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Abstract

To understand new data, we share models or interpretations with others. This paper

studies such exchanges of models in a community. The key assumption is that people

adopt the interpretation in their community that best explains the data, given their prior

beliefs. An implication is that interpretations evolve within communities to better fit

prior knowledge, potentially making final reactions less accurate than initial reactions.

When people entertain a rich set of possible interpretations, social learning often mutes

reactions to data: the exchange of models leaves beliefs closer to priors than they were

before, untethering beliefs from data. Our results shed light on why disagreements

persist as new information arrives, popular theories link seemingly unrelated events,

ideological bubbles need not be hermetically sealed, and firms and politicians can

benefit from preemptively framing news.
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1 Introduction

We make sense of the world together. Why is the unemployment rate lower than expected?

Why did one employee receive a promotion and not another? Why is the stock market

skyrocketing? In response to such questions, we share not only information but also inter-

pretations. Unemployment is lower than expected because “economic growth is strong” or

because “there was a one-time blip in manufacturing”. The employee received a promotion

because “she is uniquely qualified” or “the firm is signaling that it values a particular set of

skills”. The stock market is rising because of “fundamentals” or “dumb money”. What is

the outcome of this exchange of interpretations? Does it push us towards the truth? How

does with whom we talk affect the interpretation we settle on? And how might an interested

party like a firm manager influence communication to shape ultimate interpretations?

This paper presents a formal framework for thinking about such exchanges of inter-

pretations in a community. The basic ingredients of the model follow Schwartzstein and

Sunderam (2021). Everyone shares a common prior µ0 over states of the world ω and

observes a common, public history h. Aspects of the history are open to interpretation,

meaning that people are willing to entertain different interpretations of the same data. In-

terpretations are represented by models, which we formalize as likelihood functions that

link the history to states. In other words, interpretations capture different ways people can

use the history to update their beliefs. When people are exposed to multiple interpretations,

they adopt the one that best fits the data, fixing prior beliefs. People have a default interpre-

tation d, represented by likelihood function πd(h|ω), and come up with a single alternative

interpretation—their initial reaction to the data—that they adopt if it is more compelling

than their default interpretation, i.e., it better fits the data plus their prior.

In contrast to standard models where social learning is driven by the desire to learn

others’ private information, in our framework everyone shares the same information but

learns from others’ interpretations. People are exposed to the interpretations of others in

their community and settle on the one that is most compelling. Formally, person i adopts

the model she is exposed to m (represented by likelihood function πm(h|ω)) if

m ∈ arg max
m̃∈{d,m′

i}∪Mi

Pr(h|m̃, µ0)︸ ︷︷ ︸
=
∫
πm̃(h|ω)dµ0(ω)

,
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where m′
i represents the model person i comes up with initially and Mi is the set of models

the person is exposed to in her community.1 Thus, the key role of the community in our

framework is to determine the set of models she is exposed to. Given this set of models,

she picks the one that maximizes the probability of the history given her prior, Pr(h|m,µ0).

In Bayesian terms, the person acts as if she has a flat prior over the models she is exposed

to and then selects the model that best fits the data and her prior, which is equivalent to

selecting the model with the highest associated posterior probability. More intuitively,

this assumption loosely captures ideas from the social sciences about what people find

persuasive, including that people favor models that (i) have high “fidelity” to the data as

emphasized in work on narratives (Fisher 1985); (ii) help with “sensemaking” as discussed

in work on organizational behavior and psychology (Chater and Loewenstein (2016)); (iii)

make the past feel more predictable (Schulz and Sommerville (2006); Gershman (2019));

and (iv) have the most “explanatory power” (Lombrozo (2016)).2

To see some key implications of this formulation, consider an example where a com-

munity of investors assesses a technology firm. The firm’s fundamentals are either good or

bad, ω ∈ {g, b}, and investors in this community are optimistic, attaching prior probability

µ0(g) = 0.75 to fundamentals being good. Data comes out: h = “the firm’s earnings this

quarter were lower than expected and the aggregate economy entered a recession”.

Investors consequently disagree about the firm’s fundamentals because they use differ-

ent models to interpret the data. Suppose that under the true model, mT , lower than ex-

pected earnings are a negative signal about fundamentals— πmT (low earnings|b) = 0.75 >

0.25 = πmT (low earnings|g)—but the aggregate economy is irrelevant for updating about

the firm’s fundamentals. Bayes’ rule implies that the true posterior probability that the

firm’s fundamentals are good is Pr(g|h,mT ) = 0.5. However, investors are willing to

entertain alternative interpretations. Some initially come up with the true interpretation

that the aggregate economy is irrelevant, but low earnings reduce the probability that the

firm’s fundamentals are good. Others think that low earnings are a particularly negative

signal in a recession, following famed investor Warren Buffett’s adage that “only when

the tide goes out do you discover who’s been swimming naked.” For example, these

investors could hold a model specifying that πmB(low earnings, recession|b) = .05 and

1We will use the terms community and network interchangeably.
2Recent work (e.g., Barron and Fries (2022), Kwon et al. (2022)) experimentally tests and finds support

for the assumption that people find better-fitting models more persuasive.
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πmB(low earnings, recession|g) = .25× .05, which would imply that Pr(g|h,mB) ≈ 0.43.

Yet others believe that these kinds of technology firms always have low earnings in a reces-

sion, regardless of fundamentals: πmA(low earnings, recession|b) = πmA(low earnings, recession|g) =
.05, which implies that Pr(g|h,mA) = 0.75. Suppose that the only restriction on the mod-

els investors are willing to entertain is that they agree with the true model on the marginal

probabilities of a recession and of low earnings. Assuming that the population is suffi-

ciently large that roughly every such interpretation is someone’s initial reaction and that

the community is sufficiently connected that the most compelling interpretation spreads

throughout the population, we ask: which take goes viral?

Not the right one. When low earnings are more likely than recessions, the “always low

in a recession” interpretation will eventually be held by all investors in this community

because it is the best-fitting model consistent with the marginal probability of a recession.

Social learning spreads an interpretation of the data under which investors’ posterior on the

firm’s fundamentals equals their prior probability of 0.75, instead of the true posterior of

0.5.3 As shown in Schwartzstein and Sunderam (2021), models that fit well imply the data

is unsurprising, which means beliefs should not move much away from priors in response

to it. In this example, investors’ prior is that the firm likely has good fundamentals. The

model that best fits their knowledge (i.e., their prior and the data) leads them to stick with

their prior.

The example illustrates four main points. First, explanations linking events that are in

truth unrelated can be more persuasive than the true model. For instance, the “always low

in a recession” model, which links recessions and low earnings, fits the data better than

the true model that they are independent events. In our framework, such “conspiratorial”

models will tend to spread more easily than the truth. Indeed, the model investors end

up holding is “maximally conspiratorial”: it connects low earnings and the recession as

strongly as possible in a way we make precise below.

Second, social learning hardens reactions to data: following the exchange of models,

people are more certain they have the right explanation for the data in the sense of having

a model with a higher value of Pr(h|m,µ0). Exposure to others’ models provides ways to

explain the data that they may not find on their own. Thus, some investors could have been

3As we show in Proposition 1 below, an additional assumption is required to guarantee that all investors
hold this posterior given the restricted model space in this example. Proposition 2 shows that all investors
will hold this posterior in a modified version of the example with an unrestricted model space.
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persuaded of the true model prior to social learning, but they cannot be persuaded after

because social learning provides them with a better explanation for the data.

Third, interpretations evolve in ways that often make final interpretations less accu-

rate than initial reactions. Before social learning, some investors correctly interpret low

earnings and put a low posterior probability on the state in which the firm’s fundamentals

are good. However, the exchange of models leads them to interpretations resulting in the

belief that the fundamentals are likely to be good. In other words, the marketplace of mod-

els pushes people away from the right interpretation. This evolution of beliefs highlights

a key distinction between our formulation and models where people simply believe what

they want to believe. In these alternative formulations, if investors prefer accounts that the

firm’s fundamentals are good, then their initial reactions will exhibit that preference.

A fourth point is that social learning has a tendency to mute reactions—bringing poste-

rior beliefs closer to prior beliefs—by increasing the chances people are exposed to models

that explain why the data is unsurprising and hence beliefs should not move. Put differently,

the exchange of models untethers beliefs from data that is open to interpretation.

Untethering appears to be an important feature of many real-world settings. For in-

stance, despite a large amount of available information and strong incentives for agricul-

tural firms to persuade them otherwise, nearly half of people around the world believe ge-

netically modified foods (GMOs) are unsafe.4 Consistent with our model, the persistence

of these beliefs does not mean that people do not react to new information. They do react,

but the impact of information tends to fade quickly, with people returning to their previous

views. In our framework, the disconnect between data that is open to interpretation and

long-run beliefs is driven by the adoption of models through social learning.

Section 3 studies communities formed on the basis of shared beliefs, where people with

similar initial reactions to the data exchange models. Such communities are common—for

instance, groups often form based on beliefs that one political party governs better than

others—and have likely become easier to form over time due to technology like social

media. To illustrate the intuitions that emerge, consider the example above, and suppose

investors who initially interpret the data as suggesting firm fundamentals are good all talk

to each other, while those whose initial interpretations suggest fundamentals are bad all

talk to each other. We show that social learning then generates disagreement: while they all

4See, e.g., Pew surveys here (link).
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held the same prior beliefs, members of the “good fundamentals” and “bad fundamentals”

communities end up disagreeing despite being exposed to the same information. Investors

in the “good fundamentals” community converge on models that bring their beliefs closer

to the 75% conditional prior probability they attached to the firm being good, while those

in the “bad fundamentals” community converge to a probability less than 50%. As they

exchange models, members of each community become less persuadable to arguments

made outside their community (beliefs are hardened) and hold beliefs that are less tethered

to the data (beliefs are muted).

We next document stylized evidence consistent with these predictions from a social-

media network for stock market investors. Previous work has documented that investors

tend to form communities with other investors who are similarly optimistic or pessimistic

about a given stock (Cookson et al. (2022)). We show that optimistic investors become

less optimistic immediately after a negative earnings surprise, but they quickly revert back

to being optimistic. Pessimistic investors behave analogously. In our framework, these

dynamics are driven by the spread of interpretations within the optimistic and pessimistic

communities. Within each community, investors are exposed to interpretations of the data

that make it less surprising, allowing disagreement to persist in the face of new information.

In Section 4, we show that inaccurate beliefs and disagreement can persist even as

people communicate across communities and issues. We first consider communication

across communities, drawing a distinction between weak and strong exposure to beliefs.

We say a person is weakly exposed to a belief if she is aware of a single model that when

combined with the data implies that belief. She is strongly exposed to a belief if she is

aware of all models implying that belief. We think of communication within communities

as strong exposure and communication across communities as weak exposure. Under this

view, members of a community can be aware that people outside their community have

different beliefs, but they will be unpersuaded by the interpretations of the data they know in

favor of those different beliefs. In other words, ideological bubbles or echo chambers need

not be hermetically sealed. People in a community can be exposed to a few interpretations

from outside the community without finding those interpretations compelling.

We then study communication across issues, showing that it can lead to polarization.

If communities are formed based on one issue, the exchange of interpretations leads to

a divergence across communities of beliefs on a second issue. Thus, members of two
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communities can end up disagreeing on issues that were not central to their formation,

despite the fact they are interpreting the same data. Such disagreement is consistent with

the “polarization of reality” documented by Alesina et al. (2020).

Section 5 studies the implications of these results for how someone should manage

communication. We show that providing people with a favored interpretation before social

learning—i.e., “getting in front of the news”—is valuable in our framework. It helps the

communications manager inoculate people against finding compelling models that support

alternative beliefs. We next consider situations where the manager directly influences what

communication takes place, for instance by restricting meeting attendance. We show that

the communications manager faces a tradeoff between getting people to agree on a model

and promoting a specific action. To create agreement on a model, the manager wants every-

one to share interpretations, which leads to the widespread adoption of a model suggesting

that there is little to learn from the data. In contrast, if the manager wants people to take a

particular action, she wants only models that support that action to be shared.

Finally, we sketch some applications of our results in Section 6. We first study impli-

cations for how firm managers should run meetings. The traditional view in economics is

that meetings enable information exchange (e.g., Dessein and Santos (2006)). In contrast,

in our framework meetings serve to help workers interpret shared information, a view that

builds on a large literature in organizational studies arguing that sensemaking is a central

activity of organizations (e.g., Weick (1995)). We then consider why disagreement persists

in the face of new information. Why do misconceptions survive in some groups, given that

people are exposed to high-quality information (Gentzkow and Shapiro (2011); Guess et al.

(2018))? We offer a simple explanation, complementing recent models that instead high-

light the role of social media echo chambers (Bowen et al. (2021)): Within a community or

ideological bubble, people are exposed to crowdsourced models that evolve to better and

better fit data that is open to interpretation, making them less persuadable. In our frame-

work, bubbles do not prevent people from being exposed to the right interpretation of an

event, but they inoculate against finding that interpretation compelling. Such inoculation

may shed light on why reducing exposure to like-minded information on social media does

not appear to significantly impact beliefs (e.g., Nyhan et al. (2023)).
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Related Literature

There is a large literature on social learning reviewed in Golub and Sadler (2016), with

influential early contributions in economics such as Banerjee (1992), Bikhchandani et al.

(1992), and Smith and Sørensen (2000). While much of this work assumes Bayesian updat-

ing of beliefs, important recent contributions study naive social learning by building on the

simple DeGroot (1974) model of linear updating (Golub and Jackson (2010)) or on psycho-

logically microfounded updating rules (e.g., Eyster and Rabin (2010, 2014); Enke and Zim-

mermann (2019); DeMarzo et al. (2003); Gagnon-Bartsch and Rabin (2016)). This work

focuses on people sharing information or observing each others’ actions, and studies ques-

tions like whether social learning successfully aggregates individuals’ private information.

Our focus is instead on the many situations where people share essentially the same infor-

mation, and social learning primarily involves exchanging interpretations to make sense of

that information.

While social learning of information tends to predict long-run consensus and relatively

effective information aggregation, in our framework the marketplace for models generates

long-run disagreement and the persistence of false beliefs. As such, it may help explain

why disagreement persists in domains from stock prices to public health to evolution, de-

spite an abundance of data. Increasing connectedness tends to untether beliefs from data

that is open to interpretation by increasing the chances of being exposed to a model that

provides a compelling case that the data is unsurprising. Wrong interpretations are adopted

in our framework not because they are repeatedly heard, but because social learning selects

interpretations that compellingly fit people’s prior knowledge.

A smaller literature on social learning examines how people could leverage networks to

their advantage in spreading information. Much of this work considers how to best seed a

network with information to boost its diffusion (e.g., Akbarpour et al. (2020)). Murphy and

Shleifer (2004) present a model of the creation of social networks based on shared beliefs

in the context of political persuasion. This work considers social learning of information

or beliefs rather than of models.

Closer to our work, recent presidential addresses in finance, such as Shiller (2017) and

Hirshleifer (2020), have called for studying the social transmission of narratives in eco-

nomics.5 These addresses laid the groundwork for this study by providing vivid illustra-

5While not all narratives are models and vice versa, they are closely related and we sometimes inter-
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tions of the importance of socially-emergent narratives as drivers of economic and financial

events. They also sketch models of narrative transmission that liken the spread of narra-

tives to the spread of viruses. Bénabou et al. (2018) model the spread of moral narratives

(e.g., “thou shall not do this because”) by strategic actors, while Bursztyn et al. (2023) and

Bursztyn et al. (2022) argue that providing rationales and narratives importantly influences

people’s willingness to voice certain beliefs. Our work adds to this area by formally model-

ing social forces that shape the narratives themselves and highlighting that high explanatory

power helps narratives “go viral”.

We build on our earlier work on model persuasion (Schwartzstein and Sunderam (2021)),

which itself built on behavioral models of persuasion based on coarse or associational

thinking (e.g., Mullainathan et al. (2008)).6 Froeb et al. (2016) present an earlier related

model in the context of studying adversarial decision making in law, Levy and Razin (2020)

present a related model speaking to the problem of combining expert forecasts, Aina (2021)

builds on the model persuasion framework by considering what happens when persuaders

need to commit to models before seeing all the data, and Ichihashi and Meng (2021) con-

siders the interaction between Bayesian persuasion (Kamenica and Gentzkow (2011)) and

model persuasion. Other recent work (Eliaz and Spiegler (2020); Bénabou et al. (2018);

Yang (2022); Eliaz et al. (2022)) take somewhat different approaches to formalizing mod-

els or narratives and what makes them persuasive. For example, Eliaz and Spiegler (2020)

assume that people favor “hopeful narratives”, Eliaz et al. (2022) assume that narratives

emerge competitively to increase political mobilization, and Yang (2022) assumes that

people favor “decisive models”. A growing empirical and experimental literature measures

people’s models or narratives, as well as how they influence expectations and decisions

(e.g., Barron and Fries (2022); Andre et al. (2022); Flynn and Sastry (2022); Hüning et al.

(2022)). We add to this work by formalizing how social learning influences which models

emerge and persist.

changeably use the terms narratives, stories, and models.
6Our framework also connects to the literature on learning under misspecified models (e.g., Esponda

and Pouzo (2016); Acemoglu et al. (2016); Heidhues et al. (2018); Montiel Olea et al. (2022); Mailath and
Samuelson (2020); Haghtalab et al. (2021)), which sometimes feature agents who statistically test their mod-
els and abandon them in favor of alternatives which fit better. Examples include Fudenberg and Kreps (1994);
Hong et al. (2007); Gagnon-Bartsch et al. (2021); Fudenberg and Lanzani (2021); Ba (2021).
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2 Model

2.1 Setup

The basic setup follows Schwartzstein and Sunderam (2021). Broadly, individual agents

take the following steps. All agents have a common default model for interpreting data;

each agent also comes up with a model of their own. Prior to social learning, each agent

selects from these two models the one that best explains the data. Social learning then

exposes each agent to all models held by other agents in her community. After social

learning, each agent adopts the model that best explains the data from the set of models

she has been exposed to: the default, the model she comes up with on their own, and the

models others in her community have come up with.

Formally, there is a continuum of agents i ∈ [0, 1] who hold beliefs µi over states of

the world ω in finite set Ω.7 Agent i takes an action a from compact set A to maximize

the expectation under µi of Ui(a, ω). In the baseline setup, agents share a common prior

µ0 ∈ int(∆(Ω)) over Ω and observe a public history of past outcomes, h, drawn from

finite outcome space H . Agents can end up with different posteriors if they use different

models to interpret this history. Given state ω, the likelihood of h is given by π(·|ω). The

true model mT is the likelihood function {πmT (·|ω)}ω∈Ω = {π(·|ω)}ω∈Ω. We assume that

every history h ∈ H has positive probability given the prior and true model.

Agents do not know the true model. A given agent updates her beliefs based on either

(i) the default model {πd(·|ω)}ω∈Ω,8 (ii) the model m′
i that she generates herself to ex-

plain the history, where m′
i is taken from compact set M and indexes a likelihood function{

πm′
i
(·|ω)

}
ω∈Ω, or (iii) a model she learns from someone in her community, where we let

Mi ⊆ M denote the set of models proposed by someone in i’s community.

Given the history and the set of models the agent is exposed to, she adopts the one

that best explains the history. Formally, let µ(h, m̃) denote the posterior distribution over

Ω given h and model m̃ ∈ M ∪ {d}, as derived by Bayes’ rule. We assume the receiver

adopts the model m and hence posterior µ(h,m) if

m ∈ arg max
m̃∈{d,m′

i}∪Mi

Pr(h|m̃, µ0)︸ ︷︷ ︸
=
∫
πm̃(h|ω)dµ0(ω)

.

7In examples we sometimes relax the assumption that Ω is finite.
8The default can be a function of h. We suppress this dependence when it does not cause confusion.
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That is, the person picks the model she is exposed to that best fits the data. Upon adopting

a model m̃, the person uses Bayes’ rule to form posterior µ(h, m̃) and takes an action that

maximizes her expected utility given that posterior belief: a(h, m̃) ∈ argmaxa∈A Eµ(h,m̃)[Ui(a, ω)].

To close the baseline model, we need to specify the model a person generates herself.

Let M̄(h, µ0, d,M) = {m ∈ M : Pr(h|m,µ0) ≥ Pr(h|d, µ0)} denote the set of models in

M that explain the history as well as the person’s default interpretation given her prior over

states. Assume that measure δ of the population generates the default model and measure

(1 − δ) generates a model in M̄(h, µ0, d,M).9 Further assume that population is large

enough that, for each model m ∈ M̄(h, µ0, d,M), someone in the population generates

that model herself.

In the typical case, we set the default interpretation to be the true model, d = mT

and focus on situations where data are open to interpretation—i.e., where people are in

fact sharing interpretations of data. We also often let M be the set of all possible models

Ma: for any likelihood function {π̃(·|ω)}ω∈Ω there is an m ∈ Ma with {πm(·|ω)}ω∈Ω =

{π̃(·|ω)}ω∈Ω. We refer to this as the case where people are maximally open to persuasion.

We simply write M̄(h, µ0) as shorthand for M̄(h, µ0,m
T ,Ma).10

2.2 Discussion of Model Assumptions

The building blocks of the model come from Schwartzstein and Sunderam (2021), and we

refer to that paper for a detailed discussion of the basic assumptions. We depart from that

paper in a few crucial ways. First, we allow some receivers by themselves to generate

a model other than the default. In the notation of our current framework, our previous

paper assumes δ = 1 (receivers stick with the default before being exposed to persuasion),

while this paper focuses on the case where δ < 1. For many topics, it is plausible that

some people generate an initial interpretation of the data, prior to sharing interpretations

with others. Many of us have gut reactions about why the stock market moved yesterday,

9Alternatively, we could endogenize δ by assuming that people sometimes generate models outside of
M̄(h, µ0, d,M) in which case they stick with the default model. This would suggest that δ is larger when the
default does a good job explaining the data h. While this change would influence the distribution of beliefs
prior to social learning, it would not influence the distribution of beliefs following social learning.

10All our results and intuitions stated for the case of M = Ma continue to hold if we instead make the
following assumption on M : For every belief µ̃ that is a posterior for some model in Ma given data h, prior
µ0, and default d, M includes the best-fitting model inducing that posterior as well as one worse-fitting model
inducing that posterior.
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who is responsible for the storming of a government building, or what the latest school

shooting implies about the merits of gun control. These gut reactions may be constructed

spontaneously in response to the data and differ across people (see, e.g., Andre et al. (2022)

for evidence of heterogeneity in households’ and experts’ models of the causes of inflation).

Crucially, however, we assume that a given person does not come up with all models she is

willing to entertain, so she is influenced by the set of models she is exposed to.

Second, this paper’s analysis focuses on the social exchange of models, not on the

behavior of a strategic persuader who attempts to influence a receiver. The role of the

community or network in our framework is simply to influence the set of models a person

is exposed to. By taking as primitive the set of models a given person i is exposed to, Mi,

our framework accommodates a variety of community structures.

Third, implicit in the idea that a person is exposed only to the models within her com-

munity is an assumption that she does not actively seek out the models proposed by mem-

bers of other communities. One way of thinking about this assumption is that people exhibit

a sort of out-group homogeneity bias (e.g., Quattrone and Jones (1980); Bursztyn and Yang

(2023)), thinking there is not much reason to investigate the models in other communities

because they are “all the same”. A person who favors gun control may be aware of some

arguments for why shootings suggest weaker gun control (e.g., “we need more guns in the

hands of good guys”) and may think once she has heard one such argument she has heard

them all, perhaps underappreciating the diversity of these arguments.

2.3 Examples

We now sketch two brief examples, which we will return to throughout the paper.

Example 1 (Interpreting data about investments). Extend the example from the introduc-

tion to the following multiple dimension setup: let h = (h1, h2, . . . hN) with hj ∈ Hj , Hj fi-

nite, for each j = 1, 2, . . . , N . For example, h1 could stand for whether the aggregate econ-

omy has entered a recession, h2 for whether company earnings are high or low, and ω for

whether company fundamentals are good or bad. Let πj(hj) ≡
∑

ω′ πmT ,j(hj|ω′) · µ0(ω
′)

denote the true marginal probability of hj for each j, where each marginal probability

πm,j(hj|ω) is derived from πm(h|ω) in the obvious way. Suppose that, as in the introduc-

tory example, the set of models agents are willing to entertain agree with πmT (h|ω) on

these marginal probabilities:
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M =

{
m

∣∣∣∣∣
∑

ω′

πm,k(hk|ω′) · µ0(ω
′) = πk(hk) ∀hk, k ∈ {1, 2, . . . , N}

}
.

Example 2 (Interpreting data about policy issues). Our second example involves interpret-

ing data about a binary state space, Ω = {l, r}. Unlike the first example, here the space

of models is unrestricted. The prior over states is µ0(l) = 1/2. Further assume people are

maximally open to persuasion, M = Ma, and the default model is the true model, d = mT .

People can take three possible actions, a ∈ {L,M,R} . Payoffs Ui are such that the optimal

action is a = L if µ(l) ≥ .75, a = M if µ(l) ∈ (.25, .75), and a = R if µ(l) ≤ .25.

This example can capture optimal public-policy choices. In state ω = l, a Democrat

would make a better US president, and in state ω = r a Republican would make a better

US president. Actions correspond to voting Democrat (a = L), abstaining (a = M ), and

voting Republican (a = R). Alternatively, one can think of the states as corresponding

to whether some left- or right-leaning policy (e.g., involving gun control, climate change,

pandemic policy) would be effective, and the actions as corresponding to supporting such

policies (a = L, R) or the status quo (a = M ). The example can also capture choices of

firms, for instance to cut costs, grow, or stay the course.

We will sometimes extend this example to cases where people may use the same data

to update beliefs about a variety of issues. For instance, people may interpret data about

genetically-modified crops using models that have implications for both their safety and

impact on the environment (e.g., how their adoption influences pesticide use). To accom-

modate such examples, let Ω = Ω1 × Ω2. We will consider how community members’

beliefs over Ω1 spill over to influence beliefs over Ω2.

2.4 Basic Observations and Definitions

Prior to social learning, a person adopts the model

m′ ∈ arg max
m̃∈{d,m′

i}
Pr(h|m̃, µ0)

and holds beliefs µ(h,m′), which we call their “initial reaction.”

Appendix Section B.1 analyzes initial reactions before social learning, adapting Propo-

12



sition 1 in Schwartzstein and Sunderam (2021) to the present context. Two key points

follow. First, before social learning, people have a variety of reactions to the data. Second,

there are constraints on initial reactions, which in turn imply constraints on final beliefs. In

particular, the set of initial reactions is constrained by prior beliefs, µ0(ω), as well as the

ability of the default to explain the data given those prior beliefs, Pr(h|d, µ0). Intuitively,

the better the default model fits the data, the harder it is for an initial reaction to fit the data

even better. And the more unlikely a state under peoples’ prior, the less likely it is that

their beliefs following their initial reaction put a lot of weight on that state. If the data is

maximally open to interpretation, sticking with prior beliefs is always an initial reaction to

the data and the range of initial reactions is greater when people are more surprised by the

data, i.e., when Pr(h|d, µ0) is lower.11

Following social learning, the person adopts the model

m ∈ arg max
m̃∈{d,m′

i}∪Mi

Pr(h|m̃, µ0)

and holds beliefs µ(h,m) when such maximizers exist—assume throughout the paper that

Mi is indeed such that such maximizers exist. As shorthand, write µ′
i (m′

i) as person i’s

beliefs (adopted model) prior to social learning and µi (mi) as her beliefs (adopted model)

following social learning.

We say that social learning hardens a person’s reaction to data when she can bet-

ter explain the data following social learning than before: that is, when Pr(h|mi, µ0) ≥
Pr(h|m′

i, µ0). When social learning does not harden the person’s reaction, we say it softens

her reaction. We say that social learning mutes a person’s reaction to data when it moves

her beliefs closer to her prior. Formally, following Schwartzstein and Sunderam (2021), let

Movement(µ̃;µ0) ≡ maxω∈Ω µ̃(ω)/µ0(ω) be a measure of the change in beliefs from prior

µ0 to posterior µ̃. Social learning mutes reactions to the data when Movement(µi;µ0) ≤
Movement(µ′

i;µ0). When social learning does not mute a person’s reaction to data, we say

it intensifies her reaction. Note that these terms compare final beliefs to people’s initial

reactions to data before social learning, not to their prior.

A simple observation is that our assumptions imply that social learning must harden

reactions to data: being exposed to more explanations of the data enables the person to

11The range of initial reactions will be smaller when prior beliefs are more informed, e.g., because they re-
flect a long history of closed-to-interpretation data (see Proposition 2 in Schwartzstein and Sunderam (2021)).
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better explain the data. Social learning leads a person to become more convinced she

understands why the market moved as it did, why an unexpected political event occurred,

or the daily movement in pandemic deaths. Following social learning, any event seems

more explainable.

3 Social Exchange of Models

3.1 Shared-Belief Communities

In our framework, the community determines the set of models that people are exposed

to. Community formation therefore plays a crucial role in determining ultimate beliefs.

Throughout the paper, we will frequently analyze the case where communities are formed

on the basis of shared beliefs. Such communities are quite common (e.g., McPherson et

al. (2001)). For instance, communities are formed based on political beliefs, views on

vaccines, and even whether a specific stock is likely to rise (Cookson et al. (2022)). Social

media has facilitated the formation of such communities and the exchange of interpretations

among their members. Of course, communities may also form for other reasons, such as

geographical proximity or shared models. We briefly discuss implications of alternative

community structures in Section 7.

The key feature of a shared-belief community is that the beliefs a person holds prior to

talking to others influences who she talks to. Formally, consider a partition S over the set

of beliefs ∆(Ω), where we denote s(µ) as the element in S that belief µ ∈ ∆(Ω) belongs

in. In a shared-belief community, a person i exchanges models with another person j if and

only if their initial beliefs are similar, in the sense that they fall in the same element of S.

Definition 1. In a shared-belief community, Mi =
{
m ∈ M̄(h, µ0, d,M) : µ(h,m) ∈ s(µ(h,m′

i))
}

for every person i.

Given our assumption of common priors, this definition says that a shared-belief com-

munity forms based on a common reaction to a specific event. For example, a shared-belief

community could form among people who react similarly to a shooting in their beliefs on

the need for gun control. This literal interpretation is a reasonable approximation of re-

ality for certain events, such as the earnings announcements we consider in Section 3.2.

However, in other instances communities based on shared beliefs are grounded in common
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reactions to a broader set of events. For example, people who lean left in their interpreta-

tions might share views on the most recent event, even if their initial views on that most

recent event are quite different. We will more formally capture this idea in briefly studying

dynamics in Section 6.

To illustrate, consider a complete network and return to Example 1.

Proposition 1. In the multiple dimension setup (described in Example 1), suppose h̃ =

(h̃1, h̃2, . . . , h̃N) is realized, where (without loss of generality) π1(h̃1) ≤ mink>1 πk(h̃k).

Even if the relationship between each variable k > 1 and variable j = 1 is Pr(h̃k|h̃1,m
T , µ0)−

Pr(h̃k|mT , µ0) = 0, social learning in a complete network leads people to hold a model

m′ ∈ M that maximally connects the variables: For all k,

Pr(h̃k|h̃1,m
′, µ0)− Pr(h̃k|m′, µ0) = max

m∈M
Pr(h̃k|h̃1,m, µ0)− Pr(h̃k|m,µ0) = 1− πk(h̃k).

Under any such model m′ that has the property that πm′(h̃1|ω) is constant across values

of ω, people’s posterior beliefs equal their prior beliefs µ0.

Proof. All proofs are in Appendix A.

As in the introductory example, natural restrictions on the model space clarify how

social learning may lead people to draw connections between events that they would oth-

erwise be surprised by. The proposition shows that people end up holding models that

view the rarest realized hi as implying all the more common realized hj’s with certainty.

For example, when recessions are rarer than low earnings, low earnings are viewed as

being inevitable given recessions. When high earnings are viewed as more likely than a

good economy, then high earnings are viewed as inevitable given a good economy, and a

bad economy is viewed as unsurprising given low earnings. Put differently, people have

a tendency to say “of course X (more common outcome) given Y (rarer outcome)”. Ex-

planations and sense-making center around the rarest outcome. Thus, our framework puts

structure on the kinds of “conspiratorial” links that groups of people will tend to draw

between unrelated events. Models drawing these links in a sense simplify the world by

viewing a single root cause (e.g., recessions) as responsible for a variety of outcomes (e.g.,

low earnings). The proposition additionally shows that such explanations neutralize the

data, leaving posterior beliefs the same as prior beliefs, so long as people do not view the
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rare outcome as itself signaling something about ω, e.g., they do not think a recession by

itself provides news about whether a company is good.

Neutralization of the data is in fact the norm if people are maximally open to persuasion.

We first recall a lemma from Schwartzstein and Sunderam (2021).

Lemma 1 (Schwartzstein and Sunderam (2021)). Fix history h and let

Fit(µ̃;h, µ0) ≡ max
m

Pr(h|m,µ0) such that µ(h,m) = µ̃

be the maximal fit of any model that induces posterior µ̃ given the history h and a person’s

prior µ0. Then

Fit(µ̃;h, µ0) = 1/Movement(µ̃;µ0),

where Movement(µ̃;µ0) ≡ maxω∈Ω µ̃(ω)/µ0(ω) is the movement to µ̃ from µ0.

Intuitively, fit and movement are inversely related because models that fit the history

well say it is unsurprising in hindsight, which then implies that beliefs should move little.

So, for any given belief µ, the maximal fit of a model inducing that belief is greater the

closer this belief is to µ0.

Proposition 2. Suppose everyone is in a shared-belief community and is maximally open

to persuasion, M = Ma. Then social learning mutes every person’s reaction to the data:

for every person i, Movement(µi;µ0) ≤ Movement(µ′
i;µ0). In fact, social learning leads

everyone’s final beliefs to be in the set of initial beliefs within the community that are closest

to the prior: for every person i, µi ∈ argminµ∈s(µ′
i)

Movement(µ;µ0).

This result says that if a person only exchanges models with others who react similarly

to data, they end up with the belief that reacts least to the data within their community.

This result follows from Lemma 1 and the following feature of shared-belief communities:

For every belief represented in a community, the best-fitting model supporting that belief

is represented in the community.

As an illustration, suppose that in the public-policy example (Ex. 2), µ0(l) = 1/2

and the data is surprising—i.e., under the default model, it has very low probability. For

example, suppose h = “a natural disaster struck and GDP growth this quarter was low.”

Suppose further that shared-belief communities are formed based on views of the optimal

action: Everyone with an initial reaction supporting a right-leaning action like a tax cut is
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in one community (µ′
j(l) ∈ [0, 1 − k]) for k ∈ (.5, 1)), everyone with an initial reaction

supporting the neutral action is in another (µ′
j(l) ∈ (1− k, k)), and everyone with an initial

reaction supporting a left-leaning action like stimulus checks is in the third community

(µ′
j(l) ∈ [k, 1]). The variable k could be viewed as parameterizing the degree to which

people form shared-belief communities based on the intensity of their views on the issue.

Under this interpretation, it is larger when people connect with others based on their views

about the issue (e.g., through social media) and smaller when people connect with others

for other reasons (e.g., because they live in the same physical neighborhood).

Proposition 2 says that everyone ends up at the belief that is closest to the prior within

her community (Figure 1 illustrates this for k = .75). For example, someone whose initial

reaction to the data moves her belief from µ0(l) = .5 to µ′(l) = .9 will exchange models

with others whose initial reactions support the left-leaning action (pictured in blue in the

figure), which mutes her reaction to µ(l) = k. Polarization in views across the left- and

right-leaning communities equals k − (1 − k) = 2k − 1: it is increasing in the extent

to which people talk to others based on their views along the issue. In other words, the

community formation process (indexed by k) drives polarization across communities, while

the exchange of models drives the homogeneity of beliefs within the community.12

To further illustrate Proposition 2, a school shooting might initially lead people to sup-

port a change in gun-control policies, but they will eventually favor interpretations that say

we did not learn much from the shooting. Empirical evidence suggests such dynamics.

Following mass shootings, Twitter users who are initially against gun control temporarily

become more open to it. However, as narratives evolve, these Twitter users slowly revert

back towards their original beliefs (Lin and Chung (2020)).

Taken together, these results highlight the differences between our framework and typi-

cal information-based theories of social learning, in which social exchanges of information

tend to lead to more accurate beliefs. In our setting, social exchanges of models increase

the chances of hearing an interpretation that suggests the data are relatively consistent with

a person’s prior and hence there is little need to update. In other words, the “marketplace

of ideas” need not result in beliefs that are closer to the truth.
12Appendix C provides an example that shows how interpretations may evolve differently across shared-

belief communities, illustrating an additional form of polarization.
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Figure 1: Evolution of Beliefs Across Shared-Belief Communities
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3.2 Empirical Evidence

We next provide evidence consistent with Proposition 2. We use data from StockTwits, an

online social media platform for investors that has been studied in recent papers, including

Cookson and Niessner (2020), Divernois and Filipovic (2022), and Cookson et al. (2022).

StockTwits is similar to Twitter: users choose other users to follow and post short messages

visible to their followers. Founded in 2008, the platform had 6 million total users and 1

million active monthly users at the end of 2021.13 The platform is geared towards allowing

investors to share with each other information and analysis about individual stocks. In par-

ticular, it allows users to (i) tag their messages with individual stock tickers and (ii) label

their messages with a flag for optimistic (“bullish”) or pessimistic (“bearish”) sentiment.

These features make it straightforward to track a particular user’s sentiment towards a par-

ticular stock over time. Cookson and Niessner (2020) perform a variety of exercises to

validate the data’s quality for measuring sentiment and disagreement.

Two stylized facts from StockTwits are relevant to our framework. First, based on the

evidence in Cookson et al. (2022), the way we model the formation of a shared-belief

community is consistent with how StockTwits members actually form their communities.

13See this (link) Bloomberg article.
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Cookson et al. (2022) show that users who are bullish on a particular stock are more likely

to start following other users who are also bullish on the same stock. Similarly, bearish

users are more likely to start following other bearish users. Moreover, this behavior is more

pronounced immediately following earnings announcements. In other words, following a

news announcement, StockTwits users are more likely to form communities with others

who share their views on a particular stock.

Second, beliefs of StockTwits users around earnings announcements evolve as Proposi-

tion 2 predicts. We analyze the dynamics of user sentiment around earnings announcements

in StockTwits messages between January 2011 and July 2018.14 Users label their messages

as bullish (coded as 1) or bearish (0). We analyze 20-day windows surrounding each earn-

ings announcement, restricting attention to users who have ever posted a message about

that stock prior to 10 days before the earnings announcement. Users are coded as a bull

on the stock if they labeled as bullish at least 50% of their messages about the stock prior

to 10 days before the earnings announcement; they are coded as bears otherwise. We then

track how sentiment evolves around earnings announcements. An announcement is pos-

itive news if the announcement day return is greater or equal to zero and negative news

otherwise. Because different stocks receive different amounts of attention, we weight the

data so that each earnings announcement is equally weighted. The final sample consists of

roughly 1.8 million messages across 40,000 earnings announcements from 65,000 unique

users.15

Figure 2a shows the evolution of sentiment for bulls around positive and negative earn-

ings announcements with 95% confidence intervals. Corresponding regressions are re-

ported in Appendix D. The figure shows that around positive announcements, bulls’ senti-

ment remains unchanged: generally 94-95% of messages are labeled as bullish. The pattern

around negative earnings announcements contrasts sharply. Sentiment deteriorates in the

days leading up to the earnings announcement. There is then a sharp decline in sentiment

at the earnings announcement, with the fraction of messages labeled as bullish falling to

14We thank Marc-Aurèle Divernois and Damir Filipović for very generously sharing their data with us.
Divernois and Filipovic (2022) study this data, showing that sentiment measured from StockTwits can be
used to forecast stock returns on high-message volume days.

15The sample is smaller than the overall scale of StockTwits for several reasons. First, we focus on mes-
sages about individual stocks, not indices like the S&P 500. Second, we restrict to attention to messages
labeled as bullish or bearish by users. Third, we focus on windows around earnings announcements, which
account for less than one-third of trading days. Finally, the requirement that the user has posted a message
with a bullish/bearish label about the stock prior to the earnings announcement is restrictive.
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Figure 2: Evolution of Beliefs Around Earnings Announcements
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under 85%, statistically and economically different from its baseline value.16 In the days

following the announcement, however, sentiment rapidly improves, converging back to 94-

95% bullish. Within two days of the announcement, sentiment is the same, regardless of

whether the announcement was positive or negative news. Figure 2b shows similar patterns

for bears around positive news announcements. Sentiment first improves but then reverts.

These patterns are consistent with our theoretical results.17 Following a news announce-

ment, users form communities with users of similar beliefs. Within those communities,

they are exposed to interpretations of the data that make it less surprising. Thus, while

users’ initial reactions may push them away from their prior beliefs, the community will

expose them to interpretations of the data that pull them back. Bulls about a stock be-

come more bearish following a negative announcement, for example, but they return to

being bullish once they are exposed to the best-fitting interpretations that evolve within the

bullish community.

However, a key question remains: How do bulls and bears persistently disagree when

bulls are likely exposed to at least some of the arguments of bears and vice-versa? The next

16Average sentiment for bulls during these event windows is 0.94 with a standard deviation of 0.24. For
bears, the corresponding numbers are 0.28 and 0.45.

17Our data do not allow us to directly demonstrate that these patterns are driven by the community—they
could reflect evolving interpretations people come up with by themselves. However, in traditional social
learning models based on sharing information, the community should push against such tendencies.
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section takes up this question.

4 Communication Across Communities and Issues

4.1 Communication Across Communities

Can inaccurate beliefs and disagreement persist as people communicate across commu-

nities and issues? We first consider the impact of two different types of communication

across communities. We show that differences in beliefs can persist when members of

one community only hear some arguments made by members of another community. In

other words, ideological bubbles need not be hermetically sealed. So long as only some

arguments are transmitted across communities, differences in beliefs can persist.

Person i is weakly exposed to belief µ̃ if the set of models she is exposed to expands

from Mi to Mi ∪ {m(µ̃)}, where m(µ̃) is a specific model that supports belief µ̃. On the

other hand, a person is strongly exposed to belief µ̃ if the set of models she is exposed to

expands from Mi to Mi ∪ M(µ̃), where M(µ̃) is the set of all models that induce µ̃. A

person is exposed to belief µ̃ if she is either weakly or strongly exposed to µ̃. We think

of weak exposure as capturing most communication across communities. For instance, a

person who views evidence as suggesting that a new vaccine is safe is likely aware that there

are people in “anti-vaccine” communities who believe otherwise. However, this person is

likely only aware of a thin slice of anti-vaccine arguments.

We say a person is persuaded through exposure to belief µ̃ if such exposure changes her

final beliefs. Person i is more persuadable than person j if i is persuaded through exposure

to belief µ̃ whenever j is.

Proposition 3. Suppose everyone is maximally open to persuasion, M = Ma.

1. Suppose person i is weakly exposed to a belief µ̃ not represented in her community.

Independent of her community and the alternative belief, the person need not be per-

suaded through this exposure: For every set of models Mi and belief µ̃ not supported

by any model in Mi, there exists positive measure of models m̃ = m(µ̃) supporting

µ̃ that fit less well than the best-fitting model in Mi.

2. Suppose person i is strongly exposed to a belief µ̃ not represented in her community.
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Then the person is persuaded by this exposure if µ̃ is closer to her prior, as measured

by Movement(·;µ0), than any belief supported by a model in Mi.

The first part of Proposition 3 implies that weak exposure to beliefs outside a person’s

community is never guaranteed to impact her beliefs. The second part implies that strong

exposure to an alternative belief has at least as much impact on ultimate beliefs and behav-

ior as weak exposure. While weak exposure to an alternative belief is never guaranteed to

move final beliefs, strong exposure will move final beliefs whenever the alternative belief

is closer to the person’s prior than other beliefs represented in her community.

These results help explain why different beliefs persist across communities, such as

StockTwits, even though there is communication across communities. We think of cross-

community communication as weak exposure. People might exchange both models and

beliefs when interacting with others in the same community, while only exchanging beliefs

(and perhaps a subset of models supporting those beliefs) when interacting with members

of different communities. For instance, a person who believes a school shooting indicates

the need for stricter gun-control measures is likely aware that there are others who conclude

the opposite without being intimately familiar with all of their arguments. Proposition 3

says that weak exposure to anti-gun control arguments need not move the beliefs in the

pro-gun control community. While a person could become convinced by listening to a

broad set of arguments for a position, she is less likely to be convinced by a narrow subset

of the arguments (or simply a statement of the position itself).18 This result highlights a

key difference between our framework and information-based approaches. In information-

based approaches, if two communities start from the same prior and see the same data, they

will end up with the same beliefs. In contrast, in our setting only strong exposure will tend

to lead to convergence in beliefs.

4.2 Communication Across Issues

Of course, new communities do not form around every issue, even in the age of social me-

dia. Often, a community formed on one issue starts discussing a second. For instance, a

18In highlighting the importance of the breadth of arguments a person is exposed to, our model relates
to “persuasive-arguments theory” from psychology (e.g., Burnstein and Vinokur (1977) and Hüning et al.
(2022)). However, persuasive-arguments theory emphasizes the number of distinct arguments a person is
exposed to, while we emphasize the compellingness of arguments (in terms of fit).
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group of vaccine skeptics might also discuss the merits of public education. In this sub-

section, we consider how communities formed on shared beliefs about one issue influence

beliefs on a second issue. We show that Proposition 2 has implications for cross-issue

polarization.

Formally, consider an extension of the policy example where there are two issues: Ω =

Ω1 × Ω2 and describe marginal beliefs over Ωj by µj . For concreteness, let Ω1 = {l, r} be

whether a left- or right-leaning candidate governs better and Ω2 = {n, y} be whether the

economy will grow next quarter (y) or not (n). Communities are formed based on initial

beliefs over {l, r} but not {n, y}: s(µ) depends only on µ1′ . Suppose that Ω1 and Ω2 are

binary, with priors given by the following table:

µ0 n y

l a b

r b a

.

Suppose further that µ0(l) = .5 and, for k ≥ µ0(l), shared belief communities are formed

based on whether µ1′(l) ≥ k (the left-leaning community), µ1′(l) ∈ (1− k, k) (the centrist

community), and µ1′(l) ≤ 1−k (the right-leaning community). Refer to this generalization

of the multiple-issues policy example as the multiple issues setup.

Corollary 1. In the multiple issues setup, shared-belief communities of intensity k ≥
µ0(l)/(µ0(l) + µ0(l, y)) formed based on views on issue l versus r spill over to influence

views of issue y versus n: The simple average between the lowest and highest potential

values of µleft-leaning
i (y)− µright-leaning

j (y) across people i (in the left-leaning community) and

j (in the right-leaning community) equals





1
2
× k × (µ0(y|l)− µ0(y|r) + 3)− 1 if k < µ0(l)

µ0(l)+µ0(r,y)

k × (µ0(y|l)− µ0(y|r)) if k ≥ µ0(l)
µ0(l)+µ0(r,y)

. (1)

Moreover, for k ≥ 1
2×µ0(y|l) , the lower bound of µleft-leaning

i (y) − µright-leaning
j (y) is greater

than 0 when µ0(y|l) > µ0(y|r).

Even though beliefs over the second issue do not influence community formation, final

beliefs over that issue differ across members of the left-leaning and right-leaning commu-

nities. Corollary 1 (of Proposition 2) identifies two factors that influence belief polariza-

tion in views about y versus n, given by Equation (1). First, polarization is increasing in
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k, which could be interpreted as the degree to which communities are formed based on

shared beliefs along issue l versus r—e.g., the extent to which people connect with oth-

ers because of their views about that issue. Second, such polarization is increasing in the

degree (µ0(y|l) − µ0(y|r)) to which issue y versus n is prior-connected to issue l ver-

sus r. For instance, since views on sports are not naturally connected with politics (i.e.,

µ0(y|l) ≈ µ0(y|r)), views on which teams are most promising do not become more corre-

lated with political leanings through social learning.19 While there are potentially a range

of beliefs within each community, for k sufficiently large and µ0(y|l) > µ0(y|r), every

member of the left-leaning community is more optimistic about y than all members of the

right-leaning community.

To illustrate these results, consider the example from Section 3.1 where people inter-

pret the data h = “a natural disaster struck and GDP growth this quarter was low.” In

our two-issue extension, sharing models that suggest the left-leaning candidate is better at

governing leads members of the community to also interpret the data as suggesting that

the economy is likely to grow next quarter. Conversely, sharing models that suggest the

right-leaning candidate is better at governing leads members of the community to inter-

pret the same data as suggesting that the economy is unlikely to grow. The right-leaning

community’s interpretation is that a natural disaster and low current growth are likely if

the right-leaning candidate was better at governing (e.g., because the left-leaning party in

power is incompetent). The left-leaning community’s interpretation is that the data is likely

if the left-leaning candidate is better at governing (e.g., because GDP growth could have

been much worse in the face of a natural disaster). In other words, beliefs about the econ-

omy become “spurious implications” of beliefs about the candidate that governs better.

Thus, shared belief communities lead to polarization and disagreement on issues beyond

the issue driving community formation.

Consistent with this idea, there is sharp disagreement between Democrats and Repub-

licans about economic conditions. For instance, Democrats report much higher consumer

confidence before the 2016 election and after the 2020 election (when Democrats were

president), while Republicans report much higher confidence between the two elections.20

19For µ0(y|l) ≈ µ0(y|r), µ0(l, y) = a ≈ b = µ0(r, y), so the simple average between the lowest and
highest potential values of µleft-leaning

i (y)− µright-leaning
j (y) across people i (in the left-leaning community) and

j (in the right-leaning community) is given by the second line of Equation (1), given the assumption that
k ≥ µ0(l)/(µ0(l) + µ0(l, y)).

20See Bartels (2002) and Gerber and Huber (2009) for systematic evidence. Evidence is mixed on whether
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This pattern emerges in our framework if people discuss economic data within communities

primarily formed based on partisan affiliation.

These results may shed light on the so-called “polarization of reality” documented by

Alesina et al. (2020). They show how the political left and right differ in their perceptions

of, for example, the probability of upward social mobility. Our model suggests that such

polarization is likely to occur along issues that the electorate believes are connected to

whether the left or right governs better, as is naturally the case with social mobility since it

connects to policy. Insofar as social media facilitates the formation of communities based

on shared beliefs (increasing k), our model also suggests that it may play a role in increasing

the polarization of reality along such issues. However, our model also suggests that such

polarization is less likely to occur with issues that the electorate believes are not connected

to whether the left or right is likely to govern better (e.g., sports).

5 Managing Communication

We now turn to the implications of our framework for how someone could try to manage

communication to her advantage. We call this person a “communications manager.”

5.1 Managing Communication Through Messaging

We first consider managing communication through messaging. The key result is that mes-

saging is most effective before social learning since it may impact the community a person

joins. In other words, our framework provides a reason to “get in front of the news” by

providing a favored interpretation.

To see this, consider shared-belief communities. Imagine that before joining such a

community, person i with belief µ′
i is weakly exposed to belief µ̃ /∈ s(µ′

i) with supporting

model m(µ̃). Following exposure to model m(µ̃), the person potentially updates her beliefs

and joins the shared-belief community associated with her posterior.

Proposition 4. Suppose everyone is maximally open to persuasion, M = Ma, and is

in a shared-belief community. Let µi denote a person’s belief following social learning

without being exposed to a belief µ̃ /∈ s(µ′
i), µ

e
i denote her belief following social learning

these beliefs impact real outcomes, with Mian et al. (2023) finding no effect on consumption but Meeuwis et
al. (2022) finding effects on investment portfolios.
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after being exposed to belief µ̃, and µp
i denote her belief following social learning when

exposed to belief µ̃ before social learning. If a person is persuaded through (weak or

strong) exposure to µ̃ after social learning, µe
i ̸= µi, then she is also persuaded through

exposure to µ̃ before social learning, µp
i ̸= µi. However, the converse does not hold.

This result says that exposing people to messaging (i.e., models supporting an alter-

native belief) is more likely to impact which shared-belief community they join and hence

their final beliefs if exposure comes before they exchange models with others. To illustrate,

return to the public-policy example (Ex. 2) with k = .75 as in Figure 1. If a person with an

initial reaction µ′
i(l) = .3 is strongly exposed to belief µ̃ = .75 before social learning, then

she could join the left-leaning community and hold belief µp
i = .75 after social learning.

However, if that same person was instead strongly exposed to belief µ̃ = .75 after social

learning, she would first join the center community, hold belief µi = .5, and be unper-

suadable, µe
i = .5. The reason is simple: social learning hardens reactions to data, which

inoculates people against finding models supporting alternative beliefs compelling. This

may shed light on organizations’ attempts to preemptively frame surprising news to avoid

“losing control of the narrative.” For example, firms often announce that a CEO unexpect-

edly resigned to “spend time with family.” Firms also often have “culture training” for new

employees before they socialize with existing employees. In our framework, these actions

serve to provide early interpretations that imply favorable beliefs—e.g., the CEO’s resig-

nation does not imply the firm is in trouble—which in turn prevents people from hardening

views within communities centered around less favorable beliefs. After social learning,

people are less persuadable because their beliefs are supported by a better-fitting models.

In other words, social learning makes people more certain that their interpretations of the

data are correct and hence less open to other interpretations. A person who only talks to

others who share the reaction that the latest school shooting indicates the need for stricter

gun-control measures will become more confident in the rationale for drawing this con-

clusion from the data; a person who only talks to others who share the reaction that the

shooting indicates the need for looser gun-control measures will similarly become more

confident in drawing this conclusion from the data.21

21In a sense, this is consistent with Schkade et al. (2007), which found that after group interactions views
on climate change, affirmative action, and civil unions became more homogeneous and more confident. Some
studies on such “group polarization” find that beliefs also become “more extreme” after group interactions.
Proposition 2 is consistent with those findings insofar as extremity is measured by confidence and inconsistent
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5.2 Managing Communication by Influencing Communities

We next consider how a communications manager might directly influence the community

structure by, for instance, inviting specific groups to meetings or preventing certain groups

from forming. For example, a CEO might insist on being in all meetings with certain sub-

ordinates. A key point is that the communications manager often faces a tradeoff between

inducing people to take a specific action and inducing people to agree on the same model.

5.2.1 Promoting Specific Actions

Suppose first that the communications manager wants to encourage people to take some

action in response to the data. For example, in response to a school shooting, the manager

might want to encourage interpretations that either support tightening gun control, the sta-

tus quo, or loosening gun control. Or, following unexpectedly low earnings, a CEO may

want to encourage followers to interpret the data as supporting cutting costs, staying the

course, or investing in growth.

Formally, consider the case where each person has a finite action space and the commu-

nications manager’s objective is a strictly monotonically increasing function of the fraction

of people who choose her ideal action as ∈ A. How would the communications manager

want to structure the community—i.e., the set of models Mi a given person i is exposed

to—to maximize this objective?

Proposition 5. Suppose each person has a finite action space and the communications

manager’s objective is a strictly monotonically increasing function of the fraction of people

who choose her ideal action as ∈ A. The communications manager cannot do better than,

for every person i, exposing her to all people who would choose as in the absence of

social learning, and exposing her to nobody else: That is, the communications manager’s

objective is maximized by setting

Mi =
{
m ∈ M̄(h, µ0, d,M) : a(µ(h,m)) = as

}
(2)

for all i. The communications manager’s objective continues to be maximized by adding to

with those findings insofar as extremity is measured by how strongly beliefs react to data (if groups are formed
based on shared beliefs and people have common priors). On this last point, Roux and Sobel (2015) shows
how group polarization naturally arises in models of rational information aggregation.

27



Mi specified in Eq. (2) any model m with Pr(h|m,µ0) < maxm̃∈Mi
Pr(h|m̃, µ0), but it is

no longer maximized by adding a model m with Pr(h|m,µ0) > maxm̃∈Mi
Pr(h|m̃, µ0).

This result says that the communications manager wants to expose people to all mod-

els that support taking action as and no other models. In particular, the communications

manager does not want people to hear good-fitting arguments supporting other actions. For

example, a firm CEO may want to control interpretations of earnings announcements by

disproportionately calling on bullish analysts in earnings calls (Cohen et al. (2020)).

To illustrate these results, take the public-policy example (Ex. 2) above with µ0(l) =

1/2 and a history h that under the default is perfectly diagnostic of the underlying state

being l. Suppose the communications manager wants people to choose a = L. She should

take individuals who would choose a = R in the absence of communication and surround

them with people who would choose a = L in the absence of communication. For exam-

ple, she should form communities where all people whose initial reactions are left-leaning

(µ(l) ≥ .75) talk to each person whose initial reaction is right-leaning (µ(r) > .75). In this

case, the right-leaning people would end up believing µ(l) = .75. A key implication of

our framework concerns whom the communications manager most wants to silence: peo-

ple who support the status quo—i.e., those with µ(l) ∈ (.25, .75). These people will have

arguments that fit the data given priors very well and support inaction.22

5.2.2 Promoting Shared Models

By this logic, expanding people’s communities could reduce polarization but also mute

reactions to data that are open to interpretation. In the limit where a person is exposed

to all possible models, the person will adopt a model that completely neutralizes the data:

when data is open-to-interpretation and relevant for updating beliefs about ω under the

true model, expanding a person’s shared-belief community further untethers her beliefs

from reality. These results speak to the effects of increased connectedness between people

22For example, suppose a school shooting could lead to a loosening or tightening of gun-control restrictions
and the communications manager supports tighter gun control. The communications manager wants people
arguing for tighter gun control to speak and everyone else to listen. The people the communications manager
most wants to silence are moderates who argue for inaction, whether or not they are left- or right-leaning.
Continuing this logic in a trivial dynamic extension, once all the people arguing for tighter gun control have
spoken enough to harden beliefs, the communications manager is not worried about them having bilateral
conversations with people favoring looser gun control—but they would still be wary of them having bilateral
conversations with those who support the status quo.
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generated by social media.

An implication is that promoting specific actions typically conflicts with promoting

shared models. Because the status quo is favored by interpretations that fit the data perfectly

and hence imply beliefs do not need to update, it can be hard to move people whose initial

reaction is that the data supports the status quo. In contrast, if the communications manager

simply wants people to end up with the same model—for instance, because she benefits

when their actions are coordinated—then she should encourage open communication.

Proposition 6. Suppose the communications manager’s objective is a strictly monotonically-

increasing function of the fraction of people who share what ends up to be the most popular

model. The communications manager cannot do better than, for every person i, exposing

her to all models: That is, the communications manager’s objective is maximized by setting

for all i

Mi = M̄(h, µ0, d,M). (3)

If the goal is for everyone to end up sharing the same model, the communications

manager wants everyone to talk to each other and share their models. When receivers are

maximally open to persuasion, this means that everyone will end up with interpretations

that neutralize the data and promote the status quo. Note that this last point does not rely

on the assumption that people hold common priors: When people are maximally open to

persuasion with non-common priors, then it is still the case that the “h was inevitable”

model is the only one that fits better than every other model represented in the population.

And when everyone adopts this model, they stick with their prior beliefs and take the same

action they would have taken in the absence of seeing the data h—i.e., they stick with their

status-quo actions.

6 Applications

6.1 When and How to Hold a Meeting

Why do organizations hold so many meetings? Economic models typically assume meet-

ings are fundamentally about information exchange: One worker holds a piece of infor-

mation that another does not and exchanging information helps workers adapt to the envi-

ronment and coordinate their actions (e.g., Dessein and Santos (2006)). Under this view,
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meetings are essentially no different from other communication technologies (e.g., emails)

and are called when workers do not share the same information set. After meetings, work-

ers all agree on the optimal action, which is better adapted to the full information set.

Organizational scholars view meetings much more broadly. They come in different

forms, such as town halls or all hands. They are sometimes about information exchange,

but they are also about diagnosing problems, communicating organizational priorities, and

exchanging or amplifying views on the right course of action.

Appendix E formalizes such a role for meetings, building on the view put forward

in Weick (1995) that sensemaking is a fundamental activity of organizations. Following

the logic of Section 5 costly meetings are called to help workers make sense of shared

information. Meetings allow leaders to control interpretations workers share with each

other, and they are called even when workers do not have any new private information.

The key result that emerges is that the structure of meetings is not fixed but depends on

workers’ flow of communication outside meetings and how the organization prioritizes

adapting to the environment versus coordinating among workers. In particular, leaders can

find it optimal to use meetings to coordinate workers by muting their reactions to data, even

if the leaders themselves interpret the data as suggesting the organization needs to better

adapt to the environment.

6.2 The Evolution and Spread of Misconceptions

Why do people believe in misconceptions (e.g., GMOs and vaccines are dangerous) and

conspiracy theories (e.g., QAnon) when the Internet and social media also give them access

to high-quality information? Echo chambers are a common answer to this question. While

people have access to high-quality information, their media diets and social networks only

expose them to misinformation and falsehoods. Under this view, falsehoods spread like

viruses and crowd out the truth. People hear the same falsehood repeatedly and perhaps

then overweight it.

An emerging literature suggests that this echo-chamber view is incomplete. Guess et

al. (2018) argue that most Americans have diverse media diets, and that social media like

Twitter tend to increase the diversity of viewpoints that people are exposed to. Similarly,

Bertrand and Kamenica (2020) find that while social attitudes have become stronger pre-

dictors of political ideology over time, they have not become stronger predictors of media
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diet. In addition, Boxell et al. (2017, 2020) find that while political polarization is increas-

ing, it is not increasing faster for people who extensively use the Internet and social media.

Thus, while echo chambers could be a concern, they may not be as widespread a problem

as conventional wisdom portrays. The persistence of disagreement remains a puzzle not

fully explained by echo chambers.

Our framework offers a different explanation, highlighting the difference between in-

terpretations and information. Within a community, people are exposed to crowdsourced

models that evolve to fit the data better and better, which makes them more certain their

interpretation of the data is correct. Insofar as social media and the Internet make it easier

to form shared-belief communities, our framework predicts that their primary impact will

be to make people’s beliefs resistant to change.

Proposition 7. Suppose person i and j hold the same beliefs µ. If person i formed those

beliefs through social learning in a shared-belief community and j formed those beliefs in

some other way, then person j is (weakly) more persuadable than person i.

Proposition 7 says that shared-belief communities inoculate people against finding al-

ternative beliefs compelling. The reason flows from a basic property of such communities:

for every belief initially held by someone in the community, the best-fitting model sup-

porting that belief (among models in M ) is represented in the community. Combined with

the earlier result that communities formed based on shared beliefs mute reactions (Proposi-

tion 2), this implies that shared-belief communities cause beliefs to be persistently unteth-

ered from data that is open to interpretation, creating a form of groupthink (Janis (2008))

whereby “all agents take the wrong action” (Harel et al. (2021)).23 To make an analogy

to viruses, communities lead interpretations to “mutate” to achieve better fit within the

community—and people are exposed to more “variants” within than across communities.24

23Other recent economic models of groupthink include Bénabou (2013), which views groupthink as arising
from motivated mis-reading or neglect of evidence, and Harel et al. (2021), which views groupthink as arising
from social learning of information from actions rather than from the exchange of private signals. In contrast
to those models, we shed light on situations where shared beliefs and actions may be overly pessimistic
(e.g., about the economy or political issues) and differ across communities that share similar facts (see, e.g.,
Angelucci and Prat (2024)).

24Bowen et al. (2021) provide an alternative model where belief polarization is driven by misperceptions
about selective sharing of second-hand information within an echo chamber. In Bowen et al. (2021), disagree-
ment and polarization are driven by different people holding different information (having heterogeneous
“information diets” of second-hand information) and not properly accounting for that fact; in our model, dis-
agreement arises even when people share the same information. Their framework sheds light on situations
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While we could illustrate these results by applying the baseline model we presented

above, it is more revealing to consider a simple two-period dynamic extension of the anal-

ysis under the assumption that everyone is maximally open to persuasion. The key idea is

that if communities form endogenously in response to one set of information, those com-

munities will tend to encourage different interpretations of all future information. In other

words, community formation based on shared-prior beliefs creates strong path dependence

in the way people interpret information.

Formally, suppose people begin with the same priors, react to data h1, and form shared

belief communities based on their reactions to h1. Further suppose that after exchanging

models through the community, people’s posterior beliefs after interpreting h1 become their

priors in interpreting new data h2. In interpreting h2, people share models with others in

the shared-belief community that was formed based on common reactions to earlier data

h1. That is, communities are sticky across the two periods: people stay in the shared-

belief community that was formed in period 1. For example, people may talk to others who

share a similar reaction to evidence purporting to show a relationship between vaccines and

autism and continue to talk to the same people when new data arrives.

The key result from this dynamic extension is that communities have lasting conse-

quences on how people interpret subsequent events. By Proposition 2, everyone within a

given shared-belief community ends up holding the initial belief closest to the prior within

that community in response to data h1. So everyone within a shared-belief community

begins with the same prior entering into the second period where they interpret data h2.

Call this prior belief µs
1, which differs across communities s. Since people use the same

community to exchange interpretations of h2, social learning maximally mutes and hard-

ens a person’s reaction to the data. In other words, everyone ends up at the belief they held

prior to seeing h2 with a model that perfectly explains the data: for every person i in shared

belief community s, µi = µs
1 and Pr(h2|mi, µ

s
1) = 1.

This analysis suggests that once misconceptions evolve and harden within a community

through crowdsourced interpretations of a high-profile event, members of that community

explain subsequent events in a way that makes them consistent with the original interpre-

tation. In other words, a bad take on an event can be very hard to reverse: Once a person

where a lot of news is coming out each day and it is hard to keep track of it all (e.g., if there is a war or people
are forming beliefs about a new political candidate). We shed light on situations where the basic facts are
essentially common knowledge and people are primarily exchanging interpretations of those facts.
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“goes down the rabbit hole”, it is difficult to use new information or interpretations to con-

vince them to come out. Indeed, recent papers (Nyhan et al. (2023); Guess et al. (2023))

find that temporarily (e.g., around elections) reducing people’s exposure to like-minded

content and increasing their exposure to counterattitudinal content does not appreciably

impact their beliefs. In our framework, this resistance to change emerges because before

the intervention the community already exposed people to interpretations that fit their prior

knowledge well.

7 Discussion

This paper is a first step to studying the social transmission of models. There are several po-

tential avenues for future work. For instance, while we assume people costlessly exchange

models, people often devote time and effort seeking new models for reasons of curiosity,

identity, and instrumentality. How does a realistic demand function for models influence,

for example, the way communities are structured?

We also show prior beliefs shape initial reactions to the data, community formation,

and ultimately reactions after social learning. But, other than in our dynamic extension in

Section 6.2, we say little about where these priors come from. What we do shed light on

is why beliefs often appear stable in the face of contradictory, but open-to-interpretation,

data. And we make the novel (to our knowledge) prediction that initial beliefs will respond

to such data before reverting towards the prior.

To isolate the impact of social learning of models, we assume that all information is

public. In some contexts, social learning involves sharing both models and private infor-

mation. Social learning in such contexts has two effects: It makes private information

public, as in most of the literature, and it frames information, as in our model. The scope

for social learning to lead to more accurate beliefs increases in the degree to which there is

private information that is closed to interpretation.

We focus on shared-belief communities because they capture important features of real-

world groups. But some communities are instead formed based on shared models. Some

communities of venture capitalists primarily evaluate startups based on product attributes,

while others focus on attributes of founders. How do communities shape views in such

cases? Appendix B.3 analyzes a special class of shared models, in which people are dog-
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matic on how to interpret certain types of information. The key result is that people end up

reacting only to the data that they are inflexible in interpreting. Quantitative analysts will

talk to other quantitative analysts about how to interpret qualitative information and end up

agreeing that, while it initially seemed relevant, it is not useful.

The framework also admits further applications. For example, how should a manager

organize teams to arrive at a realistic interpretation of the data? A loose intuition reminis-

cent of Hong and Page (2001) that arises from our framework is that aggregating across

teams that have different ways of looking at the data (i.e., different models) may be more

helpful than aggregating across teams that are systematically trying to come to different

conclusions from the data. For instance, in the venture capital context, it may be helpful to

have people who focus on management team experience and people who focus on current

profits. It is unlikely to be helpful to have people who always want to invest and people

who never want to invest, each of whom comes up with the interpretation of the data that

best supports their (pre-specified) conclusion.

A Proofs
Proof of Proposition 1. When h̃ is realized, any model in M must satisfy Pr(h̃k|h̃1,m

′, µ0) ≤
1 (logic of probability) and Pr(h̃k|m′, µ0) = πk(h̃k) (definition of M ). This means that

max
m∈M

Pr(h̃k|h̃1,m, µ0)− Pr(h̃k|m,µ0) ≤ 1− πk(h̃k) ∀ k. (4)

If a model m′ ∈ M achieves the right side of (4), then any best-fitting model in M must
also achieve it: Pr(h̃|m,µ0) ≤ π1(h̃1) = Pr(h̃|m′, µ0). Under any such model m′ that ad-
ditionally has the property that πm′(h̃1|ω) is constant across values of ω, people’s posterior
beliefs equal their prior beliefs µ0 because likelihoods would then be independent of ω.

It remains to show that there is in fact a model m′ ∈ M that (i) achieves the right
side of (4) and (ii) has the property that πm′(h̃1|ω) is constant across values of ω. Letting
h−1 ≡ (h2, . . . , hN), it is easy to check that the following is such a model:
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πm′(h̃|ω) = π1(h̃1) ∀ω
πm′(h̃1, h−1|ω) = 0 ∀ h−1 ̸= h̃−1, ω

πm′(h1, h̃−1|ω) =
π1(h1)

1− π1(h̃1)
×
[
Pr(h̃−1|mT , µ0)− π1(h̃1)

]
∀ h1 ̸= h̃1, ω

πm′(h1, h−1|ω) =
π1(h1)

1− π1(h̃1)
×
[
Pr(h−1|mT , µ0)

]
∀h1 ̸= h̃1, h−1 ̸= h̃−1, ω.

Proof of Proposition 2. Consider an arbitrary person i and let

MovementMini ≡ arg min
µ∈s(µ′

i)
Movement(µ;µ0).

Someone in i’s network will propose a model m̃ that maximizes Pr(h|·, µ0) subject to
µ(h, m̃) ∈ MovementMini. By Lemma 1, this model will fit strictly better than all models
represented in i’s network that imply beliefs outside of MovementMini, so everyone in i’s
network will adopt models that imply beliefs in MovementMini.

Proof of Proposition 3. 1. For every µ̃, there exists a positive measure of models m(µ̃)
supporting that belief that are less compelling than the model mi a person would
adopt prior to weak exposure to that belief: for example, take models

πm(µ̃)(h|ω) =
µ̃(ω)

µ0(ω)
· (Pr(h|mi, µ0)− ε)

for all ω ∈ Ω and for ε > 0 small.

2. When µ̃ is closer to the person’s prior, as measured by Movement(·;µ0), than any
belief supported by a model in Mi, then the best-fitting model supporting µ̃ fits better
than any model in Mi (by Lemma 1).

Proof of Corollary 1. Let

µleft-leaning n y

l aL bL

r cL dL

denote a movement-minimizing belief of members of the left-leaning network and
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µright-leaning n y

l aR bR

r cR dR

denote a movement-minimizing belief among members of the right-leaning network.
For the left-leaning network, µleft-leaning(l) = aL+bL ≥ k. Assuming, as we will later es-

tablish, that Movement(µleft-leaning;µ0) = max
{
aL/a, bL/b

}
, then the inequality must bind,

so bL = k−aL. This then implies that Movement(µleft-leaning;µ0) = max
{
aL/a, (k − aL)/b

}
,

which will be minimized when aL/a = (k − aL)/b ⇒ aL = k × a/(a+ b) = k × µ0(n|l)
and bL = k × b/(a+ b) = k × µ0(y|l).

Summarizing what we know so far:

µleft-leaning n y

l k × a
a+b

k × b
a+b

r cL dL
=

µleft-leaning n y

l k × µ0(n|l) k × µ0(y|l)
r cL dL

and we can similarly establish that

µright-leaning n y

l aR bR

r k × c
c+d

k × d
c+d

=
µright-leaning n y

l aR bR

r k × µ0(n|r) k × µ0(y|r)
.

Proceeding further, cL and dL must satisfy the following constraints if the premise above
is true that Movement(µleft-leaning;µ0) = max

{
aL/a, bL/b

}
:

cL + dL = (1− k) ⇒ dL = (1− k)− cL, and

max
{
cL/c, dL/d

}
= max

{
cL

c
,
(1− k)− cL

d

}
≤ max

{
aL/a, (k − aL)/b

}
=

k

µ0(l)
,

where the last equality follows from plugging in aL from the earlier calculations and, here,
c = µ0(r, n), d = µ0(r, y). The range of cL that satisfy these conditions is given by

max

{
0, (1− k)− k × µ0(r, y)

µ0(l)

}
≤ cL ≤ min

{
1− k, k × µ0(r, n)

µ0(l)

}
,

which is non-empty given the assumptions that k ≥ µ0(l) = 1/2. This last fact also
establishes the premise that Movement(µleft-leaning;µ0) = max

{
aL/a, bL/b

}
.

We can similarly derive that
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max

{
0, (1− k)− k × µ0(r, n)

µ0(l)

}
≤ dL ≤ min

{
1− k, k × µ0(r, y)

µ0(l)

}

max

{
0, (1− k)− k × µ0(l, y)

µ0(r)

}
≤ aR ≤ min

{
1− k, k × µ0(l, n)

µ0(r)

}

max

{
0, (1− k)− k × µ0(l, n)

µ0(r)

}
≤ bR ≤ min

{
1− k, k × µ0(l, y)

µ0(r)

}
.

Taken together,

µleft-leaning(y) ≥ max

{
k × µ0(y|l), k × µ0(y|l) + (1− k)− k × µ0(r, n)

µ0(l)

}

µleft-leaning(y) ≤ min

{
k × µ0(y|l) + 1− k, k × µ0(y|l) + k × µ0(r, y)

µ0(l)

}

µcenter-leaning(y) = µ0(y)

µright-leaning(y) ≥ max

{
k × µ0(y|r), k × µ0(y|r) + (1− k)− k × µ0(l, n)

µ0(r)

}

µright-leaning(y) ≤ min

{
k × µ0(y|r) + 1− k, k × µ0(y|r) + k × µ0(l, y)

µ0(r)

}
.

This then means that

µleft-leaning(y)− µright-leaning(y) ≥ max

{
k × µ0(y|l), k × µ0(y|l) + (1− k)− k × µ0(r, n)

µ0(l)

}

−min

{
k × µ0(y|r) + 1− k, k × µ0(y|r) + k × µ0(l, y)

µ0(r)

}
.

Assuming that µ0(l) = 1/2 and µ0(l, y) = µ0(r, n) ⇒ µ0(y|l) = µ0(n|r), then this
inequality reduces to

µleft-leaning(y)− µright-leaning(y) ≥
{
2k × µ0(y|l)− 1 if k ≥ µ0(r)

µ0(r)+µ0(l,y)

(1− 2k) if k < µ0(r)
µ0(r)+µ0(l,y)

.

We also have

µleft-leaning(y)− µright-leaning(y) ≤ min

{
k × µ0(y|l) + 1− k, k × µ0(y|l) + k × µ0(r, y)

µ0(l)

}

−max

{
k × µ0(y|r), k × µ0(y|r) + (1− k)− k × µ0(l, n)

µ0(r)

}
.
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Assuming that µ0(l) = 1/2 and µ0(l, y) = µ0(r, n) ⇒ µ0(y|l) = µ0(n|r), then this
inequality reduces to

µleft-leaning(y)− µright-leaning(y) ≤
{
2k × (µ0(y|l)− 1) + 1 if k ≥ µ0(l)

µ0(l)+µ0(r,y)

k × (1 + µ0(y|l) + µ0(y|r))− 1 if k < µ0(l)
µ0(l)+µ0(r,y)

.

If k ≥ µ0(l)
µ0(l)+µ0(r,y)

, then the middle point between the lower and upper bound of
µleft-leaning(y)− µright-leaning(y)equals

k × (2× µ0(y|l)− 1) = k × (µ0(y|l)− µ0(y|r)) ,

while for µ0(r)
µ0(r)+µ0(l,y)

≤ k ≤ µ0(l)
µ0(l)+µ0(r,y)

this middle point equals

k × (µ0(y|l) + 1)− 1 =
1

2
× k × (µ0(y|l)− µ0(y|r) + 3)− 1.

Moreover, for k ≥ 1
2×µ0(y|l) ≥ µ0(l)

µ0(l)+µ0(l,y)
, simple algebra reveals that the lower bound of

µleft-leaning(y)− µright-leaning(y) is greater than 0.

Proof of Proposition 4. Weak exposure to belief µ̃ prior to social learning impacts the per-
son’s final beliefs if and only if the person finds m(µ̃) more compelling than the model m′

i

she currently has in mind supporting belief µ′
i: that is, if and only if

Pr(h|m(µ̃), µ0) > Pr(h|m′
i, µ0). (5)

Weak exposure to belief µ̃ following social learning impacts the person’s final beliefs if
and only if the person finds m(µ̃) more compelling than the best-fitting model among those
represented in shared-belief network s(µ′

i): that is, if and only if

Pr(h|m(µ̃), µ0) > max
m′∈⋃µ∈s(µ′

i
) M(µ)

Pr(h|m′, µ0). (6)

The result follows from the right-hand-side of inequality (6) being larger than the right-
hand-side of inequality (5).

A similar proof applies to the case of strong exposure to beliefs, replacing the left-hand-
sides of inequalities (5) and (6) with maxm′∈M(µ̃) Pr(h|m′, µ0).

Proof of Proposition 5. The communication manager’s objective is clearly maximized by
exposing everybody to the best-fitting model that supports action as and exposing them to
no other models. The communication manager does no worse by exposing people to all
models specified in Eq. (2) (i.e., all models that support action as), since this includes the
best-fitting one and no models that support other actions. That is, everybody’s behavior is
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the same whether they are only exposed to the best-fitting model that supports as or models
specified in Eq. (2). This remains true if we add to models specified in (2) any model m
with Pr(h|m,µ0) < maxm̃∈Mi

Pr(h|m̃, µ0), since nobody will adopt such a model. How-
ever, the communication manager’s payoff is strictly worse if we add to models specified in
(2) any model m with Pr(h|m,µ0) > maxm̃∈Mi

Pr(h|m̃, µ0), since anybody who would’ve
adopted a model in Mi will instead adopt this model which supports taking an action other
than as.

Proof of Proposition 6. If everybody is exposed to M̄(h, µ0, d,M), then everybody will
also end up adopting the model in that set that maximizes Pr(h|·, µ0). The communication
manager cannot do better, since everyone will end up sharing the same model.

Proof of Proposition 7. If person i forms her beliefs µ in a shared-belief network, then she
adopts the best fitting model in M that supports those beliefs. The fit of person j’s model
supporting those beliefs must then fit weakly less well than person i’s, which makes her
weakly more persuadable.
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B Model Details

B.1 Initial Reactions

Let ∆̄(h, µ0, d,M) =
{
µ ∈ ∆(Ω) : µ = µ(h,m) for some m ∈ M̄(h, µ0, d,M)

}
denote

the set of initial beliefs in reaction to the data. By assumption, fraction δ of the popula-

tion sticks with the default and holds beliefs µ(h, d) and fraction (1 − δ) holds beliefs in

∆̄(h, µ0, d,M).

Proposition A.1. The set of initial beliefs in reaction to the data is a subset of

¯̄∆(h, µ0, d,M) =

{
µ ∈ ∆(Ω) : µ(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ ω ∈ Ω

}
.

Further, when people are maximally open to persuasion given the data, M = Ma , we have

∆̄(h, µ0, d,M) = ¯̄∆(h, µ0, d,M).

Proof of Proposition A.1. This proof is essentially the same as the proof of Proposition 1

in Schwartzstein and Sunderam (2021). We repeat it here for completeness.

Note that

µ(ω|h,m) =
πm(h|ω) · µ0(ω)

Pr(h|m,µ0)
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by Bayes’ Rule. Since πm(h|ω) ≤ 1 and, by definition of M̄(h, µ0, d,M), Pr(h|m,µ0) ≥
Pr(h|d, µ0) for all m ∈ M̄(h, µ0, d,M), beliefs that do not lie in ¯̄∆(h, µ0, d,M) cannot be

included in ∆̄(h, µ0, d,M). To see that for rich enough M , all beliefs in ¯̄∆(h, µ0, d,M) are

also in ∆̄(h, µ0, d,M), define m by

πm(h|ω) =
µ(ω|h,m)

µ0(ω)
× Pr(h|d, µ0) ∀ω ∈ Ω.

Proposition A.1, which is essentially a restatement of Proposition 1 in Schwartzstein

and Sunderam (2021), characterizes the set of initial reactions to the data.1

B.2 Expanding Communities

Expanding person i’s community by merging it with M̃ enlarges the set of models that are

shared with person i to Mi ∪ M̃ .

Proposition A.2. Suppose everyone is maximally open to persuasion, M = Ma. Let µi

(mi) denote a person’s belief (model) following social learning prior to a community ex-

pansion, and µe
i (me

i ) denote her belief (model) following social learning with the expanded

community.

1. Expanding person i’s community in any way weakly hardens her reaction to the data:

for any expansion of Mi to Mi ∪ M̃ with M̃ ⊂ M , Pr(h|me
i , µ0) ≥ Pr(h|mi, µ0).

2. If, in addition, everyone is in a shared-belief community, then expanding person i’s

community in any way also weakly mutes her reaction to the data: for any expansion

of Mi to Mi ∪ M̃ with M̃ ⊂ M , Movement(µe
i ;µ0) ≤ Movement(µi;µ0).

Proof of Proposition A.2. 1. That expanding person i’s community hardens her reaction

to data follows from the simple fact that maxm∈Me Pr(h|m,µ0) ≥ maxm∈M Pr(h|m,µ0)

whenever M e ⊃ M .
1To derive the distribution over initial reactions, we need to additionally specify the distribution of models

people initially come up with. Many of our results on beliefs after social learning are independent of this
distribution.
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2. That expanding person i’s community if anything mutes her reaction to the data when

she’s in a shared-belief community follows from the fact that mi is the best-fitting

model inducing µi, which fits better than any model inducing a belief further from

her prior according to Movement(·;µ0) (by Lemma 1).

The first part of Proposition A.2 shows that expanding a community always (weakly)

hardens a community member’s beliefs and makes them less persuadable. The most basic

impact of increasing connectedness in our model is increasing a person’s view that she

can explain the data and making her resistant to changing her mind. The second part of

the proposition shows that when communities are based on shared beliefs, expanding the

community always additionally mutes members’ beliefs. Being exposed to more models

increases fit and consequently reduces movement.

B.3 Shared Model Communities

Some communities are based not on shared beliefs, but shared models. To analyze shared-

model communities, consider a partition C over the set of admissible models M , where

we denote c(m) as the element in M that model m ∈ M belongs in. In a shared-model

community, a person i exchanges models with another person j if and only if their initial

models are similar, in the sense that they fall in the same element of M.

Definition A.1. In a shared-model community, Mi =
{
m ∈ M̄(h, µ0, d,M) : m ∈ c(m′

i)
}

for every person i.

People in a given shared model community will end up agreeing on whichever model in

c(m) maximizes Pr(h|·, µ0).

Decompose h into two types of data, ha and hb. In predicting the success of a project,

stock, or politician, for example, there may be both quantitative or hard information, as well

as qualitative or soft information. In interpreting whether a left- or right-leaning policy is

better, there may be data communicated by left-leaning and right-leaning outlets.

Imagine there are communities that view ha as open to interpretation, but not hb, and

vice-versa. Quantitative analysts may believe they have a good handle on how to interpret

hard information but may be more open to different ways of thinking about qualitative

information. Symmetrically, qualitative analysts may have a single interpretation of soft
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interpretations but be open to many interpretations of hard information. People on the left

may believe they know how to interpret left-leaning information, e.g., as trustworthy, but

may be less sure on how to interpret right-leaning information. More formally, suppose

there are three categories of models:

cA =
{
m ∈ M̄(h, µ0, d,M) : πm(h

a, hb|ω) = πm(h
b|ω) · πmfa(ha|ω) ∀ ω ∈ Ω

}

cB =
{
m ∈ M̄(h, µ0, d,M) : πm(h

a, hb|ω) = πm(h
a|ω) · πmfb(hb|ω) ∀ ω ∈ Ω

}

cO = M̄(h, µ0, d,M) \
{
cA, cB

}
.

The first category of models, cA, has a fixed interpretation mfa of ha but differing inter-

pretations of hb. Conversely, category cB has a fixed interpretation mfb of hb but differing

interpretations of ha. Finally, category cO contains all other models. If shared inflexibil-

ity stems from shared expertise, it is natural to assume mfa = mT and mfb = mT ; if it

stems from shared beliefs that the data is uninformative, it is natural to assume that mfa

renders ha uninformative and mfb renders hb uninformative; if it stems from shared trust in

knowing the process, it’s natural to assume mfa = d and mfb = d.

Supposing the data is maximally open to persuasion, M = Ma, then people with initial

models in cA will end up convincing themselves that hb is obvious in hindsight and hence

uninformative, while people with initial models in cB will end up analogously convincing

themselves that ha is uninformative.

Proposition A.3. Suppose everyone is maximally open to persuasion, M = Ma, and is

in a shared-model community based on shared inflexibility of the form described above,

where c(m) ∈
{
cA, cB, cO

}
. Then social learning need not moderate everyone’s reaction

to the data. In particular, social learning leads members of cA to view hb as uninformative,

members of cB to view ha as uninformative, and members of cO to view h as uninformative,

resulting in final beliefs:

µi =





µ(ha,mfa) if m′
i ∈ cA

µ(hb,mfb) if m′
i ∈ cB

µ0 if m′
i ∈ cO.
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Proof of Proposition A.3. Recall that

cA =
{
m ∈ M̄(h, µ0, d,M) : πm(h

a, hb|ω) = πm(h
b|ω) · πmfa(ha|ω) ∀ ω ∈ Ω

}
.

Clearly, the best fitting model in cA is πm(h
a, hb|ω) = 1 · πmfa(ha|ω) = πmfa(ha|ω) for

all ω ∈ Ω. Similarly, the best fitting model in cB is πm(h
a, hb|ω) = 1 · πmfb(hb|ω) =

πmfb(hb|ω) for all ω ∈ Ω. Finally, the best fitting model in cO is πm(h
a, hb|ω) = 1 for

all ω ∈ Ω. By assumption, someone in each community will propose the associated best-

fitting models which all community members will end up adopting. The final beliefs µi

follow.

As an illustration, consider communities based on shared expertise and imagine a

company will either be successful (ω = 1) or unsuccessful (ω = 0) with equal proba-

bility ex ante. People are trying to forecast the success of the company based on hard,

ha ∈
{
ha, h̄a

}
, and soft, hb ∈

{
hb, h̄b

}
, information. The true probability of ha being h̄a or

hb being h̄b is .75 conditional on future success and .25 conditional on future failure, where

hard and soft signals are conditionally independent. Imagine that the hard and soft signals

point in opposite directions, with the hard signal being truly good (ha = h̄a) and the soft

signal being bad (hb = hb). Then, the correct response is to predict the probability of future

success to be 1/2.

People’s initial reactions to these signals will vary significantly. However, by Proposi-

tion A.3, the community of soft-information experts will settle on explaining away the hard

information and come to believe the likelihood of future success to be 1/4. Conversely, the

community of hard-information experts will settle on explaining away the soft information

and come to believe the likelihood of future success to be 3/4. The non-experts will set-

tle on explaining away all information and believing the likelihood of future success to be

1/2. Since some people in the hard- and soft-information communities will start with more

moderate (and correct) reactions, in this example social learning intensifies some opinions

in the hard- and soft-model communities in addition to hardening them.

With re-labeling, a similar example perhaps sheds light on so-called “epistemic closure”

in political debates. Political observers argue that, in recent years, many of beliefs held by

conservatives and liberals seem divorced from reality. Pundit Jonathan Chait puts it in the
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following way:

the problem is that the [conservative] movement has created its own sub-

culture, and within this subculture, only information from sources controlled

by the movement is considered trustworthy or even worth paying attention to.2

The key problem, as Chait puts it, is not necessarily that liberals are unaware of informa-

tion provided by conservatives and vice-versa, but rather that they hold shared beliefs that

information from the other side of the aisle is not worth grappling with. The analysis in

this section shows that this would be a consequence of shared inflexibility in believing in-

formation from your own side is trustworthy. Under this interpretation, liberals are aware

of conservative information. And they begin with quite diverse opinions on how to inter-

pret conservative information. But, in exchanging interpretations, they end up settling on a

shared view that they should not update based on that information.

A final example of communities based on shared models is where the measure (1− δ)

of the population who initially stick with the default are in one community and the rest of

the population are in others. For example, some portion of the population may not devote

enough attention to an issue to construct their own interpretation of the data beyond the

default, nor to exchanging interpretations with others.

When the default is accurate (e.g., in some cases taking scientific consensus at face

value), people who adhere to the default end up with more accurate interpretations and

beliefs than those in other communities. For example, a 2016 Pew report found that Amer-

icans “who care a great deal about GM foods issue expected negative effects from these

foods,” belying scientific consensus. Similarly, Fernbach et al. (2019) found that people

who are extremely opposed to GM foods think they know the most about the safety of

those foods, but actually know the least. Such Americans pushed a number of unfounded

interpretations of the data, including that eating GM foods caused allergies, cancer, and

autism.

C An Additional Example

This example shows how interpretations may evolve differently across shared-belief com-

munities. Consider a community of venture capitalists trying to predict the success of a
2https://newrepublic.com/article/74492/what-conservative-epistemic-closure-means
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startup in a new sector (e.g., generative AI) based on the history of past startups and their

characteristics. The characteristics of startup j are its profits (x1j), management team ex-

perience (x2j), and an individuating characteristic (x3j)—a characteristic that is unique to

each startup. The history of past startups is h = {(x1j, x2j, x3j, yj)}j where yj = 1 if

startup j succeeded and yj = 0 if it failed. Figure A.1a shows an example history. Each dot

represents a previous startup, with profit plotted on the horizontal axis and team experience

plotted on the vertical axis. The individuating characteristics are not pictured. A dot is

filled in if the startup was successful and is unfilled if it failed. Venture capitalists start with

a prior that a given startup’s probability of success, θ, is uniformly distributed on [0, 1] and

dogmatically believe that (profit) x (experience) characteristics are uniformly distributed in

[0, 1]× [0, 1]. They then use the history to make predictions about a new startup k’s success

probability as a function of its characteristics.

We assume there are four types of models in the model space M . First, the default

model is that all startups in the new sector have the same success probability regardless of

their characteristics. Second, there are models that are cutoff rules in profit: all startups

with profit below the cutoff share the same success probability and all startups with profit

above the cutoff share the same success probability.3 For instance, the vertical green line

in Figure A.1b depicts the model where the cutoff is the 25th percentile of profits. Third,

there are models that are analogous cutoff rules in team experience. For instance, the

horizontal red line in Figure A.1c depicts the model where the cutoff is the 25th percentile

of experience. Fourth, there is a model positing that neither profits nor experience matter.

Instead, each startup’s outcome is due to its individuating characteristics; in other words,

each startup had a unique feature that perfectly determined success or failure. Note that

this model perfectly explains each data point.4

Prior to social learning, venture capitalists consider the default and one other model

randomly selected from the other three model types. As shown in Figure A.1d, venture

capitalists will have a variety of different interpretations, and thus different beliefs, at this

point. In the figure, we depict for simplicity the case where the cutoffs considered are at

the 25th, 50th, and 75th percentiles of each dimension. All fit better than the default.

Suppose venture capitalists are in shared-belief communities. Specifically, they share

3Formally, success probabilities below and above the cutoff are independently drawn from the uniform
distribution.

4Formally, under the model mind, Pr(y|x3,m
ind, µ0) = 1 for y ≡ (yj)j and x3 ≡ (x3j)j .
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Figure A.1: Predicting the success of a startup

interpretations with others who have similar initial reactions to the data. Optimists who

believe the data suggest that the average startup is likely to be successful talk to each other;

pessimists who believe the data suggest that the average startup is likely to be unsuccessful

talk to each other; and moderates who believe that success of the average startup is 50-50

talk to each other. This community structure may emerge because people with different

initial reactions have different objectives going forward. For instance, optimists think they

are likely to invest and want to figure out the characteristics that matter most for success,

while pessimists want to figure out the most compelling way to explain to their clients why

they are not investing.

Social learning will lead beliefs to converge within each community to the model within

that community that best fits the data. For instance, consider the optimists. Two models
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Figure A.2: Evolution of Beliefs Across Shared-Belief Networks Surrounding Startup Suc-
cess

lead to optimistic interpretations of the data: one where the cutoff is at the 25th percentile of

experience and one where the cutoff is at the 25th percentile of profits. The former fits the

data almost ten times better than the latter. This can be seen in by comparing Figures A.1b

and A.1c. The experience-based model in Figure A.1c more effectively separates successes

from failures than does the profit-based model in Figure A.1b.5 Thus, after social learning,

all optimists adopt the experience-based model, depicted by thick-red horizontal line in

Figure A.2b. Given the data and this adopted model, simple application of the standard

beta-binomial updating formula tells us that members of the optimist community forecast

average startup success to be 3/4·((7+1)/(9+2))+1/4·(1/(5+2)) ≈ .58. Essentially, they

believe the best way to explain the data is that failure is relatively rare—only the startups

with the least experienced management teams fail.

Members of the pessimist community go through a similar evolution. There are two

models that lead to pessimistic interpretations: one with a cutoff at the 75th percentile

of experience and one with a cutoff at the 75th percentile of profits. In this case, the

profit-based model fits approximately ten times better than the experienced-based model,

5Formally, the likelihood of the data under the experience-based model is proportional to (
∫ 1

0
(1−θ)5dθ) ·

(
∫ 1

0
θ7(1− θ)2dθ) ≈ .00046, while the likelihood of the data under the profit-based model is proportional to

(
∫ 1

0
(1− θ)3dθ) · (

∫ 1

0
θ7(1− θ)4) ≈ .000063.
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so pessimists converge to the model depicted by the thick-green vertical line in Figure A.2b.

Given the data, members in the pessimist community forecast average startup success to

be 3/4 · ((2 + 1)/(9 + 2)) + 1/4 · ((5 + 1)/(5 + 2)) ≈ .42, disagreeing strongly with the

members of the optimists community.

Finally, consider the neutral community. Prior to social learning, the two models in the

neutral community are the default model (that the success probability is the same regardless

of characteristics) and the model where the success or failure of each previous startup was

inevitable given individuating characteristics. The latter model fits the data perfectly, so

members of the neutral community converge to it, while continuing to forecast average

startup success to be .5.

The example highlights how interpretations evolve differently across communities. Mem-

bers of different communities end up not only with different final beliefs about startup suc-

cess probabilities, but also disagreeing about the characteristics that matter for success. In

the optimist community, some initially believe experience matters, while others initially

believe profit matters. Yet all come to believe that startup success is predicted by experi-

ence and not profit. Members of the pessimist community similarly start out disagreeing,

but instead come to believe that startup success is predicted by profits and not experience.

In the neutral community, everyone comes to believe that success is unpredictable ex ante

because individuating characteristics are all that matter.

In the example, sharing models in shared-belief communities does not result in muting—

optimists end up more optimistic after sharing models than they were on average before

sharing models and similarly pessimists end up more pessimistic on average. Here we

show using simulations that muting does appear to hold on average in the example, just

not for the particular realization of the data we consider above. In each simulation, we

first choose a value for the true success probability for the startup θ from a set of 40 val-

ues evenly distributed on [0, 1]. We then randomly draw 5 startups with 3 characteristics:

(i) success or failure with success having probability θ, (ii) profit, which is uniformly dis-

tributed on [0, 1], and (iii) team experience, which is also uniformly distributed on [0, 1].

We consider models to explain success or failure that are cutoff rules in either profit or

team experience. Five cutoff rules are considered, evenly spaced on each dimension. We

compute the fit for all models, including the default model that the success probability is

constant across characteristics. We then select the best-fitting model for optimists, i.e.,
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the best-fitting model that implies an average posterior expected probability of success θ̂

greater than 0.5, and the best-fitting model for pessimists, i.e., the best-fitting model that

implies θ̂ less than 0.5. For each value of the true success probability θ, we average the

optimists’ θ̂ and the pessimists’ θ̂ over 5000 simulations.

Figure A1 reports the results. We see that relative to the updating that would have taken

place under the default model, there appears to be muting for both optimists and pessimists

on average. In other words, for any value of θ, the average optimists’ θ̂ and the average

pessimists’ θ̂ is at least as close to the prior average of 0.5 as the average θ̂ under the default

model.

D StockTwits Application Details

In this section, we provide regression evidence to supplement our analysis of StockTwits

data in Section 6.2 of the main paper. We start with the universe of StockTwits messages

studied by Divernois and Filipovic (2022), covering the period between January 2011 and

July 2018. For each message about a particular stock, we code sentiment as 1 if the user

labels the message as bullish and 0 if the user labels the message as bearish. We drop

messages that users do not label. We restrict the sample to windows from 10 days before

an earnings announcement to 10 days after for a given stock and restrict attention to users

who have ever posted a message about that stock prior to 10 days before the earnings

announcement. We code a user as a bull on the stock if the user labeled as bullish at least

50% of their messages about the stock prior to 10 days before the earnings announcement.

We code the user as a bear if they labeled as bearish less than 50% of their messages

about the stock. We then track how sentiment evolves in response to different earnings

announcements over the surrounding windows. We code an announcement as positive

news if the announcement day return is greater or equal to zero and as negative news if

the announcement day return is negative.6 The final sample consists of roughly 1.8 million

messages across 40 thousand earnings announcements from 65 thousand unique users.

Table A1 presents regression evidence corresponding to Figure 4a in the main paper.

Among the sample of users who are bullish on stock s for earnings announcement q, we

6Announcement days are therefore defined as the first day that the stock can be traded following the
announcement. For announcements that occur after the market close on a given day, the announcement day
is then coded as the following day.
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estimate the following regression:

1[Bullish]i,u,t,s,q = α+
10∑

l=−10

βl1[l = t]+
10∑

l=−10

γl1[l = t]1[NegativeSurprises,q]+εi,u,t,s,q,

(A.1)

where

• 1[Bullish]i,u,t,s,q is an indicator that tweet i by user u on event-day t is bullish and

• 1[NegativeSurprises,q] is an indicator that the earnings announcement was a nega-

tive surprise.

Standard errors are reported in parentheses and clustered by year-month, stock, and user.

The first column replicates Figure 4a, weighting the data so that each earnings an-

nouncement is equally weighted. Note that to match the levels of Figure 4a, the con-

stant in the regression must be added back in. The key coefficients are γ−1 and γ0, which

show that the sentiment of bullish investors declines substantially around negative earnings

announcements, and γ1to γ10, which show that this decline is transient. The remaining

columns show the robustness of the result. In the second column, we weight tweets equally

rather than equal-weighting announcements. This has the effect of placing greater weight

on announcements with more tweets. The remaining columns add fixed effects for the

year-month of the announcement, the announcement itself, and the user interacted with the

announcement. Across these variations, the basic pattern remains, though it weakens some-

what in the last column. The sentiment of bullish investors declines substantially around

negative earnings announcements and then rebounds.

Table A2 presents regression evidence corresponding to Figure 4b in the main paper.

Estimating Eq. (A.1) among the sample of users who are bearish on stock s for earnings an-

nouncement q, we find that bearish investors become less bearish around positive earnings

announcements but then quickly revert.

E How and When to Hold a Meeting

We consider a similar setting to Dessein and Santos (2006) and Bolton et al. (2013), closely

following the latter paper’s language and formulation. The environment is parameterized
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by ω ∈ [0, 1], which is not known by the leader or a continuum of followers. Instead, they

have a uniform prior over ω and interpret data h in terms of what it implies about ω.

The timing of the game is: (1) everyone observes h, (2) the leader announces the orga-

nization’s strategy aL ∈ [0, 1] and perhaps holds a meeting to discuss it in light of h, (3)

each follower i ∈ [0, 1] chooses an action ai ∈ [0, 1], and (4) payoffs are realized. Each

follower i has payoff:

−α · (ai − [li · aL + (1− li) · ω])2 − κ

∫

j

(aj − ā)2dj,

where α > 0, κ > 0, li ∈ [0, 1] and ā ≡
∫
ajdj. That is, each follower values (i) taking

an action that is aligned with a weighted average of the organization’s strategy aL and the

environment ω and (ii) coordinating with others. To limit the number of cases, assume that

li = 0 for almost all followers and li = 1 for positive fraction ε → 0 of followers.7 That

is, almost all followers care about taking an action that is well-adapted to the environment,

rather than than taking an action that is aligned with the organization’s strategy, and the

rest of the followers mechanically follow the organization’s strategy. Since it focuses on

the case where li = 0 for fraction (1 − ε) ≈ 1 of followers, the analysis better applies

to situations where workers care more about getting things right than about following the

leader. The leader’s payoff simply aggregates the followers’ payoffs:8

−α

∫

i

(ai − [li · aL + (1− li) · ω])2di− κ

∫

j

(aj − ā)2dj.

The leader and followers share the same default model. While the leader is dogmatic the

default is correct, followers may move away from it by sensemaking with fellow followers.

Because Ω in this example is the full unit interval, we for simplicity limit the set of

7Having some followers mechanically follow the organization’s strategy induces a cost to the leader of
announcing a different strategy from what she thinks is subjectively optimal. There are other ways to generate
such a cost, e.g., by assuming that followers and leaders value an organization that is well-adapted to its
environment as Bolton et al. (2013) do. Our approach is analytically simple, but our qualitative results do not
hinge on our precise formulation.

8For simplicity, we assume the leader evaluates her expected payoff according to her own expectation and
not followers’ subjective expectations. The leader has an incentive for followers’ actions to be well-adapted to
the leader’s view of the environment, but does not directly care whether the followers believe their actions are
well-adapted. Introducing the latter force could provide another reason to hold meetings in our framework:
to get followers on board with the direction of the organization, even when getting followers on board does
not influence their actions.
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models M followers could consider to be finite. We assume M always includes (i) the

default model d, (ii) the best-fitting model mbf that induces the same beliefs as d (i.e.,

µ(h,mbf ) = µ(h, d)), (iii) a model that says the history is inevitable in hindsight (i.e., a

model m such that Pr(h|m,µ0) = 1), and (iv) at least one model m with a fit between

the default’s and the best-fitting model’s: Pr(h|m,µ0) ∈ (Pr(h|d, µ0),Pr(h|mbf , µ0)) and

µ(h,m) ̸= µ(h, d). For simplicity, we also assume that mbf fits better than all models in

M except for the model that says the history is inevitable in hindsight.

If the leader does not hold a meeting, then workers make sense of h in their own com-

munities. Holding a meeting costs the leader a positive amount c that is vanishingly small.

By holding a meeting, the leader is able to perfectly control the set of models each worker

is exposed to, Mi, by influencing the flow of communication between followers.

Proposition A.4. In the leader-follower example:

1. If information h is closed to interpretation or followers always stick with their default

interpretation of the information absent persuasion (δ = 1), the leader never holds a

meeting. In this case, aL = Eµ(h,d)[ω] for all h, and ai = aL for all i.

2. Otherwise, the leader may hold a meeting.

(a) If the weight placed on coordination (κ) is sufficiently large or if h is uninfor-

mative under the default model in the sense that Eµ(h,d)[ω] = Eµ0 [ω] ≡ ω0,

then the leader calls a meeting whenever some followers take an action other

than ω0 absent a meeting. In this case (i) an optimal meeting features open

communication (Mi = M for all i), (ii) aL = ω0, and (iii) ai = ω0 for all i.

(b) If the weight placed on adaptation (α) is sufficiently large and followers should

react to the information under the default model in the sense that Eµ(h,d)[ω] ̸=
Eµ0 [ω] , then the leader calls a meeting whenever too many followers take an

action other than Eµ(h,d)[ω] absent a meeting. In this case (i) an optimal meet-

ing features directed communication with Mi ̸= M , (ii) aL ̸= ω0, and (iii) not

all followers take the same action.

Proof of Proposition A.4. For the first case, it’s obvious that the leader never holds a meet-

ing because holding a meeting costs c > 0 and does not influence beliefs and decisions
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when information is closed to interpretation or when followers always stick with their de-

fault interpretation of the information absent persuasion. Since aL = Eµ(h,d)[ω] implies

ai = aL for all i (this is obvious for followers who blindly follow aL and other followers

set ai = l ·aL+(1−l)·Eµ(h,d)[ω] = aL), it remains to show in this case that aL = Eµ(h,d)[ω].

Setting aL = Eµ(h,d)[ω] uniquely maximizes the coordination term, −
∫
j
(aj − ā)dj, of the

leader’s payoff since everyone coordinates on aL. Since simple algebra shows that aL
doesn’t influence the adaptation term,

∫
i
−(ai − [li · aL + (1− li) · ω])2di, it is optimal for

the leader to set aL = Eµ(h,d)[ω] .

For the first part of the second case, optimizing the leader’s payoff becomes equivalent

to maximizing the coordination term,
∫
j
(aj − ā)2dj, when the weight placed on coordi-

nation κ is sufficiently large. Given that a positive fraction of followers initially adopt

the perfectly-fitting neutralizing model, the only way for all followers to perfectly coordi-

nate their actions is for them all to take ai = ω0. This is implemented by followers being

exposed to all models, either with open communication absent a meeting or with open com-

munication in a meeting. This is also optimal from the point of view of the leader when h

is uninformative under the default model in the sense that Eµ(h,d)[ω] = ω0. The leader does

better by holding a meeting than not whenever some followers would adopt a model that

implies a belief other than µ0 absent a meeting.

For the last part, if followers are exposed to all models (Mi = M for all i), then they

perfectly coordinate their actions and the leader’s payoff approximately equals

−αEµ(h,d)

∫

i

(ai − ω)2di = −αEµ(h,d)

∫

i

(ω0 − ω)2di, (A.2)

since li = 0 for almost all followers. If followers are instead all exposed to only mod-

els supporting ai = Eµ(h,d)[ω] (i.e., Mi =
{
d,mbf

}
for all i), then the leader’s payoff

approximately equals

−α

[
Eµ(h,d)ρ

∫

i

(Eµ(h,d)[ω]− ω)2di+ (1− ρ)

∫

i

(ω0 − ω)2di

]
−κ

∫

j

(aj−ρEµ(h,d)[ω]−(1−ρ)ω0)
2dj,

(A.3)

where ρ equals the fraction of followers who are persuadable by mbf (i.e., fraction 1−ρ are

the fraction with the initial reaction to adopt the perfectly-fitting neutralizing model). Since

the first term of (A.3) is larger than (A.2) when Eµ(h,d)[ω] ̸= ω0, in this case the leader holds

a meeting that features directed communication whenever α is sufficiently large. Such a
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meeting will clearly be better than not holding a meeting whenever followers whose initial

reaction to the data differs from µ(h, d) are not exposed to mbf absent a meeting or are

exposed to the model that says the history is inevitable in hindsight.9

The first part of Proposition A.4 says that, when data is closed to interpretation or

followers do not try to make sense of the data on their own, then there is no need for the

leader to call a meeting to discuss the organization’s strategic response to publicly available

data. The leader just announces her strategic response, which varies one-for-one with the

leader’s reaction to the data.

The second part of the proposition shows that the leader’s reaction is very different

when data is open to interpretation and followers try to make sense of it on their own. Meet-

ings then allow leaders to better control interpretations followers share with each other. If

the leader thinks followers are reacting to data when they should not be, or if the leader

highly values coordination, then she calls a meeting which features open communication:

everyone shares their view of what the event means for the organization. While opinions

will be voiced that the leader does not agree with, at the end of the day everyone will

share a view that the event teaches them little that they did not already know. Thus, the

status quo will prevail. In this case, the leader’s strategic response to publicly available

data may be different than her private response: if she believes that she cannot persuade

enough followers of her desired course of action, her best alternative is to ensure coordina-

tion by structuring the meeting to neutralize the data. This may be one reason why informal

(e.g., relational) contracts are “hard to build and change” (emphasis added, Gibbons and

Henderson (2012)).

On the other hand, if too many followers are underreacting to the data or the leader

strongly values adaptation, then the leader calls a meeting featuring a persuasive campaign.

9To see when else the leader wants to hold such a meeting, (A.3) minus (A.2) equals:

−αρEµ(h,d)

[
(Eµ(h,d)[ω]− ω)2 − (ω0 − ω)2

]
− κ

[∫

j

(aj − ρEµ(h,d)[ω]− (1− ρ)ω0)
2dj

]
,

which, after some algebra, equals αρ(Eµ(h,d)[ω]−ω0)
2−κρ(1−ρ)(Eµ(h,d)[ω]−ω0)

2. So a meeting featuring
directed communication is optimal whenever α > κ(1− ρ). This reveals that a leader is more likely to call a
meeting to encourage followers to take an action different from ω0 the greater the fraction of followers who
are persuadable to take such an action—that is, the smaller the fraction of followers who, prior to the meeting,
are hardened in their views that the data tells them little they didn’t already know.
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The leader ensures that the loudest voices are those with interpretations consistent with her

view of the optimal action Eµ(h,d)[ω]. While not everyone ends up on board with the shift

in strategy from the status quo ω0, as many as possible will be on board. Per Proposition

4 there is also a motive to hold the meeting as soon as possible, before workers can share

interpretations with each other on their own.
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Figure A1: Muting in the VC Example
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Notes: This figure suggests that muting obtains on average in the VC example. For each of 40 different

values of the true probability of success, θ, we simulate data on a history of 5 startups, each of which varies

in their profit and team experience. VCs entertain models that are cutoff rules on each dimension. The figure

plots the average posterior expectation of the success probability, θ̂,of VCs under three models against the

true success probability: the default model (red line), the model adopted after optimists share interpretations,

and the model adopted after pessimists share. interpretations. The figure averages over 5000 simulations for

each value of θ.
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Table A1: Bulls’ Beliefs around Earnings Announcements

(1) (2) (3) (4) (5)

t=-9 0.01 -0.01 0.01 0.00 0.00

(1.13) (-0.96) (1.19) (0.97) (1.44)

t=-8 0.00 -0.00 0.00 0.00 0.00

(0.04) (-0.62) (0.16) (0.27) (1.15)

t=-7 0.01 -0.00 0.01 0.01∗ 0.01

(1.16) (-0.94) (1.39) (1.76) (1.40)

t=-6 0.01∗ 0.00 0.01∗∗ 0.01∗∗ 0.00

(1.72) (0.28) (2.00) (2.13) (1.15)

t=-5 0.01∗∗ 0.00 0.01∗∗ 0.01∗∗ 0.01∗∗

(2.13) (0.06) (2.43) (2.51) (2.56)

t=-4 0.01 -0.01∗ 0.01 0.01 0.01∗

(1.20) (-1.80) (1.59) (1.39) (1.70)

t=-3 0.01 -0.00 0.01∗∗ 0.01∗ 0.01∗

(1.66) (-0.67) (2.13) (1.72) (1.96)

t=-2 0.01 -0.00 0.01 0.00 0.01∗∗

(0.96) (-0.70) (1.53) (1.00) (2.58)

t=-1 0.00 -0.01 0.01 0.01 0.01∗∗

(0.36) (-1.46) (0.95) (1.42) (3.27)

t=0 0.01 -0.01∗∗ 0.01 0.01∗ 0.01∗∗

(0.80) (-2.02) (1.58) (1.91) (3.39)

t=1 -0.01∗ -0.02∗∗ -0.01 -0.01 0.01∗∗

(-1.87) (-4.75) (-1.18) (-1.24) (2.33)

t=2 -0.01 -0.01∗∗ -0.00 -0.00 0.01∗

(-1.32) (-2.10) (-0.58) (-0.32) (1.75)

t=3 -0.01 -0.02∗∗ 0.00 -0.00 0.01∗∗

(-0.74) (-2.38) (0.04) (-0.24) (2.38)

t=4 -0.00 -0.01∗ 0.00 0.00 0.01∗

(-0.29) (-1.68) (0.60) (0.42) (1.72)

t=5 -0.00 -0.01∗∗ 0.01 0.00 0.01∗∗

(-0.05) (-2.09) (0.73) (0.51) (2.07)

t=6 -0.01 -0.02∗∗ -0.00 -0.00 0.01∗∗

(-1.58) (-3.07) (-0.57) (-0.85) (2.20)

t=7 -0.02∗ -0.01∗∗ -0.01 -0.00 0.01∗∗

(-1.97) (-2.16) (-1.02) (-0.59) (2.54)

t=8 -0.01∗ -0.01∗∗ -0.00 -0.00 0.01∗∗

(-1.79) (-2.45) (-0.57) (-0.40) (2.62)

t=9 -0.00 -0.02∗∗ 0.00 0.01 0.02∗∗

(-0.58) (-2.52) (0.66) (1.34) (2.97)

t=10 0.00 -0.00 0.01∗ 0.01∗ 0.02∗∗

(0.46) (-0.23) (1.81) (1.87) (4.12)

t=-10 × Neg -0.02∗∗ -0.02∗∗ -0.02∗∗ -0.03∗∗ -0.02∗∗

(-2.75) (-2.25) (-3.03) (-4.93) (-4.51)

t=-9 × Neg -0.03∗∗ -0.02∗∗ -0.03∗∗ -0.04∗∗ -0.03∗∗

(-3.77) (-3.22) (-3.92) (-6.60) (-6.83)

t=-8 × Neg -0.03∗∗ -0.01∗∗ -0.03∗∗ -0.03∗∗ -0.03∗∗
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(-2.86) (-2.68) (-2.93) (-5.56) (-6.26)

t=-7 × Neg -0.04∗∗ -0.02∗∗ -0.04∗∗ -0.04∗∗ -0.03∗∗

(-4.73) (-4.00) (-4.62) (-6.82) (-5.83)

t=-6 × Neg -0.04∗∗ -0.03∗∗ -0.04∗∗ -0.04∗∗ -0.03∗∗

(-5.83) (-5.55) (-5.44) (-7.65) (-5.69)

t=-5 × Neg -0.04∗∗ -0.04∗∗ -0.04∗∗ -0.04∗∗ -0.03∗∗

(-5.71) (-5.80) (-5.21) (-5.78) (-4.99)

t=-4 × Neg -0.05∗∗ -0.04∗∗ -0.05∗∗ -0.05∗∗ -0.03∗∗

(-6.87) (-5.94) (-6.26) (-8.16) (-6.85)

t=-3 × Neg -0.05∗∗ -0.04∗∗ -0.05∗∗ -0.05∗∗ -0.03∗∗

(-5.17) (-4.93) (-4.85) (-6.28) (-6.44)

t=-2 × Neg -0.06∗∗ -0.04∗∗ -0.05∗∗ -0.06∗∗ -0.03∗∗

(-5.80) (-5.42) (-5.50) (-8.39) (-6.44)

t=-1 × Neg -0.09∗∗ -0.06∗∗ -0.09∗∗ -0.08∗∗ -0.04∗∗

(-5.63) (-7.10) (-5.55) (-8.34) (-8.40)

t=0 × Neg -0.10∗∗ -0.06∗∗ -0.10∗∗ -0.08∗∗ -0.03∗∗

(-7.60) (-8.96) (-7.25) (-9.72) (-7.43)

t=1 × Neg -0.03∗∗ -0.04∗∗ -0.03∗∗ -0.03∗∗ -0.01∗∗

(-4.34) (-5.53) (-3.63) (-5.56) (-3.07)

t=2 × Neg -0.00 -0.00 0.00 -0.01 -0.01

(-0.60) (-0.63) (0.12) (-1.32) (-1.21)

t=3 × Neg -0.00 0.00 0.00 -0.01 -0.01

(-0.26) (0.32) (0.48) (-1.53) (-1.63)

t=4 × Neg -0.00 0.00 0.00 -0.01 -0.01

(-0.08) (0.17) (0.44) (-1.29) (-1.58)

t=5 × Neg 0.00 0.00 0.01 -0.00 -0.01∗∗

(0.62) (1.08) (1.13) (-0.90) (-2.05)

t=6 × Neg 0.00 -0.00 0.01 -0.00 -0.00

(0.41) (-0.41) (1.18) (-0.28) (-0.51)

t=7 × Neg 0.00 -0.00 0.01 -0.00 -0.00

(0.39) (-0.62) (1.26) (-0.16) (-0.91)

t=8 × Neg -0.00 -0.01∗ 0.00 -0.00 -0.00

(-0.40) (-1.72) (0.64) (-0.68) (-0.83)

t=9 × Neg -0.00 -0.01 0.00 0.00 -0.00

(-0.37) (-1.08) (0.56) (0.17) (-0.95)

t=10 × Neg -0.00 -0.01 0.00 0.00 0.00

(-0.57) (-0.78) (0.60) (.) (.)

Constant 0.94∗∗ 0.96∗∗ 0.93∗∗ 0.94∗∗ 0.94∗∗

(124.89) (262.61) (127.29) (291.92) (428.90)

Weighting Event Tweet Event Event Event

Fixed Effects YM Event User x Event

R2 .013 .0076 .019 .27 .77

N 1613258 1613258 1613258 1602495 1452718

Notes: This table presents the evolution of bulls’ beliefs around positive and negative earnings announce-

ments. The sample is all tweets within 10 days of an earnings announcement by users who have tweeted at
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least once about the stock before the ±10-day window, with more than 50% of these prior tweets self-labeled

as bullish. Let s denote the stock, q denote the announcement event (quarter), t denote the day relative to

the event (ranging from -10 to 10 with t = 0 corresponding to the event date). The dependent variable is an

indicator that a tweet on event-day t for stock f and event q is self-labeled as bullish. The independent vari-

ables are dummies for t, interacted with dummies indicating that the earnings announcement was negative,

measured by negative announcement day returns. The event date (t = 0) is defined as the first day the news

is tradeable. The Weighting row indicates whether the regression is weighted to equal-weight each event or

unweighted (i.e., each tweet is weighted equally). Standard errors are reported in parentheses and clustered

by year-month, stock, and user.
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Table A2: Bears’ Beliefs around Earnings Announcements

(1) (2) (3) (4) (5)

t=-9 0.01 -0.00 0.01 0.00 -0.03

(0.30) (-0.06) (0.34) (0.11) (-1.48)

t=-8 -0.02 -0.01 -0.02 -0.01 -0.01

(-0.78) (-0.14) (-0.79) (-0.51) (-1.09)

t=-7 0.04 0.01 0.04∗ 0.03 -0.01

(1.61) (0.23) (1.67) (1.36) (-1.10)

t=-6 0.03 0.01 0.03 0.00 0.00

(1.45) (0.28) (1.27) (0.18) (0.04)

t=-5 0.06∗∗ 0.03 0.05∗∗ 0.02 -0.01

(2.28) (1.06) (2.10) (0.78) (-0.36)

t=-4 0.07∗∗ 0.00 0.06∗∗ 0.01 -0.02

(2.54) (0.02) (2.26) (0.36) (-0.96)

t=-3 0.06∗∗ 0.03 0.05∗ 0.02 -0.00

(2.16) (0.82) (1.79) (0.59) (-0.13)

t=-2 0.08∗∗ 0.05 0.07∗∗ 0.03 0.00

(3.08) (1.13) (2.71) (1.53) (0.36)

t=-1 0.10∗∗ 0.04 0.09∗∗ 0.02 -0.01

(3.28) (1.17) (2.96) (0.82) (-1.17)

t=0 0.11∗∗ 0.05 0.09∗∗ 0.01 -0.02∗

(3.14) (1.34) (2.84) (0.56) (-1.92)

t=1 -0.01 -0.02 -0.02 -0.06∗∗ -0.05∗∗

(-0.34) (-0.70) (-0.82) (-2.66) (-3.43)

t=2 -0.04 -0.05 -0.05∗ -0.07∗∗ -0.05∗∗

(-1.34) (-1.61) (-1.80) (-2.95) (-3.51)

t=3 -0.02 -0.05 -0.03 -0.06∗∗ -0.05∗∗

(-0.78) (-1.63) (-1.26) (-2.52) (-2.78)

t=4 -0.05∗ -0.06 -0.07∗∗ -0.08∗∗ -0.06∗∗

(-1.88) (-1.66) (-2.50) (-3.25) (-3.23)

t=5 -0.04 -0.05∗ -0.05∗∗ -0.07∗∗ -0.05∗∗

(-1.65) (-1.68) (-2.33) (-3.47) (-2.80)

t=6 -0.05∗ -0.09∗∗ -0.06∗∗ -0.09∗∗ -0.05∗∗

(-1.94) (-2.67) (-2.66) (-3.60) (-2.87)

t=7 -0.08∗∗ -0.11∗∗ -0.10∗∗ -0.10∗∗ -0.07∗∗

(-2.86) (-3.13) (-3.71) (-3.87) (-3.80)

t=8 -0.09∗∗ -0.12∗∗ -0.11∗∗ -0.12∗∗ -0.08∗∗

(-3.27) (-3.18) (-4.17) (-5.07) (-4.01)

t=9 -0.08∗∗ -0.11∗∗ -0.10∗∗ -0.12∗∗ -0.08∗∗

(-2.49) (-3.32) (-3.34) (-4.30) (-3.71)

t=10 -0.10∗∗ -0.12∗∗ -0.12∗∗ -0.14∗∗ -0.09∗∗

(-3.23) (-3.28) (-4.31) (-5.62) (-4.09)

t=-10 × Neg -0.06∗∗ -0.08∗∗ -0.06∗∗ 0.05∗∗ 0.00

(-2.36) (-2.43) (-2.05) (2.00) (0.24)

t=-9 × Neg -0.09∗∗ -0.05 -0.08∗∗ 0.01 -0.00

(-3.36) (-1.60) (-2.96) (0.56) (-0.17)

t=-8 × Neg -0.07∗∗ -0.06 -0.07∗∗ 0.02 -0.01
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(-2.85) (-1.42) (-2.47) (1.10) (-0.32)

t=-7 × Neg -0.08∗∗ -0.08∗∗ -0.08∗∗ 0.03 0.01

(-3.29) (-2.19) (-3.06) (1.28) (0.61)

t=-6 × Neg -0.07∗∗ -0.07∗ -0.07∗∗ 0.03 0.01

(-2.82) (-1.87) (-2.75) (1.45) (0.77)

t=-5 × Neg -0.09∗∗ -0.08∗∗ -0.09∗∗ 0.01 -0.01

(-3.52) (-2.03) (-3.58) (0.60) (-0.40)

t=-4 × Neg -0.10∗∗ -0.10∗∗ -0.10∗∗ -0.00 -0.01

(-3.50) (-2.80) (-3.59) (-0.10) (-0.54)

t=-3 × Neg -0.08∗∗ -0.10∗∗ -0.08∗∗ 0.02 -0.00

(-3.09) (-2.58) (-3.13) (0.91) (-0.14)

t=-2 × Neg -0.09∗∗ -0.10∗∗ -0.10∗∗ -0.00 -0.02

(-3.65) (-2.74) (-3.60) (-0.15) (-0.96)

t=-1 × Neg -0.11∗∗ -0.11∗∗ -0.12∗∗ -0.03 -0.03

(-4.43) (-3.06) (-4.76) (-1.53) (-1.64)

t=0 × Neg -0.13∗∗ -0.14∗∗ -0.14∗∗ -0.05∗∗ -0.02

(-5.32) (-3.88) (-5.56) (-2.87) (-1.63)

t=1 × Neg -0.06∗∗ -0.10∗∗ -0.07∗∗ 0.01 -0.01

(-2.13) (-2.60) (-2.57) (0.49) (-0.29)

t=2 × Neg -0.01 -0.07∗ -0.02 0.07∗∗ 0.01

(-0.45) (-1.79) (-0.93) (3.67) (0.70)

t=3 × Neg -0.01 -0.05 -0.02 0.07∗∗ 0.02

(-0.40) (-1.26) (-0.78) (3.97) (0.94)

t=4 × Neg -0.02 0.01 -0.02 0.06∗∗ 0.00

(-0.67) (0.13) (-0.82) (2.83) (0.12)

t=5 × Neg -0.02 -0.04 -0.03 0.06∗∗ 0.01

(-0.57) (-1.05) (-0.98) (2.42) (0.47)

t=6 × Neg -0.04∗ -0.08∗∗ -0.06∗∗ 0.04∗∗ 0.01

(-1.95) (-2.22) (-2.36) (2.10) (0.56)

t=7 × Neg -0.05∗ -0.07∗∗ -0.06∗∗ 0.03 -0.00

(-1.86) (-2.00) (-2.51) (1.57) (-0.08)

t=8 × Neg -0.05∗∗ -0.09∗∗ -0.07∗∗ 0.02 -0.01

(-2.02) (-2.63) (-2.67) (0.85) (-0.61)

t=9 × Neg -0.10∗∗ -0.12∗∗ -0.12∗∗ -0.02 -0.02

(-3.15) (-3.35) (-4.06) (-0.92) (-1.42)

t=10 × Neg -0.08∗∗ -0.16∗∗ -0.11∗∗ 0.00 0.00

(-2.91) (-4.61) (-3.65) (.) (.)

Constant 0.37∗∗ 0.34∗∗ 0.38∗∗ 0.33∗∗ 0.32∗∗

(14.59) (10.20) (16.32) (27.12) (33.77)

R2 0.02 0.02 0.04 0.43 0.81

N 220,280 220,280 220,280 213,854 187,869

Weighting Event Tweet Event Event Event

Fixed Effects YM Event User x Event

Notes: This table presents the evolution of bears’ beliefs around positive and negative earnings announce-

ments. The sample is all tweets within 10 days of an earnings announcement by users who have tweeted at
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least once about the firm before the ±10-day window, with more than 50% of these prior tweets self-labeled

as bearish. Let f denote the firm, q denote the announcement event (quarter), t denote the day relative to

the event (ranging from -10 to 10 with t = 0 corresponding to the event date). The dependent variable is an

indicator that a tweet on event-day t for firm f and event q is self-labeled as bullish. The independent vari-

ables are dummies for t, interacted with dummies indicating that the earnings announcement was negative,

measured by negative announcement day returns. The event date (t = 0) is defined as the first day the news

is tradeable. The Weighting row indicates whether the regression is weighted to equal-weight each event or

unweighted (i.e., each tweet is weighted equally). Standard errors are reported in parentheses and clustered

by year-month, firm, and user.
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