or lower interaction costs,
yields a macrostructure with fewer, larger, and less dense
clusters. These regularities allow researchers to use clus-
ter dimensions to rank-order spillover lengths even though
microinteractions are not observed. This connection helps
bring together the diverse literature strands described earlier.

After deriving our theoretical predictions, we empirically
illustrate the model using U.S. patent data to describe dif-
ferences across technology clusters. Patent citations allow us
to measure effective spillover regions by technology. Differ-
ences in these spillover regions relate to cluster shapes and
sizes as predicted by the model. Technologies with very short
distances over which firms interact exhibit clusters that are
smaller and denser than technologies that allow for longer
distances. This empirical work primarily employs agglomer-
ation metrics that are continuous, as in the metric of Duranton
and Overman (2005), and we use traits of industries in the
United Kingdom to confirm the causal direction of these
relationships (e.g., Ellison et al., 2010).

Our work makes several contributions to the literature on
industrial agglomeration. Most important, we provide a theo-
retical connection between observable cluster shapes and the
underlying agglomerative forces that cause them. Early island
models of agglomeration, in which agglomerative forces act
only within sites, implicitly feature maximal radius of inter-
action 0 (Krugman, 1991; Fujita & Thisse, 1996; Ellison &
Glaeser, 1997). More recently, maximal radii also have been
observed in more continuous models (Arzaghi & Henderson,
2008; Duranton & Overman, 2005). However, to our knowl-
edge, our framework is the first to identify how variations
in the maximal radius govern the shapes and sizes of clus-
ters. At the core of this contribution is the simple mechanism
of interaction costs among firms. The resulting framework

2 The empirical appendix of our NBER working paper contains additional
maps that show these small, overlapping regions are also evident in the core
itself and in other parts of the San Francisco region. These properties are also
evident in labor commuting patterns in the region. Arzaghi and Henderson
(2008) and Carlino, Chatterjee, and Hunt (2012) provide related visual
displays.
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provides a theoretical foundation for inferring properties of
agglomerative forces through observed spatial concentrations
of industries. We identify settings in which such inference is
appropriate, as well as key properties of agglomeration in
such settings.?

Our central empirical contribution is a framework, moti-
vated by our theoretical model, for meaningful analysis of
agglomerative forces with continuous distance horizons. Pre-
vious work considers how agglomerative forces affect spatial
concentration over different distance horizons, for exam-
ple, up to 75 or 250 miles (Rosenthal & Strange, 2001;
Ellison et al., 2010). Our framework is an important step
toward jointly considering agglomeration at different dis-
tances (25, 75, and 250 miles) simultaneously. We hope that
future research can similarly analyze other factors that govern
clusters’ shapes and sizes.

In addition to the related work already mentioned, our
empirical work with patents relates to two other recent studies
that also consider continuous density measurements. Car-
lino et al. (2012) develop a multiscale core-cluster approach
to measure the agglomeration of R&D laboratories across
continuous space. In many respects, their metric’s nesting
approach parallels our theoretical focus on overlapping radii
of interaction that build to a larger cluster. Likewise, some
of their empirical results (e.g., clustering at local scales and
at about 40 miles of distance) are also evident under our
measures. Similarly, Murata et al. (2014) use continuous den-
sity estimations with patent citations to address the question
of how localized are knowledge flows. Their careful metric
design allows them to bridge the well-known debate between
Jaffe, Trajtenberg, and Henderson (1993) and Jaffe, Traj-
tenberg, and Fogarty (2005) and Thompson and Fox-Kean
(2005) and parse the underlying assumptions embedded in
each study. Our work differs from these studies in several
ways, but the most important difference is the theoretical
focus and hypothesis testing about how different forms of
interaction produce observable changes in cluster shapes and
sizes.4

3 An additional contribution of our work, discussed in greater detail later,
is to provide a microfoundation for using continuous spatial density mea-
surements that center on bilateral distances between firms. This class of
metrics includes the popular Duranton and Overman (2005) metric.

Studies of agglomeration metrics include Ellison and Glaeser (1997),
Maurel and Sédillot (1999), Marcon and Puech (2003), Mori, Nishikimi,
and Smith (2005), Ellison et al. (2010), Billings and Johnson (2012), Carlino
et al. (2012), and Barlet, Briant, and Crusson (2013). Recent related work
on cities includes Helsley and Strange (2014) and Rozenfeld et al. (2011).

4 Other related studies not previously mentioned include Audretsch and
Feldman (1996), Ellison and Glaeser (1999), Head and Mayer (2004),
Hanson (2005), Fallick, Fleischman, and Rebitzer (2006), Alcacer and
Chung (2007), Aarland et al. (2007), Delgado, Porter, and Stern (2014),
Pe’er and Vertinsky (2009), Holmes and Stevens (2002), Glaeser and Kerr
(2009), Menon (2009), Alfaro and Chen (2010), Dauth (2010), Green-
stone, Hornbeck, and Moretti (2010), Holmes and Lee (2012), Bleakley
and Lin (2012), Dempwolf (2012), Marx and Singh (2012), Glaeser, Kerr,
and Ponzetto (2013) and Helsley and Strange (1990). Our work also con-
nects to studies of the shapes of cities (e.g., Lucas & Rossi-Hansberg, 2002;
Baum-Snow, 2007, 2010; Glaeser, 2008; Saiz 2010) and of agglomera-
tion and productivity differences across cities and regions (e.g., Ciccone &
Hall, 1996; Partridge et al., 2009; Behrens, Duranton, & Robert-Nicoud,
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Section II presents our theoretical model. Section III
describes our empirical strategy and data and provides ini-
tial evidence for our model’s building blocks using first- and
later-generations of patent citations. Section IV then under-
takes specific measurements of technology-level spillover
radii and tests our model’s predictions one at a time. Section
V introduces our continuous density measurements and tests
the model predictions. The last section concludes.

II. Theoretical Framework

We now introduce a model of firm location choice that gen-
erates large agglomeration clusters from smaller, overlapping
spillover zones. To maintain consistency with previous work,
we use the notation of Duranton and Overman (2005) when-
ever possible. We keep this initial exposition as simple as
possible and conclude this section with a discussion of richer
frameworks and extensions.

A. Basic Framework

There are N firms indexed by i. These firms i sequentially
select their locations, denoted j (i), from a fixed set Z C R? of
potential sites, each of which can hold at most one firm.5 Sites
are drawn at random according to a uniform distribution in
advance of any firm’s location decision. There are many more
possible sites than firms: |Z| >> N.To focus on agglomeration
economies, we assume that firms compete in broad product
markets. Location choice thus affects the productivity of a
firm, but not its competitive environment.

The specific benefits of location j to a firm are driven
by intraindustry Marshallian forces representing productivity
spillovers that firms generate by being in proximity to each
other. Three common examples are customer-supplier inter-
actions (e.g., reducing transportation costs for intermediate
goods), labor pooling, and knowledge exchanges.

We denote by d, ;, the spatial distance between j; € R?
and j, € R?. We assume that the deterministic benefit of site
j € Zto afirmiis given by

gi() =Y G(d )
i i

for some continuous, decreasing function G. The value g; rep-
resents the degree to which spillovers from other sites make
site j specifically attractive to firms. We assume the standard
comparative static that G is decreasing, so that agglomera-
tive forces decline over space. Additionally, for simplicity,
we assume that agglomerative forces act across all distances:
that is, G(d) > 0 for all d > 0.

We assume that a firm chooses randomly among sites
J1s-..,je over which that firm would be indifferent if forced

2014; Sarvimiki, 2010; Fu & Ross, 2013). Jackson (2008) outlines a
complementary literature on economic networks.

5In section IID, we discuss the possibility that multiple firms may occupy
(and congest) the same site.
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to choose purely on the basis of spatial attraction.® We also
assume that firms are not forward looking, so that the nth firm
to enter, i, (1 < n < N), chooses its location j = j(i,) € Z
to maximize g;(i,) conditional on the location choices of the
firstn — 1 firms.

B. Maximal Radii of Interaction

So far, our model has more or less followed a standard
structure: proximity to resources and other firms generates
benefits, and these benefits decay continuously over distance.
However, we now depart from this standard approach via a
simple and natural additional assumption:

Assumption. A firm must pay cost ¢ > 0 to interact with
another firm.

The fixed costs ¢ relate to the costs of transporting goods,
people, or ideas across firms. Opportunity costs and search
costs are the simplest examples, and these costs can be spe-
cific to industries and spillover types. For example, accessing
and understanding codified technologies likely requires a
lower fixed cost of establishing interactions than that required
for tacit technologies.”

Firms invest in establishing contacts when the benefits of
doing so equal or exceed the associated costs of interaction.
Specifically, firm i invests in contact with a firm i’ only if
G(dj).ji) = c. This defines a strict distance over which
firm i finds interactions profitable:

diyjiy < p=max{d : G(d) = c}.
Therefore, we immediately observe the following result:

Proposition 1. Firms at sites farther than distance p from a
firm i cannot profitably interact with i. That is, firm i derives
no direct benefits from the presence of firms at locations j
with dj,j(i) > 0.

Proof. Immediate from text.

The key consequence of proposition 1 is that agglomerative
forces in practice act only over finite distances. We call p the
maximal radius of interaction (or just the maximal radius).
The maximal radius is (weakly) decreasing in the cost ¢ and
increasing in the levels of the decay function G. In other
words, lower costs or weaker attenuation of benefits lead to
larger maximal radii.

Our assumption that interaction costs are fixed is only
to simplify the discussion that follows. One might natu-
rally assume that interaction costs rise with distance; such

6 The exact specification of the distribution of random site choice does not
matter for our theoretical results and may be conditioned on the set of sites
already occupied, but we do require that it is identical across firms.

7 Arzaghi and Henderson (2008) use a similar foundation in their model
of location choice for ad agencies in Manhattan.
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FIGURE 2.—ILLUSTRATION OF THE THEORY MODEL

A. Marshallian Cluster
Agglomeration due to interactions among firms

Unoccupied site
]

Marginal entrant is
currently indifferent
across available sites as
none are within the
maximal radius of
interaction with the

existing cluster

B. Clusters with Longer Spillover Radius
Longer radius results in larger and less dense cluster

would induce the
marginal entrant into
entering the cluster as
site X can now interact,
creating fewer, larger,
and less dense clusters

C. Bilateral Distances and Radius Length
A longer radius raises density the most among

longer distances
o

Considering bilateral distance
densities, raising the maximal
o radius does not impact on the
density of short distances in the
o cluster but increases the density
at moderate to long distances

D. Patent Citation Example
lllustration of Knowledge flows in clusters by distance

An A->B->C->D example
of patent citations in
the cluster, where
patents in location A
cite patents in location
B, those in B cite
location C, and those in
C cite location D

A. Image illustrates a Marshallian cluster. Entry is sequential, without foresight, and potential sites are fixed. Black dots are chosen sites, and circles represent maximal spillover radii. Spillover radii are limited due
to fixed costs of interaction. Large area clustering is due to small, contained interaction effects that overlap each other. The next entrant is indifferent among available sites, including sites X, Y, and Z.

B. Illustrates a cluster for an agglomeration force with a longer maximal radius. The larger dashed circles show that a longer maximal radius would induce the marginal entrant into the cluster at site X over the other
sites, resulting in (weakly) larger and less dense clusters. An additional prediction is that there should be fewer clusters for a technology given a fixed number of firms.

C. The light gray lines show bilateral connections for the cluster formed under the shorter maximal radius in panel A. The large, dashed lines show the additional bilateral connections formed when the cluster grows
due to the longer maximal radius of interaction in panel B. The length of the bilateral connections from the induced entry at site X will be longer than the shortest existing bilateral connections.

D. The image provides an example of knowledge flows within a cluster discussed in the text. Knowledge is flowing from site D to site C to site B to site A, and we thus observe patent citations in the reverse order.
This example is contrived so that site A will interact only with site D under the given maximal radius via interconnections provided by other sites.

an assumption would also generate the maximal radius
described in proposition 1. The ultimate technical condition
required is that interaction costs exceed interaction benefits
at some distance with a single crossing.

C. A Cluster-Based Theory of Agglomeration

We next examine how clusters form in our model and
illustrate clusters’ properties. Figures 2A to 2D provide
a graphical presentation of the theory to build intuition.
In these graphs, lightly shaded circles are potential firm
locations, and filled-in circles represent sites populated by
firms. Throughout this paper, we use these graphs to explain
the model’s structure and depict the behavior of marginal
entrants.

Basic definitions and structure. We define an agglom-
eration cluster to be a group of firms located in sites
interconnected by bilateral interactions. Each firm does not
necessarily interact with every other firm in its cluster, but
all firms in a cluster are interconnected. Our measure of
agglomeration counts the number of these clusters that are
expected to arise; we say that firms exhibit agglomeration
if they typically occupy few distinct clusters. (The use of
an expectation is necessary because firms choose randomly
when indifferent among sites.)

More formally, for j € R?, we denote by By(j) = {j' €
R? : d; j < d} the closed ball of radius d about j. Forj € Z,
we set

By(j) = By(j) N Z.
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This formula has a simple interpretation: Bg( j) is the set
of potential firm locations that can profitably interact with j
under maximal radius p.

In figure 2A, we draw for each populated site a representa-
tive maximal radius within which the benefits of interaction
exceed the costs for firms. For this example, Bg for site B
includes sites A and C. Sites A and C are the only locations
within the maximal radius for Marshallian spillovers p.

We next expand our focus to consider sites that are outside
the profitable spillover range of site j but can be connected
to j with a single interconnection. We define B ‘1, (j) to be the
set of sites that can profitably interact with the sites in Bg( J)
through one additional step. In figure 2A, Bé (B) further has
the four additional sites within distance p from site C that are
outside the spillover range of site B. We continue to iterate
this process, successively adding sites that are more spatially
distant to site j but still connected to site j by increasing num-
bers of interconnections (B:,( j) forv = 1,2,...). Formally,
foranyj € Z,

Bo= |J B

JeBy ()

Iterating this construction of clusters to its conclusion,
B,(j) is the p-cluster containing j € Z, defined by

B,(j) =By

1=0

The p-cluster containing site j is the largest cluster of sites
that contains j and is connected by a chain of “hops” between
sites j/ € Z that can profitably interact. The complete set of
filled locations in figure 2A constitutes the p-cluster for site
B in our example. The use of an infinite index in the union
defining B,(j) is ultimately unnecessary, as the finitude of
the set of sites implies that B} (j) = B:f‘ (j) = - - for some
finite t.

When the maximal radius p is small, clusters are generally
small. For two precise examples, define the lower and upper
bounds on distances between sites as d = minj, 4j,ez dj, j,
and d = max;, 4j,ez d;, j,- When p < d, B,(j) = {j} for each
j € Z. In other words, a maximal radius that is shorter than
the shortest distance between two sites results in each cluster
containing only a single firm. By contrast, when p > d, we
have B, (j) = Z for all j € Z—a maximal radius longer than
the maximal distance between sites results in a single cluster
for an industry.

If the maximal radius is p and the first firm locates at
site j, and the cluster around j contains available locations
(i.e., B,(j) # {j}), then there is some site j/ € B,(j) that
delivers positive deterministic utility flows to the next entrant.
It follows that if Marshallian forces are sufficiently strong,
firms select sites in the cluster B,(j) until B,(j) is filled.
Iterating this analysis shows that when Marshallian forces
are strong, firms fill clusters sequentially.

THE REVIEW OF ECONOMICS AND STATISTICS

The sequential filling of clusters explains how large-area
clustering may arise in an industry even if agglomerative
forces act only over short distances. Cluster sizes associ-
ated with a given maximal radius can be much larger than
the underlying radius itself. Clusters may span large regions
even if each firm derives benefits only from its immediate
neighbors.

A consequence of the maximal radius, however, is that
clusters can reach their capacity, at which point the next
entrant for the industry will locate elsewhere. In figure 2A,
the closest remaining site to the existing cluster is site X, but
this location is beyond the spillover ranges of any of the popu-
lated sites in the cluster. Because the marginal entrant cannot
profitably interact with the cluster, it is indifferent among
sites X, Y, Z, and any other unoccupied site. It will choose its
location at random or based on idiosyncratic preferences.

These observations suggest a natural notion of agglomera-
tion. We say that firms are (weakly) more agglomerated with
respect to maximal radius p; than they are with respect to
radius p; if, holding N fixed, fewer clusters of firms form
when the maximal radius is p; than when it is p,. Formally:

Definition 1. The level of agglomeration for maximal
radius p is |Z| — E,, where B, is the expected number of
distinct p-clusters B, (j) about sites j € Z occupied by firms.

Note that under this definition, agglomeration increases as
the expected number of clusters decreases. When industry
size is held constant, increased agglomeration also corre-
sponds to increased cluster size. The additive term |Z| is a
normalization that guarantees that the level of agglomeration
is always a positive number. We could equally well define the
level of agglomeration for maximal radius p to just be —Z,.

Our discussion of the marginal entry decision also high-
lights the core difference between our structure and prior
work. Without considering interaction costs, strictly positive
spillover benefits exist at all distances due to the decay func-
tion G. Industries may differ in how fast or slow Marshallian
benefits decay, but these differences in Marshallian forces
do not affect the number of clusters. Regardless of whether
the potential spillover benefit is large or minuscule, marginal
entrants always select sites closest to the developing cluster
regardless of distance (thus, in figure 2A, site X is chosen
next). As a consequence, each industry always forms a single
cluster, and entrants generically select sites in a fixed order.
This is equivalent to the case in which p — oo in our model.
Once a first entrant picks a location, the set of sites filled by
the remaining N — 1 firms is exactly determined.

Thus, the simplest framework does not provide a foun-
dation for relating differences in spatial concentration for
industries to their underlying agglomerative forces. Yet our
intuitive addition of interaction costs provides additional
traction by establishing a spatial range over which interac-
tions are relevant. This localization in turn provides mean-
ingful differences in cluster formation. We now turn to these
comparative statics.
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Agglomeration due to Marshallian advantages. Figure
2B illustrates the consequences of a longer maximal radius
for cluster formation. Under the larger maximal radius, the
marginal entrant is no longer indifferent over sites but would
instead choose site X. Thus, a longer maximal radius is
(weakly) associated with greater industry agglomeration as
fewer clusters form in expectation.

More formally, recall that p is the maximal radius for
intraindustry spillovers, p = max{d : G(d) > c}. Since
Z is finite, small changes in p do not affect location choices.
Larger increases in p, due to either weaker attenuation in
spillover benefits or lower interaction costs, can lead firms to
organize into fewer clusters. In fact, we may sign this change:
firms become (weakly) more agglomerated when p increases.

Proposition 2. A longer maximal radius of intraindustry
spillovers p leads to a (weak) increase in agglomeration.

Proof. See the online appendix.

The idea behind the proof of proposition 2 is intuitive.
A firm i that is indifferent across sites chooses its location
Jj(i) € Z randomly. But until the sites in cluster B,(j(i))
are filled, they are more attractive to firms than are unfilled
sites outside B, (j(i)). If p grows to p, a radius large enough
to cause some cluster B,(j) to merge with another cluster
(i.e., such that B;(j) = B,(j) U B,(j) for some site j/ ¢
B,(j)), then the expected number of clusters occupied by
firms shrinks. Indeed, whenever a firm locates in either B3, ()
or B,(j'), subsequent firms fill all of B;(j) before locating in
or starting another cluster.

Three empirical implications of this analysis are evident in
figure 2B. First, industries with a longer maximal radius have
larger clusters in the sense of having more firms and covering
a greater spatial area. Intuitively, a longer spillover radius
makes sites at the edges of clusters attractive, even if they
would not be attractive given a shorter radius. This induces
marginal entrants into choosing these sites rather than starting
new clusters. A longer radius can be due to weaker decay of
spillover benefits or lower interaction costs.

The second and third predictions are closely related. A
longer spillover radius yields fewer clusters for a given indus-
try size. As clusters grow in size, fewer clusters are needed
to house the N firms in the industry. Finally, clusters are
less dense. The longer radius activates sites at the edges of
a cluster that are too spatially distant to profitably interact
with previous entrants if the radius is shorter. Thus, growth
in cluster size is simultaneous with reduction in cluster
density.

Our result that clusters due to a longer maximal radius
are less dense is the same as saying that average bilat-
eral distances among firms within the clusters increase. The
model’s structure, however, contains a much more powerful
implication regarding spillover lengths and the complete dis-
tribution of bilateral distances within clusters. We draw out
this implication below.
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Ordering and characterizing agglomerative forces. The
theory suggests that longer maximal spillover radii are associ-
ated with fewer, larger, and less dense clusters. It is feasible
to use these observed traits in different industries to rank-
order the radii associated with different spillovers. In the
empirical analyses that follow, for example, we provide sug-
gestive evidence for the model by plotting an estimate of the
maximal radii for different technologies against a measure of
technology cluster density. This section introduces terminol-
ogy and conditions required to jointly test these predictions
using the continuous density estimation techniques employed
in section V.

It is impossible to measure directly the G functions that
determine the value of firm clustering. However, observed
spatial location patterns allow us to partially model the
behavior of the unobserved functions G in a continuous
manner.

Proposition 3. Holding o fixed, and assuming that G is
differentiable, an increase in |G'| leads to a (weak) increase
in the number of firms clustered at small distances.

Proof. Immediate from text.

The decay of agglomerative forces across space correlates
with observed distances between clustered firms. Thus, we
may understand the speed at which the benefits of localization
decay by measuring the degree of localization at different
distances. For an extreme example, if localization of firms
is constant across space, then we must have |G'| = 0. If
localization gradients are very sharp at short distances, then
proposition 3 implies that the underlying G function sharply
attenuates. Note that intercept value G(0) is not held fixed
in proposition 3. An implication of our framework is that,
holding p fixed, G(0) affects the gradient |G’|, but does not
affect the overall level of agglomeration.

Proposition 3 allows us to use Duranton and Overman’s
(2005) density estimations in section V to characterize distri-
butions continuously. Adding this more continuous structure
to our model, we can compare the full distributions of indus-
tries to assess how longer maximal radii affect the shapes of
clusters. The predictions that clusters become larger and less
dense become jointly visible. Moreover, we can observe this
effect’s influence using regular step sizes in distance.

Let S denote the set of sites occupied by firms in equilib-
rium, with many industries present in the economy. The null
hypothesis is that neither localization nor dispersion occurs
when the maximal radius is p, that is, g; = O—firms locate
randomly—when the maximal radius is p. We empirically
proxy the set of potential sites Z with the observed set of
actual sites S for all businesses. With this assumption, density
measures can quantify localization by comparing observed
localization levels to counterfactuals representing the under-
lying distribution of economic activity typical for a bilateral
distance. The null hypothesis is rejected if the localized den-
sity of firms is a substantial departure from counterfactuals
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having (the same number of) firms occupying sites randomly
sampled from S.8

Bilateral distance gradients in agglomeration clusters.
There is an additional benefit to connecting our model to these
continuous structures. We earlier noted that our empirical
implication of smaller, denser clusters for a shorter maxi-
mal radius is equivalent to saying that the mean bilateral
density for clusters declines. The model, however, has a
stronger implication for how spillover length influences the
distribution of bilateral distances within clusters.

Proposition 4. There is some p > d so that whenever p and
o' are such thatd < p < ¢’ < p, then the mean intracluster
firm distance is (weakly) smaller when the maximal radius is
p than when it is p'.

Proof. See the online appendix.

This result describes a key comparative static across
spillover lengths. When comparing two industries, we earlier
established that the industry with the shorter maximal radius
should exhibit denser clusters such that very close bilateral
distances are common. This proposition further identifies
that this greater representation should be at its highest at
the shortest bilateral distances possible (i.e., among locations
very near to each other). This higher frequency should then
(weakly) decline as one considers bilateral distances farther
from the shortest possible connections.?

To provide intuition, first consider the impact of the mar-
ginal entrant on the bilateral distances in figure 2C. As site X
becomes part of the cluster, the set of bilateral distances grows
to incorporate the bilateral distance from site X to every other
populated site in the cluster into the spatial description. Some
of the added bilateral distances are shorter than those that
already existed in the cluster, with the distance between sites
X and B, for example, being less than the distance between
sites A and D. Yet all of the additional bilateral distances are
longer than the closest connections possible (e.g., those sur-
rounding site C). Thus, as the cluster expands and becomes
less dense, the relative impact on densities is most at the short-
est possible connections and proceeds (weakly) outward for
some distance.

An empirical example can also help. Assume that the pre-
mium for proximity is higher for investment bankers than
it is for accountants. We predict that clusters of invest-
ment bankers should exhibit shorter mean bilateral distances
among firms than clusters of accountants do. When compar-
ing the spatial distributions of their clusters, proposition 4

8 As discussed in the empirical appendix of our NBER working paper
and in Barlet et al. (2013), this approach is slightly strained for the largest
industries but is a reasonable baseline for most industries.

9 The conditions of proposition 4 indicate that this effect may disappear
when the maximal radius is very large. This is a natural consequence of
approaching a limit where the maximal radius is so large as to no longer
influence cluster formation.
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further indicates that the greater density for investment
banking should be at its highest at the spatial level of being in
the same building or on the same city block. When looking at
firms five blocks away from each other, the spatial density for
investment bankers can still exceed that of accountants, but
the difference should not be higher than it is when looking at
firms next door to each other.

This requirement microfounds use of continuous den-
sity metrics like that of Duranton and Overman (2005)
in assessing whether differences in agglomerative forces
across industries yield meaningful deviations in agglomera-
tion behavior. To summarize, we should empirically see that
the greater density associated with a shorter maximal radius
is at its maximum at the closest possible distance on the spa-
tial scale and (weakly) declines thereafter for some distance.
Eventually a distance is reached where the bilateral densities
are the same even with the differences in maximal radius.
Continuing with our earlier example, the offices of invest-
ment bankers and accountants may be equally represented
when looking at firms that are ten city blocks apart.

After this point, a distance interval follows with relative
underrepresentation for the cluster associated with the shorter
maximal radius. Finally, once spatial distances are reached
that represent distances between agglomeration clusters for
Marshallian industries, the relative densities again converge.
In our example, accounting firms should be more represented
than investment bankers when looking at businesses fifteen to
twenty blocks from each other. This higher representation of
accountants should then decline as we consider progressively
longer distances that start to exceed the sizes of cities.

By contrast, our model generally does not make predictions
for bilateral distances across Marshallian industries beyond
the spatial horizons of individual clusters. The behavior of
longer horizons depends on the underlying distribution of
cluster sites and it is thus ambiguous in our framework. The
median bilateral distance for all firms within an industry, for
example, can increase or decrease with a longer maximal
radius depending on the spatial distances among the multiple,
growing clusters and the newly activated sites surrounding
them.

D. Discussion

We now discuss potential enrichments of the model. We
first note that this model is a simplified version of the one con-
tained in our NBER working paper. The version we present
here assumes that all firms belong to the same industry. We
also abstract away from the possibility of clustering due to
fixed, location-specific natural advantages (e.g., coal mines,
universities). The extended theoretical framework relaxes
both of these simplifications and shows that they do not
materially affect the predictions for Marshallian clusters that
we develop and test here. Our NBER working paper also
outlines some basic spatial dynamics for clusters.

For simplicity, our base model allows at most one firm per
site. Our results are unchanged if we allow multiple firms to
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locate at each site and assume that collocated firms “con-
gest” each other. Specifically, we may extend our model
by assuming that each site j € Z has a maximum capac-
ity k; > 1 and that the set /(j) of firms located at j must
always have |I(j)| < k;. Congestion is modeled by assuming
that firms i € I(j) # ¥ receive spillover benefits of g;(i) =
I/ - gi(0). That is, spillovers to location j are divided
equally among firms collocated at j. With these notations, our
base model corresponds to the case where k; = 1 for all sites
j € Z. Even with congestion, the sequential location choice
model is justified: a firm i entering site j(i) has the poten-
tial to “crowd” its closest neighbors. But that firm i can never
crowd out another firm i’ € 1(j(i)).Indeed, if firm i € 1(j(i))
were to exit j(i") = j(i) and relocate after the entrance of firm
i, then on relocation, i/ would face the same location choice
problem previously faced by firm i. The ex ante optimality of
Jj (@) fori would then show that j(7) is the ex post optimal choice
for i'.

Second, the microinteractions across sites that are built
into the model are readily generalized. Our discussion and
proofs focus on the simple case where spillover benefits do
not transfer through the cluster. Interaction costs are incurred
on a bilateral basis, and firms at the periphery of a cluster
receive benefits only from their immediate neighbors. More
generally, our predictions hold for any structure of benefit
transmission through the cluster so long as p is constant, as
the spillover radius at the cluster’s edge is what determines the
marginal entrant’s decision. We might also assume that with
some probability p(d) < 1, firms invest in contact with firms
of distance d away, with p declining in d (i.e., p'(d) < 0).
With our model’s structure, we can handle this case by simply
replacing the function G(d) with G(d) x p(d). Alternatively,
if there is always some (possibly small) fixed probability that
a firm chooses its location randomly, as in the model of Elli-
son and Glaeser (1997), then our qualitative conclusions are
maintained: an upward shift in p leads to fewer, larger, and
less dense clusters.

Finally, the model does not include property prices. One
way to introduce property prices to the model is to consider
them as the consequence of wanting to be near a fixed feature
(e.g., the city center). The version of the model in our NBER
working paper shows that this extension does not materially
affect our predictions for Marshallian agglomeration so long
as feature attraction effects are not too strong.

III. Patent Technology Clusters

A. Overview of Empirical Strategy

We illustrate the model’s predictions empirically in this
section using variation across patent clusters. We proceed
in three steps that closely follow the model’s structure. We
first use patent citation data to illustrate how knowledge
flows within U.S. technology clusters resemble the model’s
maximal radius construct. Patent citations provide a rare win-
dow into the distances over which knowledge interactions
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and technology flows are occurring within clusters. In a
generalization of the Silicon Valley case study in section I,
we demonstrate how these knowledge flows are limited in
distance even within a single cluster. We also show how bilat-
eral interactions form overlapping regions of interaction that
cover a larger spatial area than the individual interactions of
firms do.

After establishing these properties generally, we use the
patent data to calculate differences in the lengths of maxi-
mal radii across technology groups. Some technology areas
(e.g., semiconductors) have very localized citation patterns
where knowledge flows decay rapidly with distance. Knowl-
edge flows in other technology areas operate effectively over
longer distances. After measuring these differences across
technologies, we turn to our basic model predictions that a
longer radius of interaction generates larger and less dense
clusters (propositions 1 and 2), showing that each of these
basic predictions holds when considered independently. We
do not investigate the number of clusters prediction, as it
is substantially more sensitive to empirical choices than the
properties of clusters are.

Our final exercises present a unified empirical framework
for analyzing how technology cluster shapes and sizes dif-
fer across technologies in relation to their maximal radii of
interaction. This framework brings to bear the joint nature
of our three main predictions and the more subtle predictions
of propositions 3 and 4 with respect to rates of relative decay.
These tests require that we depict the whole distribution of
distances within a cluster and analyze the differences in these
shapes across technologies. We conduct these tests using a
mixture of nonstructured plots and the continuous spatial den-
sity metrics developed by Duranton and Overman (2005).
These depictions provide greater insights into how observ-
able cluster shapes provide information about the underlying
agglomeration force.10

B. Patent Citations and Knowledge Flows

We employ individual records of patents granted by the
U.S. Patent and Trademark Office (USPTO) from January
1975 to May 2009. Each patent record provides information
about the invention (e.g., technology classification, firm or
institution) and the inventors submitting the application (e.g.,
name, address). Hall, Jaffe, and Trajtenberg (2001) provide
extensive details about these data, and Griliches (1990) sur-
veys the use of patents as economic indicators of technology
advancement. The data are extensive, with over 8 million

10 This section’s investigation most closely relates to knowledge flows as a
rationale for agglomeration and cluster formation. Section IV of our NBER
working paper provides additional empirical evidence for the model’s struc-
ture when comparing the distances over which knowledge flows occur to
distances over which agglomeration is driven by labor pooling or natural
advantages. These supplementary exercises have the advantage of covering
many industries and sectors in the U.S. economy, but the broader approach
means that we no longer identify the microinteractions among firms as we
do in patent data. What we show is that the ordering of industries by these
various agglomeration rationales produces patterns in line with our model.
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inventors and 4 million granted patents during the data
period.

A long literature exploits patent citations to measure
knowledge diffusion or spillovers. A number of studies
examine the importance of local proximity for scientific
exchanges, generally finding that spatial proximity is an
important determinant of knowledge flows.!! Additional
work links these local exchanges and economic clusters. Car-
lino et al. (2007) find that higher urban employment density
is correlated with greater patenting per capita within cities.
Rosenthal and Strange (2003) and Ellison et al. (2010) find
that intellectual spillovers are strongest at the very local lev-
els of proximity. These empirical patterns closely link to
ethnographic accounts of economic activity within clusters
(Saxenian, 1994).12

Patent citations thus offer us a unique opportunity to
quantify differences in spillover radii and cluster shapes. It
is important, however, to recall several boundaries of this
approach. First, patent citations can reasonably proxy for
technology exchanges, but there are many other forms of
knowledge spillovers that may behave differently (Glaeser
& Kahn, 2001; Arzaghi & Henderson, 2008). Second, sev-
eral studies find that patent citations reflect Marshallian
spillovers among firms other than pure knowledge exchange.
Breschi and Lissoni (2009) closely link citations to inven-
tor mobility across neighboring firms in their sample, and
Porter (1990) emphasizes how technologies embodied in
products and machinery can be transferred directly through
customer-supplier exchanges. Our measurements below may
encompass these effects to the extent that they operate.

C. Patent Data Construction

Inventors are required to cite the prior work on which their
patents build. The total count of citations made by USPTO
domestic and foreign patents granted after 1975 is about 41
million. We first restrict this sample to citations where the
citing and cited patents are both applied for after 1975. This
restriction is necessary for collecting inventor addresses. Our
second restriction is that both patents have inventors resident
in the United States at the time of the invention with identifi-
able cities or postal codes. About 15 million citations remain
after these restrictions. Our primary data set further focuses
on the 4.3 million citations that are made in a geographical
radius of 250 miles or shorter from the citing patent.

To identify these distances, we extract postal codes from
addresses given for inventors. This data set combines both

11 See Jaffe, Trajtenberg, and Henderson (1993), Jaffe, Trajtenberg, and
Fogarty (2000), Thompson and Fox-Kean (2005), Thompson (2006), and
Lychagin et al. (2010). Murata et al. (2014) measure the continuous
density of patent citations.

12Recent theoretical and empirical work further ties innovation break-
throughs to the clustering of activity around the discovery location,
suggestive of very short spillover ranges (Zucker, Darby, & Brewer, 1998;
Duranton, 2007; Kerr, 2010). These concepts are central to endogenous
growth theory (e.g., Romer, 1986), and Desmet and Rossi-Hansberg (2014)
present a recent model of spatial endogenous growth.
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postal codes listed directly on patents and representative
postal codes taken from city addresses where postal codes
are not listed. Where multiple inventors exist for a patent, we
take the most frequent postal code; ties are further broken
using the order of inventors listed on the patent. The spatial
radius is defined using geographic centroids of postal codes
and the Haversine flat earth formula. We assign a distance of
less than 1 mile to cases where the citing and cited patents
are in the same postal code.

Our analyses consider how distances between postal codes
influence patent citation rates. Several issues with using
inventor postal codes should be noted. A small concern is
that our approach does not consider all of the postal codes
associated with inventors for some patents, and this may lead
to mismeasurement in our distance measure over short spa-
tial scales (specifically, an upward bias on the minimum
distance). As a check against this concern, we find very
similar results when instead employing only patents with
single inventors. More substantively, listed addresses can rep-
resent either home or work addresses. It would be nice to
model both distances between work locations and distances
between inventor home locations. Both of these distances
can influence technology diffusion, and it is not clear which
is more important. The patent data do not let us separate these
two, however, and this measurement error biases us against
finding shorter spillover effects.

To ensure that our results are not overly dependent on our
approach, especially with respect to the maximum radii that
we calculate by technology, we also calculate a parallel set of
distances using a match of USPTO patents to firms in the Cen-
sus Bureau (Kerr & Fu, 2008; Balasubramanian & Sivadasan,
2011; Akcigit & Kerr, 2010). The Census Bureau data records
identify the postal codes of each firm’s establishments in a
city. We thus take the patents identified to be in Chicago for
a particular firm, for example, and assign them the postal
codes of the firm’s records. Unreported analyses confirm the
spillover radii that we identify with our primary data set.!3

D. Knowledge Flows within Clusters

Our first analysis characterizes how knowledge flows
within technology clusters. To do so, we examine patent
citation patterns, specifically differences in spatial scope
within clusters for first-generation citations compared to later

13 The primary advantage of the work using the Census Bureau’s data is
to verify robustness with a second data source. There are two disadvan-
tages. First, we would need to disclose any results that we wish to report
using the Census Bureau’s data. Basing our primary estimations on inven-
tor address data outside the Census Bureau allows us much more flexibility
for generating graphs of continuous density estimates. Second, the Silicon
Valley case study in section I (where we manually identified postal codes
for work locations) was attractive in that single firm locations typically
house both corporate headquarters and innovation facilities. This colloca-
tion is much less prevalent in the New York City region, for example, where
major firms frequently have offices in Manhattan and in surrounding areas.
These multiple offices even within 250-mile circles limit the gain from
using establishment-based identifiers versus simply using known inventor
addresses.
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generations of citations. This analysis is useful because it pro-
vides evidence of the interconnections among firms built into
our model’s structure. It also introduces the empirical frame-
work that we use to calculate the maximal radius for each
technology.

To introduce and clarify terminology, consider a sequence
of patents where patent A cites patent B, patent B cites patent
C, and patent C cites patent D. Using an arrow to indicate
a citation, our sequence is A—B—C—D. Note that in this
example, the citations are moving from patent A to patent
D, while knowledge moves in the opposite direction. That is,
patent A is building on patent B, and that is why patent A
cites patent B.

We term a first-generation citation as a direct citation of
prior work. In our example, these would be A—B, B—C,
and C—D. When we discuss the distances over which first-
generation citations occur, we are measuring the bilateral
distances between these three pairs. We next define a second-
generation citation as the culmination of two steps in the
citation chain: A——C and B——D. When we discuss
the distances over which second-generation citations occur,
we are measuring the bilateral distances between these end
points, removing the intermediate step (A and C, B and D).
Our simple example also has a single third-generation cita-
tion, A———D, and we would measure this distance as the
bilateral distance between patents A and D.

Figure 2D continues with figure 2A’s example to describe
our empirical strategy. We place into this graph the
A—B—C—D citation sequence just described. We con-
trived this example to show a pattern where patent A would
never have cited patent D directly according to our model. The
distance from A to D is too great for the indicated maximal
radius, but the distance can be bridged with the intermediate
hops through patents B and C.

In reality, some measure of citations occurs at distances
that stretch across the full cluster (just as academics cite oth-
ers at distances that span the globe). In fact, even if knowledge
travels as in our model from patent D to patent A via sites
B and C, we might still observe a patent A citing directly
patent D (just as academics cite papers directly that they
learned about through other papers). So the model’s struc-
ture cannot be taken so strictly as to say that we should
never observe citations at distances of the length between
A and D. Nevertheless, we can learn a lot about relative
distance of knowledge flows by estimating the relative fre-
quencies of citations by distance. Our model suggests that
we should observe a higher frequency of first-generation
citations when evaluating the shorter distances within clus-
ters, as direct contact can occur at close proximity. Across
longer spans, we should observe both fewer first-generation
citations and more later-generation citations, indicative of
knowledge transmission through a sequence of overlapping
interactions.!4

14 The one exception to this would be if knowledge flows are fully trans-
missible through the cluster such that any site connected to the cluster
receives complete effortless access to the knowledge housed at any site in
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FIGURE 3.—LoCAL PATENT TECHNOLOGY HORIZONS

A. Pairwise Postal Code Citations Compared to 100 to
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A. Figure plots coefficients from regressions of log patent citation counts between pairwise citing and
cited postal codes within 150 miles of each other. Explanatory variables are indicator variables for distance
bands with effects measured relative to postal codes 100 to 150 miles apart (unreported bands for 75 to
100 miles resemble 70 to 75 miles). Regressions control for an interaction of log patenting in the pairwise
postal codes and log expected citations based on random counterfactuals that have the same technologies
and years as true citations. Citations within the same postal code are excluded.

B. See panel A. This figure plots coefficients from regressions of log patent citation counts that employ
consolidated distance rings around citing postal codes rather than pairwise combinations of postal codes.
Explanatory variables are indicator variables for distance rings with effects measured relative to postal
codes 100 to 150 miles (unreported bands for 75 to 100 miles resemble 70 to 75 miles). Regressions
control log patenting in the distance ring, log expected citations based on random counterfactuals that have
the same technologies and years as true citations, and citing postal code fixed effects. Citations within the
same postal code are excluded.

We demonstrate this pattern through some simple estima-
tions illustrated in figures 3A and 3B. For figure 3A, we
prepare a data set that contains bilateral pairs of all postal
codes that patent during the post-1975 period. To focus on
local exchanges, we restrict these postal code pairs to those
that are within 150 miles of each other. For each postal code
71, we then identify the number of citations that it makes to
the other paired postal code z,. To be conservative in our
approach, we do not examine interactions within the same
postal code and exclude citations that firms make internally
among their inventions across postal codes.

With this data set, we empirically model the count of cita-
tions that patents in postal code z; make of patents in a second
postal code z, using the general form:

the cluster. The evidence below suggests that this potential exception is not
empirically relevant in this setting.
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Citations,, ., = exp? %12 (Patents,, x Patents.,)",

where as before, d;, ., denotes the distance from z; to z. This
expression suggests that citations depend on the interacted
stock of patents in the two postal codes and on the distance
between the two postal codes, d., .,. We would anticipate
B < 0 if knowledge flows are declining with distance, and
y > 0 if a greater number of patents in the two postal codes
provides more opportunities for citations. Rearranging this
expression gives

In(Citations;, ,,)
=P x d;, ;, +v x In(Patents,, x Patents,),

the starting point for our first estimating equation. We make
three further modifications. First, beginning with the citations
outcome variable, O citations may be observed even where
patents exist (and this lack of exchange is important informa-
tion). Our base estimation thus takes In(1 4 Citations., _,,,) to
be the citations outcome variable, and we model other varia-
tions below to test the sensitivity of the In(X) — In(1 + X)
transformation.

Second, there are multiple ways that one might define dis-
tance to potentially allow for nonlinear effects that our model
emphasizes. Our first approach is to estimate the role of dis-
tance in a nonparametric format using a series of indicator
variables /(-) for distance bands between postal codes. We
define a vector of distance bands as within 1 mile (but not
the same postal code), (1,3] miles, (3,5] miles, (5,10] miles,
(10,15] miles, ..., (95,100] miles, and (100,150] miles. We
denote the set of distance rings as DR and include separate
indicator variables for each distance band up to postal codes
being (95,100] miles apart. Our B, coefficients will thus mea-
sure the difference in citation rates observed for a distance
interval compared to the reference category of being more
than 100 miles apart in the technology cluster.

Finally, the In(Patents;, x Patents,,) control is important,
but it is also weak. Our initial tests include all patents, and
the patents in the two postal codes may be from very differ-
ent fields. Thus, while raw citation counts display excessive
localization, they may appear localized simply because differ-
ent types of patenting firms are clustered together. To model
this underlying landscape in the most flexible way possi-
ble, we generate random citation pairs comparable to our
observed sample. For every patent that is actually cited, we
randomly draw a counterfactual patent from the pool of all
patents with the same technology class and application year
as the true citation. This method has been used extensively
in the literature, and we make two modifications that reflect
our sample design. First, we exclude other patents of the cit-
ing firm from the pool of potential draws, just as we exclude
within-firm citations in the primary sample. Second, we build
the pool of potential patents using only patents within a
250-mile radius of the citing patent. We do not exclude the
original cited patent from the random draws, and thus we
use the original citation if there are no other patents with the
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same technology and application year in the defined spatial
radius. Relative to simple patent counts, this counterfactual
distribution has the advantage of very closely matching the
underlying properties of local inventions and their technolog-
ical foundations; it is a much stronger control, for example,
than using simple patent counts.

With these three adjustments, our core estimating equation
for figure 3A becomes,

In(1 + Citations;,_, ,)
=a+ Y Ba xI(d:., = dr)

dreDR
+ v x In(Patents,, x Patents,,)

+ 1 x In(l + Expected Citations,,_, ) + €.
(D

The solid line in figure 3A plots the B, coefficients for first-
generation citations like the A—B example discussed in
figure 2D. First-generation citations are quite concentrated
at short distances and decline almost monotonically with
increasing distance. The citation premium loses half of its
strength by (15,20] miles, and postal codes that are 40 miles
or more apart are very similar to those in the reference cate-
gory of being 100 to 150 miles apart. This substantial decay
echoes very closely the localized networking results of Arza-
ghi and Henderson (2008) and the spillover estimations of
Rosenthal and Strange (2003, 2008). It is important to recall
that we have excluded interactions within the same postal
code in order to be conservative. The within—postal code cita-
tion premium is larger in magnitude than that observed for
neighboring postal codes within 1 mile of each other.

The dashed line in figure 3A graphs the spatial patterns of
second and third generations of patent citations, equivalent
to the A——C and A———D example. To construct the
second-generation citation profile for postal code z;, we start
with the patents that were cited directly by firms in postal code
71 within a 250-mile radius around postal code z;. We collect
the citations that those patents made to other patents within
250 miles of their postal code. We then calculate the dis-
tances from the focal postal code z; to these citations, and we
will focus again on the second-generation citations that fall
within 150 miles of postal code z;. We take this approach to
provide very flexible local distances. Note, for example, that
the distance from postal code z; to a given second-generation
citation can be closer than the first-generation citation that
links it. We repeat the same process for third-generation cita-
tions. Specification (1) is again used to compare rates in local
distances to the rates that exist over 100 to 150 miles.

The results are intuitive and agree with the developed
model. At very small distances, later-generation citations are
substantially less frequent than first-generation citations. This
gap quickly closes, and from distances of 10 to 25 miles, the
relative frequencies are very similar. After 25 miles or so,
there follows a distance interval where later-generation cita-
tions have a greater relative frequency than first-generation
citations. These relative differences slowly decay thereafter,
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and at longer distances, the spatial overlaps become very
similar across generations.

Figure 3B plots comparable evidence from a second
approach. Rather than use bilateral postal code pairs, we sum
the activity of postal codes that falls into the distance rings
used above. This approach renders our analysis less sensi-
tive to vagaries of postal code mappings and the issues that
one encounters with zero citations; the corresponding dis-
advantage is that we sacrifice some of the granularity that
the bilateral estimations allow. The consolidated empirical
framework also allows us to include in the estimations a vec-
tor of fixed effects ¢,, for citing postal codes. These fixed
effects remove persistent differences that exist across postal
codes in citation counts such that we are exploiting only vari-
ation in how much postal code z; cites other postal codes in
its technology cluster more or less than typical for postal code
1. The second estimating equation takes the form

In(1 + Citations™"¢ )

z1—>dr
= Z Bar x 1(d;, ,, = dr) + v X ln(Patentsgjng)
dreDR
+ 1 x In(1 + Expected Citationsim_f a)
+ d)zl + €21 —dr- (2)

These regressions measure the B4, coefficients relative to the
activity observed in the excluded distance ring of 100 to 150
miles apart. The solid and dashed lines in figure 3B again plot
the first- and later-generation citations, respectively. At very
short distances, first-generation citations show greater rela-
tive frequency compared to later-generation citations. The
differences reverse at moderate distance ranges.

Online appendix tables 1, 2a, and 2b provide complete
details on these estimations and descriptive statistics. Online
appendix tables 2a and 2b report very similar results to
figures 3A and 3B, respectively, when zero-citation cells are
excluded, we drop the expected citations controls, and we
include own postal citations.

These differences across citation generations suggest that
knowledge flows are not fully transmissible through a cluster,
but instead follow a pattern indicated by the Silicon Valley
example and our model’s structure. In figure 2D, the chain
of interconnected hops A—B—C— D aids site A’s access to
knowledge from sites around sites C and D. Moreover, the
extra strength for first-generation citations over very short
distances offers an approach to identifying maximal radii of
interactions—we investigate this next. While it is important
to note that other models may be able to generate these pat-
terns, this framework does provide suggestive evidence on
how knowledge movements through clusters conform to our
model’s structure.

IV. Maximal Radii and Spatial Cluster Patterns

Our theory connects the maximal radius of firm interac-
tions with cluster structure. We illustrate these predictions
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by looking at differences across 36 technologies using the
subcategory level of the USPTO system. Hall et al. (2001)
describe these technology groups, and examples include
Semiconductors, Optics, and Resins. Similar to the analysis
conducted in figures 3A and 3B using all patents, we exploit
patent citations separately within these individual technol-
ogy fields so as to measure their radii of interaction. We then
examine whether patterns across technologies’ cluster shapes
and sizes and our measured radii conform to our model’s
predictions. This section analyzes predictions individually,
and the next section models the predictions jointly using
continuous density measurement techniques.

A. U.S.-Based Maximal Radii

We proxy the maximal radius of interaction for each
technology through the citation localization patterns evident
among patents within that technology. One technology, for
example, may show that most of the citations that exist within
local areas occur across firms with a bilateral distance of 10
miles or less. A second technology’s local citations could
occur more evenly over distances of O to 70 miles. In the con-
text of figures 3A and 3B, this second technology would have
amuch flatter citation premium for short distances. While we
cannot put an exact distance on each technology’s maximal
radius, we can use the differences across technologies in these
observable citation patterns to proxy relative differences in
their maximal radii.

Our sample preparation for these estimations is similar
to that used for the previous graphs. The sample is again
restricted to postal codes that are observed to patent in a
technology. To be conservative, we again consider citations
that are outside the same postal code, excluding self-citations
for firms. We also exclude cases where we believe that an
inventor has moved and is self-citing his or her prior work.
There are several ways that one can attempt to measure these
spillover radii from the data, and we consider three formats.
These approaches are all simpler than the flexible estima-
tions undertaken in equations (1) and (2) but similar in spirit.
These simpler formats are necessary given the substantial
reduction in data points when estimating citation patterns on
a technology-by-technology basis (especially when extended
to the United Kingdom, as noted below). Online appendix
table 3 lists the radii measured by technology.

Our first technique considers each technology ¢ in isola-
tion, measuring its citation decay with distance in a log-linear
form,

In(1 + Citations, ;, - ,)
=By x In(d;, ;,) + v, x In(Patents, .,)

+ bgz + 87—z, forall g. 3)

Thus, we estimate a single B, parameter for how the rate
of citations declines with distance. By estimating only one
parameter for distance’s role, we greatly increase our empir-
ical power for these technology-level estimations. As we are
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looking at patents and patent citations only within a single
technology, we no longer calculate the random citation coun-
terfactual. The patents themselves capture the underlying
technology landscape. These estimations are weighted by an
interaction of patent counts in the two postal codes. With this
technique, Semiconductor and Electrical Devices show the
greatest citation localization (most negative ), while Heating
and Apparel and Textiles show the weakest role for distance
(B in the neighborhood of 0).

Our second technique makes several changes to equation
(3) to ensure robustness of technique. We estimate

In(1 + Citations, ;, - ,)
= Bgo-10 x I(d;, , < 10)
q

+ Y Bato-z0 x (10 < d;, ., < 30)
q
+ v x In(Patents, ;, x Patents,,,)

+ &g + 842152 4

The core differences between this approach and equation (3)
are that we estimate all of the citation declines jointly so that
y is restricted to be the same across technologies; we return
to our indicator variable approach for estimating the role of
distances in a more flexible manner; and we include a vec-
tor of fixed effects for technologies instead of postal codes.
We do not have the data to estimate distance rings as finely
grained as those considered in the preceding exercises, so
we include only indicator variables for bilateral distances of
(0,10] miles and (10,30] miles. Thus, the reference group is
bilateral postal code pairs of distances between 30 and 150
miles. Our second measure of technology spillover horizons
is the observed premium B, o_o over the first 10 miles com-
pared to the reference group. With this technique, Information
Storage and Semiconductors show the greatest citation local-
ization (most positive $), while Furniture and Receptacles
show the weakest role for distance (§ in the neighborhood
of 0). This measure has a 0.7 correlation with that calculated
through the equation (3) measure.

Finally, our third approach is completely nonparametric
and relies on the relative prevalence of first- versus later-
generation citations by distance for technologies (using up to
six generations). All technologies start with first-generation
citations having the highest relative prevalence, and all tech-
nologies eventually at some distance have later-generation
citations more prevalent. For each technology, we identify
the distance at which this crossing point occurs in 2-mile
increments. The series can be jumpy, especially for smaller
technologies, so we make the specific requirement that one
of two conditions be met: (a) the relative frequency of later-
generation citations exceeds first-generation citations by 2%
or more, or (b) the relative frequency of later-generation
citations exceeds first-generation citations for three consecu-
tive distances. Many technologies show crossing points at 10
miles or less, while Receptacles and Pipes and Joints show
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the longest crossings at more than 20 miles. Overall, this
measure is less correlated with the first two metrics at 0.2
to 0.3.

B. U.K.-Based Maximal Radii

We find evidence of a strong correlation between lengths
of microinteractions among firms (within technologies) and
their associated cluster shapes and sizes. It is natural to worry
in this setting about reverse causality. Existing cluster shapes
and economic geography likely influence citation behavior.
Moreover, technology clusters may have their spatial loca-
tions for unmodeled reasons (e.g., historical accidents, fixed
university locations). The length of patent citations could then
be determined by the geographical features of these locations.

To address this, we calculate citation premiums similar
to our first two metrics using patent data from the United
Kingdom. Ellison et al. (2010) introduce this technique and
discuss its strengths and limitations. The central idea behind
this identification strategy can be illustrated with the semicon-
ductors technology. Many semiconductor firms are located in
Silicon Valley, and as the map in figure 1 illustrates, Silicon
Valley is circled by water, mountains, and protected land. It
could be that the cluster density and short citation ranges that
we observed are due to this industry having developed in a
location with natural features that pushed it toward density
and tight connections. Perhaps if the semiconductors indus-
try had instead grown up in Houston, the industry would not
display citation localization. If so, the data would describe
features like our model’s predictions, but the connection
would be spurious.

We can provide a safeguard against these concerns by mea-
suring citation premiums in the United Kingdom, which are
not influenced by the local terrain of the United States or
similar factors. This test does not solve every potential endo-
geneity concern, but it certainly provides traction against
some of the most worrisome endogeneity. To implement this
strategy, we geocode all city names and postal codes asso-
ciated with U.K. inventors. To provide more accurate city
assignments, we also manually search for addresses of firms
in the United Kingdom with more than fifty USPTO patents.
Calculating bilateral distances among pairwise city combi-
nations, we then estimate a second set of technology-level
citation regressions that parallels our U.S. estimations.

The U.K. calculations face several important limitations
relative to the U.S. calculations. First, and most important,
there are significantly fewer data points to estimate these cita-
tion premiums (the U.K. sample is less than one-tenth of the
U.S. sample size). Second, the geocoding has greater mea-
surement error, perhaps most concentrated around London,
and is coarser than in the United States. As a consequence,
we do not attempt to exclude same-region citations as we
do for the U.S. data. We also do not attempt to implement
our third approach of measuring the crossing point of cita-
tion generations, as the data are too sparse with respect
to later-generation citations. While these limitations restrict
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FIGURE 4.—PATENT CLUSTER DENSITY AND SPILLOVER RADIUS

A. Cross-Section of Invention Density and Technology
Spillover Lengths
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A. A cross-sectional plot of cluster density and technology spillover lengths. Cluster density is measured
through bilateral patent distances in each technology. It is the share of patenting that occurs within 50
miles relative to the share within 150 miles. The horizontal axis measures by technology the log rate of
citation decay by distance, controlling for underlying patenting and citing postal codes fixed effects. Longer
spillover horizons (i.e., weak decay rates) are associated with less dense clusters. The slope of the trend
line is —1.336 (0.226).

B. See figure panel A. Estimates use technology spillover lengths in the United Kingdom to address
potential reverse causality where U.S. cluster shapes determine spillover lengths. The outlier, raw decay
rate of —0.507 for Earth Working and Wells is capped at the second-highest decay rate. The slope of the
trend line is —0.979 (0.293). The slope of the trend line is —0.745 (0.158) without the cap.

our analysis somewhat, the U.K. results in this section and
the next provide important confirmation of our model’s pre-
dictions in a manner that addresses some reverse causality
concerns.

Online appendix table 3 lists the U.K. metrics. The cor-
relation between the U.S. and U.K. metrics using our first
specification, equation (3), is 0.4. The correlation between the
U.S. and U.K. metrics using our second specification, equa-
tion (4), is 0.2. The two U.K. metrics have a 0.5 correlation
among themselves.

C. Analyses of Single Predictions

Figure 4A provides a cross-sectional plot of cluster den-
sity and our first proxy for maximal radius by technology
that uses log-linear decay rates. Density is measured by the
share of bilateral distances among patents for a technology
over 0 to 50 miles divided by the share of bilateral distances
among patents over 0 to 150 miles. Shares range from 30%
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to over 80%, with a very high share indicating that patents in
the technology are very densely packed in one cluster and
then mostly absent until the next cluster. There is a visi-
ble association between longer spillover horizons (weaker
decay rates that approach 0) and less patent density. On the
other hand, technologies that display very rapid decay rates
and short technology spillover horizons are tightly clustered.
Recall that citation decay rates are calculated controlling for
the underlying spatial patent distribution, so this relation-
ship is not mechanical. The slope of the trend line is —1.336
(0.226). Very clearly, some of the industries in informa-
tion technology show exceptional densities. The slope of the
trend line is —0.612 (0.082) when capping the density ratio
at 50%.

Figure 4B provides a cross-sectional plot of U.S. cluster
density against U.K. citation decay rates. The vertical axis is
the same as in figure 4A, but we substitute the U.K. citation
decay rates for the horizontal axis’s measure of technology
spillover ranges. The United Kingdom has an outlier, raw
decay rate of —0.507 (Earth Working and Wells); we cap
this rate at the second-highest decay rate. There are some
material adjustments among some information technology
industries in figure 4B compared to figure 4A, with, most
noticeably, semiconductors’ decay rate not being as steep
as we measured in the United States. Nevertheless, a close
connection exists between the decay rates for technologies
in the United Kingdom and associated cluster density in the
United States. The slope of the trend line is —0.979 (0.293);
it is even sharper at —0.466 (0.115) when capping the U.S.
density ratio at 50%. The slope of the trend line is —0.745
(0.158) without the cap for Earth Working and Wells. These
patterns provide confidence that the relationships we identify
are not being solely determined by unmodeled factors.

Table 1 continues these analyses of single predictions
regarding the size and shape of clusters. Each entry in the
table is from a separate regression where the outcome vari-
able is indicated in the column heading, and the five panel
headers indicate the metric used to model the maximal radius
of interaction. Panels A and D consider the log-linear cita-
tion decay rates estimated through technique (3) measured in
the United States and United Kingdom, respectively. Panels
B and E similarly consider the U.S. and U.K. citation pre-
mium observed over 10 miles from estimation (4). Finally,
panel C models spillover lengths through the crossing points
observed for technologies between first- and later-generation
citation frequencies.

To make our estimates easily comparable to each other,
we transform variables to have unit standard deviation. We
also multiply the raw B,0_10 coefficient for panels B and E
by —1 so that the predicted signs for table 1’s regressions
are aligned in the same direction. These regressions exploit
variation across the 36 technologies, and we control for the
size of the technology using its patent count during the 1975—
2009 period. Regressions are unweighted and report robust
standard errors. We find very similar patterns when weighting
technologies by size.
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TABLE 1.—BASIC CLUSTER TRAITS AND MAXIMAL RADIUS ESTIMATIONS

Size of Clusters

Density of Clusters

Mean Distance
to Other Patents

Median Distance
to Other Patents

Herfindahl
Index of Patent

Share of Patents
That Occur within

Column 4’s
Measure with

Share of Patents
that Occur within

in MSA from in MSA from Distribution over 150 Miles of each the Maximum 50 Miles of Each
the Dominant Postal the Dominant Postal Postal Codes within Other That Occur ~ Density Capped  Other That Occur
Code per Technology = Code per Technology =~ MSA for Technology within 50 Miles at 50% within 25 Miles
Prediction: Prediction: Prediction: Prediction: Prediction: Prediction:
Longer Distance Longer Distance Weaker HHI Less Dense Less Dense Less Dense
M 6) 3) @ 3) ©)
A. Measuring Radius through Log-Linear Patent Citation Decay Functions
Maximal radius of 0.416 0.392 —0.631 —0.776 —0.758 —0.818
interaction (0.151) (0.172) (0.176) (0.134) (0.109) (0.098)
B. Measuring Radius through Nonparametric Patent Citation Decay Functions
Maximal radius of 0.579 0.566 —0.721 —0.851 —0.689 —0.858
interaction (0.107) (0.111) (0.148) (0.154) (0.185) (0.171)
C. Measuring Radius through Comparing First- versus Later-Generation Citation Distributions
Maximal radius of 0.241 0.257 —0.151 —0.253 -0.177 —0.238
interaction (0.093) (0.104) (0.132) (0.113) 0.112) (0.099)
D. Measuring Radius through Log-Linear Patent Citation Decay Functions in United Kingdom
Maximal radius of 0.427 0.363 —0.361 —0.484 —0.505 —0.390
interaction (0.103) (0.121) (0.179) (0.160) (0.137) 0.162)
E. Measuring Radius through Nonparametric Patent Citation Decay Functions in United Kingdom
Maximal radius of 0.163 0.110 —0.229 —0.301 —-0.229 —0.254
interaction (0.148) (0.158) (0.181) (0.193) (0.173) (0.187)

Table quantifies the relationship between traits of technology clusters and the maximal radius of interactions for technologies. Dependent variables are indicated by column headings, and panel titles indicate the
technique employed to measure the maximal radius. A longer maximal radius is predicted to have larger and less dense clusters. Cluster traits are measured during the 1990-1999 period. The sample includes 36
technologies at the subcategory level of the USPTO classification system. Variables are transformed to have unit standard deviation for interpretation. Estimations are unweighted, control for the number of U.S. patents

in the technology, and report robust standard errors.

The first three columns examine the size of clusters, where
we have the prediction that a longer maximal spillover radius
produces a larger cluster. We take metropolitan statistical
areas (MSAs) as the unit of observation, measuring the
patenting that occurs within the postal codes of each MSA. In
the next section, we consider more flexible techniques that do
not depend on MSA definitions, as technology clusters may
extend past MSA boundaries or across MSAs. This simple
starting point is attractive, however, as it does not depend on
the structure of the continuous density techniques.

We identify the leading or dominant postal code per MSA
in terms of patent counts by technology. Columns 1 and 2
describe the mean and median distance, respectively, from the
dominant postal code to other patents in the MSA by technol-
ogy. These distances are calculated as the weighted averages
of the distances from the dominant postal code using postal
code centroids. There is a positive relationship in columns
1 and 2, such that a 1 SD increase in the estimated maxi-
mal radius of a technology is associated with a 0.24 to 0.58
SD increase in these mean and median distances when using
U.S.-based radii in panels A to C. The estimated elasticity is
0.11 to 0.43 when using U.K.-based radii in panels D and E.
Overall, with the exception of weaker performance in panel E,
these results highlight that a greater spillover range for a tech-
nology is associated with longer mean and median distances
within MSAs for the technology’s patents.

Column 3 evaluates an alternative metric where we
calculate the normalized Herfindahl index of patents over

the postal codes in a given MSA by technology. A second
way that we might observe a greater size of technology clus-
ters within a given MSA is if the patents for the technology
are spread out over more postal codes (a weaker Herfindahl
index). This prediction connects with our radii as measured in
panels A and B, with very strong elasticities of about —0.63 to
—0.73, and with the U.K. log-linear decay function in panel
D, with a strong elasticity of —0.36. On the other hand, the
support in panels C and E is weak. The coefficient elasticity
retains the predicted sign, but the results are not statistically
significant.

Columns 4 to 6 shift the focus toward the prediction that
clusters with longer spillover radii will be less dense. Col-
umn 4 continues with the density metric examined in figures
4A and 4B, where we measure the fraction of bilateral dis-
tances between patents that are 150 miles or less apart that
are in fact 50 miles or less apart (i.e., count of patents with
bilateral distances of 50 miles or less/count of patents with
bilateral distances of 150 miles or less). This prediction finds
support with all of our metrics. After controlling for the size
of technology, the estimated elasticity using U.S.-based radii
is 0.25 to 0.85; the U.K.-based elasticities are 0.30 to 0.48.
These elasticities are precisely measured. Column 5 shows
comparable results when capping density at 50%, and col-
umn 6 shows similar patterns when we instead consider the
density among patents that are 50 miles or less apart by look-
ing at the fraction of these patents that are 25 miles or less
apart.
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V. Continuous Density Estimations

Overall, the regressions in table 1 suggest that a longer
spillover radius for a technology is associated with larger
and less dense clusters. To some degree, of course, the differ-
ent outcome measures that we model in table 1 are variations
on a similar theme. Our six outcomes are also ad hoc in their
design, in that we do not have any particular reason to exam-
ine, for example, the density over 50 miles compared to the
density over 43 or 72 miles. This section provides a joint test
of our model’s predictions in a more rigorous manner using
continuous density estimations. We first introduce the Duran-
ton and Overman (2005) methodology that we use, and then
show how the shapes of local technology clusters relate to
technology spillover horizons.

A. Duranton and Overman (2005)

Our empirical work in large part uses a slight variant
of the Duranton and Overman (2005, hereafter DO) metric
or its underlying smoothed kernel density. This discussion
summarizes the DO methodology to show the connection
to our theory. (The empirical appendix in our NBER work-
ing paper further describes the DO metric and the empirical
modifications required for our specific data sets).

The DO metric considers bilateral distances among estab-
lishments in an industry. The central calculation is the spatial
density of an industry A through a continuous function:

fod) — 1 = < d —dj,ji) 5
Am—ﬁmmjﬂijZf——7——.m

i=1 i'=i+1

Here, as in our basic model setup, dj;_ ¢ is the Euclidean
distance between the spatial locations of establishments j (i)
and j(i") within industry A. The double summation considers
every pairwise bilateral distance within the industry ana-
lyzed (i.e., N4(N* — 1)/2 distances). Establishments receive
equal weight, and the function f is a gaussian kernel density
function with bandwidth 4 that smooths the series.

The resulting density function provides a distribution of
bilateral distances for establishments within an industry.
Across all potential distances, ranging from firms being next
door to each other to being across the country from each other,
this distribution sums to 1. Smoothed density functions are
calculated separately for each technology or industry ana-
lyzed. Industries where establishments tend to pack together
tightly in cities, for example, are measured to have higher
densities K4(d) at short distance ranges.

While the density function is of direct interest, it is also
important to compare the observed distributions of bilateral
distances to general activity in the underlying economy. This
comparison provides a basis for saying whether an indus-
try’s spatial concentration at a given distance is abnormal.
Because the density functions for small industries with fewer
plants are naturally lumpier, these comparisons are specific to
industry size. Operationally, comparisons are calculated by
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repeating the density estimation for 1,000 random draws of
hypothetical industries of equivalent size to the focal industry
A. This procedure, further discussed in the working paper’s
empirical appendix, provides 5%/95% confidence bands for
each industry and distance that we designate as K§C1 )
and KX (d).

Industry localization y4 and dispersion {4 at distance d
are defined using the DO formulas:

va(d) = max [Ka(d) — K97V (d), 0],

max [Ky“ ™ (d) — Ka(d),0] va(d) =0
0 otherwise.

(6)

Vad) = {

Positive localization is observed when the kernel density
exceeds the upper confidence band; similarly, positive dis-
persion occurs when the kernel density is below the lower
confidence band. In between, an industry is said to be neither
localized nor dispersed, and both metrics have a 0 value. To
allow for consistent and simple graphical presentation, we
present a combined measure of localization and dispersion:
Y5 (d) = ya(d) — Va(d). (7
An industry is neither localized nor dispersed at a given dis-
tance if its density is within the 5%/95% confidence bands.
In such cases, yf (d) has a value of 0. Excess density at dis-
tance d has a positive value, while abnormally low density
carries a negative value. Our estimations analyze these local
departures in a systematic manner across industries.

B. Descriptive Statistics

For each technology, we estimate the continuous DO spa-
tial density metric described above using patent data from
1990 to 1999.15 Distances are calculated using postal code
centroids. Figures SA and 5B provide descriptive evidence on
patent cluster shapes. We group our 36 technologies into three
broad buckets based on the categories of the USPTO system
following Hall et al. (2001): Chemicals, Pharmaceuticals,
and Medical (categories 1 and 3), Computers, Communica-
tions, Electrical, and Electronics (categories 2 and 4), and
Mechanical and Miscellaneous (categories 5 and 6).

Figure 5A provides the average kernel density, equa-
tion (5), by distance for the technologies that are contained
within each grouping. The technologies within the Com-
puters/Electronics grouping show high spatial concentration
over the first 30 miles but then exhibit very low density at
moderate to long distances. The Chemicals/Medical group-
ing has lower average density levels at short ranges, but then
exhibits the highest average spatial densities over medium

15 Computational limitations, primarily around constructing the counter-
factuals, require that we calculate these densities using patents from 1990
to 1999. We calculate very similar densities for a few smaller technologies
when instead considering 1975 to 2009.
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FIGURE 5.—PATENT KERNEL DENSITIES AND PATENT LOCALIZATION MEASURES

A. Mean Density of Subtechnologies in Indicated Group
by Distance
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A. Mean kernel density of technologies by each distance (x 1000 for scale). The sample includes 36
subcategories of the USPTO system organized into three simple divisions. Kernel density is calculated
using pairwise distances among inventors in a technology.

B. See panel A. Localization is calculated through a comparison of the kernel density estimations for
technologies with Monte Carlo confidence bands under the Duranton and Overman (2005) technique.
Technologies are considered localized at a distance if they exhibit abnormal density compared to 1,000
random draws of U.S. inventors of a similar size to the technology. Local confidence bands are set at
5%195% for this determination. Localization looks very similar with 1%/99% confidence bands.

distances. By contrast, the Mechanical/Miscellaneous group-
ing does not exhibit very strong patterns.

Figure 5B uses the localization metric, equation (6),
plotting the fraction of technologies within each group
that are localized. Every technology within the Computers/
Electronics grouping shows abnormally high spatial concen-
tration over the first 30 miles. After 35 miles, however, local-
ization within this group decays rapidly and is mostly gone by
70 miles. On the other hand, the Chemicals/Medical group-
ing shows abnormally high spatial concentration over 30 to
60 miles, with a much slower decay rate thereafter. Finally,
there is little material variation by distance in the number
of technologies localized for the Mechanical/Miscellaneous
grouping.

These patterns roughly conform with our predictions, as
our measures of technology spillover radii in online appen-
dix table 3 tend to be smaller for Computers/Electronics
than for Chemicals/Medical or Mechanical/Miscellaneous.
Greater requirements for very close knowledge exchange are
visibly associated with shorter, denser spatial clusters across
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these broad groups. This description, however, does not take
advantage of the heterogeneity within groups or the intensity
of agglomeration, to which we turn next.16

C. Complete Density Plots

While transparent, table 1’s analyses are incomplete in that
they do not describe the full distribution of firm localization
behavior. They also do not account for differences in tech-
nology size, which can have a mechanical effect on density
estimates. We now use the DO methodology to describe these
patterns more completely.

We begin with the kernel density K4 (d) defined in equation
(5) for a technology A. The process of assigning localization
(6) involves nonmonotonic transformations of the data, and it
is thus useful to view the simpler density functions first. With
some abuse of notation, we define K. ‘4.4 as the sum of the kernel
density over 5-mile increments starting from O to 5 miles and
extending to 245 to 250 miles. We again index distance rings
with dr and denote the set of distance rings as DR, although
the distance rings are different from the citations analysis.

Figures 6A and 6B present coefficients from empirical
specifications of the form

Kog = Z Bar x I(d = dr) x SpilloverRadius
dreDR

+ b +eagq. (8)

These estimations provide a continuous description of how
technology cluster shapes vary with technology horizons.
SpilloverRadius, is the technology spillover radius for
industry A calculated through through our five techniques
and listed in online appendix table 3. Greater values of
SpilloverRadius, correspond to longer maximal radii in
our model, and we thus anticipate finding larger and less
dense clusters for these technologies. We transform IA(A,d
and SpilloverRadius, to have unit standard deviation to aid
interpretation, and we evaluate B4, at each distance ring.

A vector of distance fixed effects ¢, controls for typi-
cal agglomeration densities by distance. They thus directly
account for the overall spatial density of patenting so that our
estimations consider differences across technologies. As the
vector of distances fully contains the support of distances,
we do not include a main effect for SpilloverRadius,. Higher
values of B, indicate that technologies with longer spillover
radii show greater spatial density at that distance. The cross
of 51 distances and 36 technologies yields 1,836 observations
per estimation.

16 At first it may appear odd that a majority of technologies are deemed
localized when the confidence bands are selected such that only 5% of the
counterfactuals reach them. This is to be expected if agglomerative forces
exist, however, as the counterfactuals build on all patent locations. The
counterfactuals are not selected such that only 5% of technologies will be
deemed agglomerated. This levels effect for localization, along with its over-
all decline with distance, is predicted by our model if sites are distributed
uniformly but agglomerative forces exist for nearly all technologies.
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FIGURE 6.—PATENT CLUSTER SHAPE AND SPILLOVER RADIUS

A. Kernel Estimations of Cluster Shape and Technology
Spillover Lengths
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A. Figure plots coefficients from regressions of kernel densities by distance for 36 technologies. Tech-
nology decay rates are measured as in figure 4A by the log rate of citation decay by distance, controlling
for underlying patenting and citing postal code fixed effects. Regressions include fixed effects for each
distance. Dashed lines are 90% confidence bands. Technologies with longer spillover ranges (i.e., weaker
decay functions) show lower density at short distances and increased activity over medium distances (i.e.,
larger and less dense clusters).

B. See panel A. Estimates use technology spillover lengths in the United Kingdom to address potential
reverse causality where U.S. cluster shapes determine spillover lengths. Technology decay rates are mea-
sured as in figure 4B by the log rate of citation decay by distance in the United Kingdom, controlling for
underlying patenting and citing postal code fixed effects.

Figures 6A and 6B present these density estimations using
the U.S. and U.K. measures of SpilloverRadius ,, respectively,
estimated with the log-linear decay rates. Triangles report 4,
coefficients. The dashed lines provide 90% confidence bands
with standard errors clustered by technology.

Technologies with greater SpilloverRadius, (i.e., longer
maximal radii) are substantially less agglomerated at very
short distance horizons. An SD increase in SpilloverRadius ,
is associated with a 1.5 SD decrease in the density of activity
conducted at 5 miles or closer using the U.S. measure; the
U.K.-based estimate is 0.9 SD. By 60 to 75 miles, the abnor-
mal spatial concentration is no longer statistically different
from 0.

Technologies with longer SpilloverRadius, are overrepre-
sented after 75 miles or thereabouts. Using the U.S. estimate
of citation density, these clusters show an abnormal den-
sity from 80 to 185 miles that is statistically different from
0 at every 5-mile increment. The U.K. estimation shows a
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FIGURE 7.—PATENT LOCALIZATION AND SPILLOVER RADIUS

A. Localization Estimations and Technology Spillover
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A. See figure 6A. The dependent variable is updated from the kernel density in figure 6A to be the
measurement of localization developed by Duranton and Overman (2005). Technologies are considered
localized at a distance if they exhibit abnormal density compared to 1,000 random draws of U.S. inventors
of a similar size to the technology. Local confidence bands are set at 5%/95% for this determination.
Technologies with longer spillover ranges again exhibit larger and less dense clusters with this technique.

B. See panel A. Estimates use technology spillover lengths in the United Kingdom to address potential
reverse causality where U.S. cluster shapes determine spillover lengths.

similar pattern, although its point estimates are statistically
different from O for a shorter distance range. In both cases,
the point estimates converge to 0 as distances approach 250
miles. At the edge of this spatial scale, differences in max-
imal radius are not systematically associated with different
agglomeration intensities.

These patterns closely match our model and the pre-
dictions given in section IIC regarding maximal radii and
cluster shapes. Note that the patterns of underrepresentation
followed by overrepresentation are not mechanical. Other
attributes, for example, could predict higher spatial con-
centration for a technology at all spatial distances to 250
miles.!7

Figures 7A and 7B take the next step of calculating local-
ized deviations from technology-specific confidence intervals
using equation (7). The patterns are very similar to figures 6A

17The kernel density functions (5) sum to 1 over the support of all bilateral
distances in the United States, stretching from next door to several thousand
miles. This does not materially influence the cluster descriptions we develop
here over the first 250 miles.
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TABLE 2.—EXTENSIONS ON CONTINUOUS DENSITY ESTIMATIONS

Measuring Column 1 Measuring Measuring Radius Measuring Measuring

Radius Using Column 1 Excluding Column 1 with Radius Using U.S. Using First- versus Radius Using Radius Using U.K.
Distance  U.S. Parametric with Weights for Miscellaneous  Bootstrapped Nonparametric ~ Later-Generation U.K. Parametric ~ Nonparametric
Interval Citation Decays Technology Size Categories Standard Errors ~ Citation Decays Citations Citation Decays ~ Citation Decays

)] ) 3) @) ) ©) (7N ®
A. Dependent Variable Is Kernel Density by Distance in Unit Standard Deviations
[0,25] —1.338 (0.310) —1.364 (0.353) —1.354 (0.313) —1.338 (0.139) —1.773 (0.206) —0.430 (0.209) —0.754 (0.297) —0.599 (0.370)
(25,501 —0.469 (0.120) —0.423 (0.119) —0.470 (0.123) —0.469 (0.080) —0.623 (0.074) —0.107 (0.095) —0.286 (0.107) —0.244 (0.145)
(50,75] 0.032 (0.053) 0.062 (0.062) 0.043 (0.057) 0.032 (0.030) 0.023 (0.050) 0.073 (0.063) 0.016 (0.057) —0.017 (0.078)
(75,100] 0.146 (0.047) 0.169 (0.057) 0.159 (0.050) 0.146 (0.022) 0.163 (0.060) 0.128 (0.076) 0.103 (0.068) 0.036 (0.091)
(100,125]  0.159 (0.048) 0.184 (0.049) 0.171 (0.050) 0.159 (0.020) 0.193 (0.058) 0.133 (0.073) 0.135 (0.057) 0.044 (0.079)
(125,150] 0.144 (0.048) 0.147 (0.044) 0.156 (0.050) 0.144 (0.021) 0.209 (0.038) 0.116 (0.063) 0.146 (0.042) 0.045 (0.064)
(150, 1751 0.130 (0.043) 0.128 (0.042) 0.144 (0.044) 0.130 (0.019) 0.217 (0.027) 0.097 (0.061) 0.121 (0.043) 0.018 (0.062)
(175,200] 0.091 (0.045) 0.110 (0.047) 0.107 (0.046) 0.091 (0.022) 0.202 (0.031) 0.080 (0.067) 0.070 (0.060) —0.051 (0.067)
(200,225]  0.050 (0.081) 0.119 (0.071) 0.071 (0.082) 0.050 (0.037) 0.214 (0.059) 0.076 (0.072) 0.064 (0.096) —0.113  (0.090)
B. Dependent Variable Is Localization Metric Using 5%/95% Confidence Bands by Distance in Unit Standard Deviations

[0,25] —1.359 (0.332) —1.382 (0.376) —1.375 (0.333) —1.359 (0.149) —1.838 (0.213) —0.444 (0.216) —0.761 (0.307) —0.631 (0.387)
(25,501 —0.476 (0.126) —0.426 (0.127) —0.478 (0.128) —0.476 (0.084) —0.642 (0.078) —0.116 (0.098) —0.289 (0.111) —0.250 (0.150)
(50,75] 0.010 (0.052) 0.044 (0.057) 0.020 (0.055) 0.010 (0.029) 0.016 (0.045) 0.068 (0.066) 0.000 (0.058) —0.013  (0.082)
(75,100] 0.121 (0.049) 0.147 (0.055) 0.133 (0.051) 0.121 (0.022) 0.153 (0.055) 0.122 (0.077) 0.085 (0.069) 0.041 (0.094)
(100,125]  0.137 (0.049) 0.164 (0.047) 0.148 (0.050) 0.137 (0.021) 0.184 (0.054) 0.126 (0.072) 0.115 (0.057) 0.044 (0.081)
(125,150] 0.123 (0.050) 0.128 (0.047) 0.133 (0.051) 0.123 (0.022) 0.201 (0.036) 0.108 (0.060) 0.121 (0.043) 0.043 (0.064)
(150, 175] 0.098 (0.046) 0.102 (0.045) 0.109 (0.046) 0.098 (0.019) 0.205 (0.028) 0.088 (0.058) 0.093 (0.042) 0.015 (0.062)
(175,200] 0.054 (0.044) 0.079 (0.044) 0.067 (0.044) 0.054 (0.021) 0.189 (0.036) 0.073 (0.066) 0.045 (0.055) —0.050 (0.067)
(200,225]  0.019 (0.079) 0.086 (0.071) 0.039 (0.079) 0.019 (0.036) 0.206 (0.063) 0.070 (0.071) 0.043 (0.090) —0.105 (0.088)

Table quantifies the relationship between the density of technology clusters by distance intervals and the technology’s maximal radius of interaction. Panel A considers the kernel density estimates for technologies,
and panel B considers the localization metric of Duranton and Overman (2005). The explanatory variables are interactions of indicator variables for distance bands with technology-level spillover lengths. Technologies
with longer spillover ranges are predicted to show lower density at short distances and increased activity over medium distances (i.e., larger and less dense clusters). For columns 1 to 4, technology spillover lengths are
measured as in figure 4A by the log rate of citation decay by distance, controlling for underlying patenting and citing postal code fixed effects. Variations on technology spillover lengths are employed in columns 5 to
8 similar to table 1. The sample includes 36 technologies at the subcategory level of the USPTO classification system. Variables are transformed to have unit standard deviation for interpretation. Except where noted,
estimations are unweighted, control for fixed effects by distance, and report robust standard errors. Online appendix tables 4 to 6 provide additional robustness checks, sample splits, and point-by-point regressions.

and 6B. The lack of density at very short spatial horizons is
robustly different from the random counterfactuals and very
similar to the kernel plots. The abnormally high spatial con-
centration at moderate spatial horizons is weaker than in the
raw kernel density plots, with the U.S. and U.K. estimators
both exhibiting a narrower range where they are statistically
different from O.

Overall, these figures jointly illustrate our central model
predictions. A longer maximal radius, or weaker spillover
density, is very strongly associated with reduced agglomer-
ation at very short spatial horizons (i.e., the cluster is less
dense). These same technologies tend to be overrepresented
at moderate spatial horizons (i.e., the clusters are larger).
The latter result is very strong in the raw U.S. data, and it
is mostly confirmed with the U.K. estimator. Moreover, in all
cases the initial decline in bilateral densities from the clos-
est feasible values, predicted by proposition 4, is robustly
supported.

D. Robustness Checks and Extensions

Table 2 provides robustness checks on our results. Panel
A provides estimates using the kernel densities of tech-
nologies, and panel B provides estimates using patent
localization. To facilitate reporting, we estimate a single
parameter per 25-mile distance interval, with spatial den-
sities at 225 to 250 miles serving as the reference group.
Column 1 in table 2 repeats figures 6A and 7A under this
approach.

Column 2 shows very similar results if weighting tech-
nologies by their size, with somewhat greater persistence
evident for the abnormal densities observed at moder-
ate distances. Column 3 shows slightly stronger patterns
when excluding the five technology groups that are defined
as residuals (e.g., Miscellaneous Drugs), where consis-
tent clustering concepts may not apply. Finally, column 4
reports bootstrapped standard errors, showing them to be
smaller than the clustered standard errors that we otherwise
report.

Columns 5 to 8 show the results with our four maximal
radius metrics. While the patterns and levels can be dif-
ferent, we discern three key features from this work. First,
all five approaches exhibit the basic joint patterns predicted
by the model of a longer technology spillover radius being
associated with larger and less dense clusters. Second, the
reduced-density prediction is robustly confirmed with results
holding and precisely measured over the first 50 miles or
thereabouts. Finally, the longer prediction finds more moder-
ate support. It is evident in the patterns of all five measures,
but it is not statistically different from O across any distance
range in column 8. In addition, the exact distance intervals
at which the increased density is evident varies some-
what by measure. Thus, we find good confirmation of the
longer-cluster prediction, but it is generally just directional in
nature.

Similar results are found using three additional specifica-
tion variants. The first employs the density function (5) and
introduces the confidence bands Kja “U(d) and Kﬁa L
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as precision controls. The second calculates a global index
similar to DO’s main metric and then evaluates the gradient of
this concentration measure across distances. Finally, the DO
confidence bands can be adjusted to a 1%/99% significance
level.

Online appendix table 4 provides some sample splits that
consider features not emphasized in our model and baseline
empirics. We seek to establish the robustness of our results by
looking at variations within each subsample to see if similar
results hold. The first two columns split the sample by the
degree to which patents in the technology cite other patents
in the same postal code. We have excluded these own—postal
code citations in our maximal radius calculations, and so this
sample split uses independent data. Our model’s structure
does not emphasize the intensity of very local interactions
(i.e., the G(0) intercepts) but instead the maximum radii.
This sample split tests this feature. The empirical patterns
that we emphasize are present in both samples, confirming
robustness, with the interesting finding that these patterns
are more accentuated in industries with very intense local
interactions.

Second, our model and baseline empirics consider tech-
nology flows only within the same industry, while the
development of new patents often draws from several
technology areas.!8 To test the robustness to cross-
fertilization of technologies, we split technologies by the
share of their patents that go to other technology areas.
The relationships that we emphasize in this paper look quite
similar in the two halves.

Third, our baseline estimations do not restrict patent cita-
tions to be within a specified time interval, but diffusion
occurs with time that makes knowledge widely available in
a local area and beyond. We anticipate our model’s pre-
dictions to be more important in industries where access
to very recent knowledge is critical. To test this feature,
we calculate the share of citations nationally by technology
area that occur to patents within the prior five years. The
patterns are substantially stronger in the sample of technolo-
gies that rely on very recent knowledge, with only the less
dense part of the prediction holding in the lower half of the
distribution.

Fourth, our model does not include input prices that can
generate further sorting across locations by firms. We test
how much this feature matters by calculating from the 1990
Census of Populations a weighted average of expected sci-
ence and engineering wages using the top ten cities for each

18 The view stressing industrial concentration is most often associated
with Marshall, Arrow, and Romer (MAR). The MAR model emphasizes
the benefits of concentrated industrial centers, particularly citing the gains
in increasing returns and learning-by-doing that occur within industries.
The second view, often associated with Jacobs (1970), argues that major
innovations come when the ideas of one industry are brought into a new
industrial sector. This perspective stresses that a wealth of industrial diver-
sity is needed to create the cross-fertilization that leads to new ideas and
entrepreneurial success. Duranton and Puga (2001) formalize theoretical
foundations for this model.
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technology in terms of patent counts. Science and engineer-
ing wages are reflective of the wages to be paid to inventors.
The patterns are present in both parts of the distribution, with
some emphasis toward the technologies developed in areas
with above median input costs.!9

Finally, online appendix tables 5 and 6 provide broader
robustness checks on the technique of using continuous
density estimation. Rather than undertaking the DO trans-
formations, we simply group observed bilateral distances
between patents in technologies that are within 250 miles
of each other into a set of distance bins. We then calculate
for each technology the fraction of the bilateral distances
that fall into each bin. These tables provide the mean and
standard deviation of these shares. The first four columns
provide breakouts for the first 20 miles at 5-mile intervals,
while columns 5 to 12 consider 20-mile increments across
the full range to 140 miles.

Online appendix table 5 conducts a set of point-by-point
regressions on the shares of patents by technology that fall
into each distance bin. Each panel provides a simple set
of regressions with each of our techniques for measuring
spillover radii. Radius measures are normalized to have unit
standard deviation, and we control for the number of patents
in the technology. We leave the outcome variables in their
raw shares since these shares are easy to interpret. The results
show that our conclusions are not being driven by the con-
struction of continuous density metrics.20 With all five radius
measures, we again see evidence that a longer spillover radius
is associated with larger and less dense clusters. For exam-
ple, column 1 finds that a 1 SD increase in the spillover radius
lowers the share of patenting within [0,5) miles by 1.7% to
4.1% compared to a base of 4.4%. Similarly, column 5 shows
that this same radius increase lowers the [0,20) share by 4%
to 12% compared to a base of 16.5%. On the other hand, the
later columns show an increase in shares at longer ranges.
There are several advantages of employing the DO technique,
but these estimates show that our conclusions are robust to
variations on this approach.

On a related note, online appendix table 6 reports simi-
lar point-by-point regressions where we consider each patent
assignee as a single observation. Unassigned patents, which
represent about a quarter of all patents, are also retained.
Our baseline estimations consider bilateral distances between
patents, similar to the employment-weighted estimations of
DO. This extension shows quite similar patterns when instead
considering bilateral distances among unweighted assignees
and individual inventors.

19In addition to these four sample splits, we find very similar results to
our baseline estimations when we include four single control variables for
these dimensions.

20 There are several key differences of the point-by-point regressions com-
pared to the DO estimations. These raw shares are not smoothed, and they
are not being measured relative to confidence intervals. The shares are also
constrained to sum to 100% over the 250-mile range, which is not imposed
on the continuous density estimates.
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V1. Conclusion

This paper introduces a new model of location choice and
agglomeration behavior. From a simple and general frame-
work, we show that agglomeration clusters generally cover a
substantially larger area than the microinteractions on which
they build. In turn, agglomerative forces with longer micro-
interactions are associated with fewer, larger, and less dense
clusters. The theory thereby provides a basis for the use of
continuous agglomeration metrics that build on bilateral dis-
tances among firms. The theory also rationalizes the use of
observable cluster shapes and sizes to rank-order the lengths
of underlying agglomerative forces. We find confirmation
of our theoretical predictions using variation across patent
technology clusters.

We hope that our theoretical framework proves an attrac-
tive model for incorporating additional factors that influence
firm location and agglomeration behavior. Important exten-
sions include modeling the dynamics of industry life cycles,
incorporating interactions across firms in different industries,
and incorporating the development of new sites. We believe
our setting is an attractive laboratory for structural model-
ing that would enable recovery of the underlying lengths of
microinteractions. These parameters could in turn be useful
for understanding spillover transmissions in networks and
studying spatial propagation of economic shocks.

We have applied our framework to describing patent tech-
nology clusters, but we believe that many more applications
in industrial agglomeration are possible. For example, future
work could look to price the marginal sites of clusters or iden-
tify spillover lengths by examining the location decisions of
marginal entrants. Our framework highlights the important
information that is contained in those agents’ indifference
conditions if properly identified. As important, we believe,
our framework describes interactions in many other contexts
as well. For example, studies find that knowledge flows within
firms or universities are substantially shaped by the physical
layout of facilities (Liu, 2010). We hope that future work sim-
ilarly analyzes parallel situations where costs of interaction
generate maximal radii.
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