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We study how a regulator can best target inspections. Our case study is a US 

Occupational Safety and Health Administration (OSHA) program that randomly 

allocated some inspections. On average, each inspection led to 2.4 (9 percent) fewer 

serious injuries over the next five years. Using new machine learning methods, we find 

that OSHA could have averted as much as twice as many injuries by targeting inspections 

to workplaces with the highest expected averted injuries and nearly as many by targeting 

the highest expected level of injuries. Either approach would have generated up to $850 

million in social value over the decade we examine. (JEL C63, J28, J81, K32, L51)   
 

 

While government agencies spend billions each year inspecting establishments for worker 

safety, environmental protection, tax compliance, and other concerns (Shimshack 2014; US Food 

and Drug Administration 2016; US Occupational Safety and Health Administration 2017a), most 

agencies’ budgets enable them to inspect only a tiny share of the establishments they regulate 

(US Department of Health and Human Services 2011; Rubin 2017). For example, workplace 

safety regulators in the United States inspected less than one percent of the eight million 

workplaces they regulated in 2016 (US Occupational Safety and Health Administration 2017a). 

Therefore, a crucial question for regulators is how to target their scarce inspections.  

                                                 

* Johnson: Sanford School of Public Policy, Duke University (email: matthew.johnson@duke.edu); Levine: Haas 

School of Business, University of California (email: levine@berkeley.edu); Toffel: Harvard Business School, 

Harvard University (email: mtoffel@hbs.edu). We are grateful for guidance from Dave Schmidt, Amee Bhatt, and 

Ricky Gonzalez on institutional details about the US Occupational Safety and Health Administration (OSHA); 

research assistance from Melissa Ouellet; research methods advice from Xiang Ao and Andrew Marder; and TMLE 

advice from Cheng Ju and Mark van der Laan. We received helpful comments from Dave Anderson, Jon Baron, Jon 

Davis, Ivan Fernandez-Val, Kris Ferreira, Eric Frumin, Daniel Jacob, Kevin Lang, Jim Rebitzer, Seth Sanders, and 

OSHA advisory board members Robin Baker and Lisa Brousseau. We benefited from comments by participants in 

the Harvard Labor Economics seminar, the Harvard Regulatory Policy Program seminar, RAND Santa Monica, the 

Duke Sanford School of Public Policy, APPAM annual conference, and a presentation at OSHA. We gratefully 

acknowledge financial support from the Laura and John Arnold Foundation, the Harvard Business School Division 

of Research, and the Department of Labor DOL Scholars Program. Our pre-analysis plan is at https://osf.io/2snka/. 

Corresponding author email: matthew.johnson@duke.edu. The authors declare no relevant or material financial 

interests that relate to the research described in this paper. 

mailto:levine@berkeley.edu
https://osf.io/2snka/
mailto:matthew.johnson@duke.edu


 

2 

Many regulators direct inspections to establishments that have had the most severe 

problems, such as injuries, accidents, or emissions. For example, US occupational safety 

regulators use establishments’ historical accident records to target many of their inspections (US 

Occupational Safety and Health Administration 2017b). A concern with this approach is that 

prior problems are a noisy signal of where problems continue to be severe. Machine learning 

approaches could improve predictions of future problems, as Glaeser et al. (2016) found with 

restaurant inspections and Hino, Benami, and Brooks (2018) found with environmental 

inspections.  

Targeting inspections based on past problems might be poorly suited to promote regulators’ 

objective of improving the safety, health, and environmental impact of establishments ranging 

from offices to restaurants to factories. Inspectors could instead seek to maximize the extent to 

which inspections reduce injuries, food-borne illnesses, emissions, and so on—that is, treatment 

effects (also taking into account any change in the threat effects to uninspected establishments). 

Targeting based on treatment effects could lead a regulator to target a different set of 

establishments. For example, workplaces with the most severe problems might have production 

processes that make them the least responsive to inspections (Athey 2017). 

New machine learning methods that have enabled the estimation of inspections’ 

heterogeneous treatment effects could be deployed to target inspections where inspections are 

estimated to avert the most injuries, illnesses, emissions, and so on. However, generating 

estimates of establishments’ treatment effects is challenging because it requires both a large 

amount of data and inspections that were assigned randomly (or quasi-randomly); even then, 

estimates might still be quite imprecise. Thus, it is unclear whether the idea of targeting on 

estimated treatment effects can yield targeting lists that will, in practice, outperform regulators’ 

conventional approaches. 

We develop an approach to compare the effectiveness of a wide array of inspection targeting 

regimes. We first combine randomization and machine learning to evaluate the effects of 

inspections as historically allocated. We then evaluate the relative effectiveness of three 

alternative targeting policies based on (a) a sharper estimate of past problems, (b) a machine-

learning–based prediction of future problems, and (c) a machine-learning–based prediction of 

treatment effects of inspection. We evaluate these alternatives using methods that avoid 

overfitting and enable valid inference. 
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We apply this approach to the US Occupational Safety and Health Administration (OSHA), 

the regulatory agency charged with assuring “safe and healthful working conditions” (US 

Occupational Safety and Health Administration 2021) and an important setting in which to 

examine regulatory effectiveness. First, workplace injuries and illnesses impose a substantial 

burden on the US economy, estimated at $250 billion in annual social costs (Leigh 2011). 

Second, OSHA has been controversial ever since its founding in 1970. Supporters argue that it 

saves lives at little to no cost to employers (Feldman 2011), whereas critics charge that its 

penalties are too low to affect behavior (Bartel and Thomas 1985) or that its regulations “don’t 

add value to safety in the workforce.”1 Understanding whether OSHA inspections are effective in 

improving safety and whether alternative targeting regimes could make them more effective 

therefore has important policy implications.  

We focus on the Site-Specific Targeting (SST) program, which, during its 16 years of 

operation (1999–2014), was OSHA’s largest inspection regime. To promote the most “effective 

use of [OSHA’s] enforcement resources,” it targeted establishments with “serious safety and 

health problems” by developing annual target lists of establishments that had high injury rates 

two years prior (US Occupational Safety and Health Administration 2004). When resource 

constraints prevented OSHA from inspecting all establishments on its target lists, the agency 

allocated inspections via random assignment. 

As a basis of comparison for the alternative targeting regimes we will examine, we first 

evaluate the extent to which injuries were reduced by those SST inspections that OSHA 

randomly assigned between 2001 and 2010. By comparing establishments that were randomly 

assigned to inspections to establishments that were also eligible but not assigned, our estimates 

are free of the selection bias that plagues most evaluations of workplace inspections.2 Roughly 

13,000 establishments, employing nearly two million workers, were at risk of being targeted for 

                                                 

1 Senator Heidi Heitkamp (D-ND) during a February 11, 2016 hearing with the Senate Homeland Security and 

Governmental Affairs Committee (Musick, Trotto, and Morrison 2016). In other sectors, concerns about regulators’ 

targeting include political motivations, regulatory capture (Stigler 1971; Weisman and Wald 2013), and the desire to 

collect funds from violation penalties. 
2 For example, because many OSHA inspections target establishments with recent accidents or complaints, those 

establishments likely have systematically different characteristics (both observable and unobservable) than 

uninspected establishments. Furthermore, establishments experiencing high injury rates in one year (thus triggering 

an OSHA inspection) may experience fewer injuries the following year simply due to regression to the mean, in 

which case OSHA inspections correlate with lower injury rates without actually causing them. Similar endogeneity 

issues challenge the ability to evaluate the effects of inspections by other regulators, such as the US Environmental 

Protection Agency (Hanna and Oliva 2010). 
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a randomized inspection over this 10-year period. Our primary outcome variable is an 

establishment’s annual number of injuries and illnesses leading to days away from work 

(DAFW)— henceforth “serious injuries.” (For simplicity, we will refer to both injuries and 

illnesses as “injuries.”) We estimate effects of inspections on serious injuries over the five-year 

period comprising the year an establishment was placed on the SST target list (henceforth, the 

“directive year”) and the four subsequent years. 

We find that randomly assigned OSHA inspections reduced serious injuries at inspected 

establishments by an average of 9 percent, which equates to 2.4 fewer injuries, over the five-year 

post-period. Each inspection thus yields a social benefit of roughly $125,000, which is roughly 

35 times OSHA’s cost of conducting an inspection.  

Could OSHA have allocated its inspections to avert more injuries? Intuition suggests so. For 

one thing, the metric OSHA used to target SST inspections—injury rates from two years prior—

is a noisy signal of which facilities face persistent serious health and safety problems; a more 

precise measure of persistent problems might avert more injuries. Furthermore, if establishments 

with prior safety problems or establishments predicted to have persistent safety problems are not 

those most responsive to inspections, the regulator could perhaps avert more injuries by targeting 

inspections on predicted treatment effects.3  

We thus consider three alternative targeting criteria. First, we use the establishment’s 

average annual number of serious injuries over the prior four years (historical injuries). Second, 

we use many observable characteristics and an ensemble of machine learning methods to predict 

the number of serious injuries an establishment would experience over the next five years if it 

were not assigned to inspection (predicted injuries). Third, we use a causal forest to estimate 

each establishment’s treatment effect of assignment to inspection (estimated treatment effects). 

The causal forest is a flexible machine learning technique that predicts treatment effects based on 

high-dimensional nonlinear functions of observable characteristics (Wager and Athey 2018). 

To estimate the number of injuries OSHA could avert under alternative targeting policies, 

we apply a method from Chernozhukov et al. (2020) that incorporates estimates of 

                                                 

3 We consider heterogeneity in the effect of assignment to SST inspection (the “intention to treat”), rather than of 

inspection (the “treatment”), because, while OSHA randomized assignments to inspection, such assignments 

imperfectly predicted actual inspections. 
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heterogeneous treatment effects with repeated sample splitting to yield consistent estimates of 

average treatment effects for subsets of the sample.  

We find that OSHA could have averted many more injuries had it targeted inspections using 

any of these alternative criteria. If OSHA had assigned to those establishments with the highest 

historical injuries the same number of inspections that it assigned in the SST program, it would 

have averted 1.9 times as many injuries as the SST program actually did. If OSHA had instead 

assigned the same number of inspections to those establishments with the highest predicted 

injuries or to those with the highest estimated treatment effects, it would have averted 2.1 or 2.2 

times as many injuries as the SST program, respectively. Based on our estimated social cost of 

injuries, these three alternative regimes would have generated social value of $643 million, $844 

million, and $876 million, respectively. These estimates change very little if, rather than 

assigning the same number of inspections as the SST program did, we assign the number of 

inspections that would maintain SST’s inspection budget. 

This alternative policy that allocates all inspections nonrandomly, however, has two 

drawbacks: (a) it forgoes opportunities for the regulator to continue learning where inspections 

are most effective and (b) it potentially reduces the “threat effect” that motivates uninspected 

establishments to preemptively improve safety (often referred to as “general deterrence”). We 

therefore also consider a targeting policy that maintains the SST program’s threat level, but ranks 

establishments using our three alternative targeting criteria rather than the SST program’s criteria 

(injury rate from two years prior). Here, we create a high-priority list with the same number of 

establishments that were on the SST’s primary list each year and place the remaining eligible 

establishments on a low-priority list. This policy randomizes assignment-to-inspection within 

each of these two target lists using the same probabilities that the SST policy used, constraining 

the total the number of inspections to maintain SST’s inspection budget. This policy yields 

intermediate benefits, averting fewer injuries than our nonrandom policies, but more than the 

SST policy. Compared to the SST policy, OSHA would avert 1.36, 1.36, and 1.17 times as many 

injuries at assigned establishments when targeting on historical injuries (the average number of 

annual serious injuries in the prior four years), predicted injuries, and estimated treatment 

effects, respectively. 

We address several considerations that could threaten the validity of our estimated effects of 

these alternative policies. The most important is that a change in the targeting policy could elicit 
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behavioral changes at uninspected establishments that our estimates do not capture (Lucas 1976). 

In particular, we consider whether our alternative targeting policies might temper uninspected 

establishments’ motivations to foster safe workplaces, eroding the general deterrence effects of 

inspections. We provide several pieces of evidence indicating that such behavioral changes 

would be minimal in our context.  

Our results provide insight into the question of how and when machine learning can improve 

the allocation of a scarce treatment. Let 𝑌(1)𝑖 and 𝑌(0)𝑖 be the number of injuries establishment 

i experiences if it is or is not assigned to inspection. By definition, targeting inspections based on 

treatment effects (𝑌(1)𝑖 − 𝑌(0)𝑖) is aligned with the regulator’s objective: to improve workplace 

safety and health. However, it is difficult to estimate treatment effects precisely, even with the 

very large randomized sample that SST provides, because one only observes 𝑌(1)𝑖 or 𝑌(0)𝑖 but 

never both (Rubin 1974). Indeed, we find that OSHA averted just as many, if not more, injuries 

by targeting on a different metric (namely, a prediction of 𝑌(0)𝑖) than it did by targeting on an 

estimate of treatment effects. Intuitively, while predicted injuries is further from the regulator’s 

objective, we show that in our setting it is both easier to estimate and is correlated with estimated 

treatment effects. In other settings in which treatment effects are easier to estimate, or when they 

are less correlated with predicted outcomes, estimated treatment effects would be a more 

effective targeting criterion. 

Our work contributes to the large literature on the effects of OSHA inspections. Some 

studies found little to no effect (Smith 1979; Bartel and Thomas 1985; Viscusi 1986; Ruser and 

Smith 1991), while others have found that inspections do reduce injuries (Gray and Scholz 1993; 

Gray and Mendoloff 2005; Foley et al. 2012; Haviland et al. 2012). Our paper is closest to three 

studies whose research designs rely on inspections that were randomly or quasi-randomly 

assigned. These studies found that randomized OSHA inspections conducted during the period of 

1987–1997 reduced fatal injuries by as much as 50 percent (Lee and Taylor 2019), that 

randomized inspections conducted by California’s state occupational safety and health agency 

during 1996–2006 reduced injuries triggering workers’ compensation claims by an average of 9 

percent over the subsequent four years (Levine, Toffel, and Johnson 2012), and that OSHA SST 

inspections conducted during 1996–2011 reduced injuries resulting in days away from work, job 

restrictions, or job transfers by 20 percent in the year following inspection, based on a regression 

discontinuity design (Li and Singleton 2019). We extend Lee and Taylor (2019) by considering a 
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larger set of injuries than the very rare fatal injuries they studied, extend Levine, Toffel, and 

Johnson (2012) by investigating a much larger inspection program covering many states, and 

extend Li and Singleton (2019) by estimating the average effect of inspections, rather than a 

local average treatment effect.4 More importantly, our study goes beyond all of these by 

estimating heterogeneous effects of inspections and by comparing the effects of alternative 

targeting approaches.  

Our research also contributes to a broader literature that analyzes the effects of inspections 

in other domains, including food safety (Ibanez and Toffel 2020), environmental protection (e.g., 

Hanna and Oliva 2010; Telle 2013; see Shimshack 2014 for an overview), tax authorities (e.g., 

Slemrod, Blumenthal, and Christian 2001; Kleven et al. 2011), and working conditions (e.g., 

Short, Toffel, and Hugill 2016).  

Our study also extends a literature on optimal inspection strategies (e.g., Gonzalez-Lira and 

Mobarak 2019; Blundell et al. 2020). Particularly close to our work is Duflo et al. (2018), which 

assesses the benefits of providing regulators discretion in allocating inspections in the context of 

pollution enforcement in India. Duflo et al. (2018) assumes that an inspection’s effectiveness—

the extent to which it averts pollution—is proportional to levels of pollution. Our study tests that 

assumption in our setting and finds, consistent with their assumption, that heterogeneous 

treatment effects are highly correlated with predicted injury counts.  

Finally, our paper contributes to a rapidly growing literature that uses machine learning to 

improve decisions. Studies have examined how using machine learning to predict outcomes can 

improve judges’ decisions to release defendants before trial (Kleinberg et al. 2017), help 

regulatory inspectors more accurately predict which establishments are violating standards 

governing hygiene (Glaeser et al. 2016) and water pollution (Hino, Benami, and Brooks 2018), 

and help electric utilities predict when unmaintained equipment will fail (Rudin et al. 2010). We 

extend this literature by estimating variation in the causal effects of inspections, which Athey 

(2017) points out is the relevant criterion for optimal resource allocation.5  

                                                 

4 We go beyond Li and Singleton (2019) in two other ways. We focus on the effects of inspections on especially 

serious injuries (those causing days away from work), whereas they focus on a broader range of injuries (including 

those causing job restrictions and job transfers) which, as we discuss below, are more subject to measurement error. 

Finally, Li and Singleton (2019) only estimate the effect of inspections on injuries one year later, whereas we find 

evidence that inspections lead to a decrease in injuries lasting several years. 
5 Davis and Heller (2020) also estimate heterogeneity in the effectiveness of youth employment programs. 
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I. Setting and Data 

OSHA’s Site-Specific Targeting (SST) program is an ideal setting for our purposes. First, 

because OSHA allocated some SST inspections via random assignment, we can both evaluate 

their average causal effect on injuries and use machine learning methods to estimate 

heterogeneous treatment effects. Second, SST was created to promote the most “effective use of 

[OSHA’s] enforcement resources” to ensure “safe working conditions for employees” (US 

Occupational Safety and Health Administration 2008), a goal that implies the need to compare 

alternative targeting policies in order to learn what is most effective. Finally, SST was a large 

regulatory program: it cost tens of millions of dollars and put at risk of inspection tens of 

thousands of establishments that collectively employed millions of workers.  

 OSHA Site-Specific Targeting (SST) Program 

The SST program, which operated between 1999 and 2014, targeted inspections at high-

injury workplaces within historically hazardous industries. We focus on the 29 states that OSHA 

directly regulates and not the 21 states that operate their own safety regulatory agencies.6  

The SST program relied on data from an annual survey OSHA conducted between 1996 and 

2011, the OSHA Data Initiative (ODI), that gathered injury data from 60,000 to 80,000 

establishments per year (all of which had at least 40 employees and were within a predefined set 

of high-risk industries). Establishments’ responses were based on logs that OSHA required them 

to maintain to document every work-related injury and illness.7 OSHA used ODI responses from 

the prior year to create annual SST directives that specified two target lists: a “primary list” of 

the roughly 3,500 establishments with the highest injury rates (averaging roughly five times the 

national average) and a “secondary list” of the roughly 7,000 establishments with the next-

highest injury rates (averaging roughly three times the national average). Precise cutoffs for both 

lists varied by year.  

OSHA then sent each of its 81 area offices (distributed across the 29 states) the names and 

addresses of establishments on the primary list that were within the area office’s geographic 

territory. Area offices were told to ignore any establishments on the list that had received a 

                                                 

6 Appendix A gives a more complete description of SST in federal OSHA states. Figure B.1 in Appendix B provides 

a map of those 29 states. The other 21 states operate state-run programs approved by OSHA.  
7 OSHA Form 300, which employers are required to complete, is available at 

https://www.osha.gov/recordkeeping/RKforms.html, accessed March 2019. 
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comprehensive inspection during the two previous years (which in 2009 increased to three 

previous years), as they were ineligible for SST inspection. If an area office did not anticipate 

having sufficient resources to inspect its entire eligible primary list, it told headquarters the 

number of inspections it anticipated being able to complete. OSHA’s software then randomly 

assigned a subset of that many establishments from its primary list to inspect. If the area office 

completed these inspections before headquarters provided the next year’s lists, the office 

estimated how many more inspections it could conduct and the software generated a new random 

set of establishments from the remainder of its primary list. If an area office completed its entire 

primary list, the office repeated this process with the secondary list. Thus, OSHA randomly 

assigned most area offices a subset of either their primary or their secondary list to inspect each 

year.8 Appendix A provides more details about the SST program. 

Inspectors arrived on sites unannounced to conduct SST inspections. As with other OSHA 

inspections, the inspector walked through the establishment to assess hazards and then met with 

managers and sometimes also with worker representatives. The inspector provided feedback on 

the workplace’s safety program and explained any violations detected. OSHA typically assessed 

a fine for violations, which establishments could appeal. OSHA often reduced fines for 

violations that were remediated immediately.  

There are several ways that OSHA inspections could lead establishments to improve 

workplace safety. Penalties for detected violations provide incentives for managers to remediate 

those and other hazards. Even when an inspection does not result in any violations, it can 

heighten manager’s awareness of regulations and safety (Alm and Shimshack 2014) and increase 

managers’ and workers’ perceived risk of being inspected again (Kleven et al. 2011; Avis, 

Ferraz, and Finan 2018). Moreover, inspectors sometimes share knowledge about safety 

practices with management (Choi and Almanza 2012).  

 Data  

We combined data from (a) OSHA’s annual SST target lists (2001–2010, the years for 

which OSHA’s Office of Statistical Analysis could locate and provide us with target lists); (b) 

                                                 

8 Area offices did not inspect every establishment that they assigned for inspection, for reasons we discuss below. 

Our estimation approach, described in Section 2.1.2, accounts for this fact. 
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OSHA’s annual ODI survey data on injuries and employment (1996–2011);9 (c) OSHA 

inspection data from its Integrated Management Information Systems (IMIS) database (1990–

2014),10 and (d) annual Dun and Bradstreet data on employment, credit rating, and other business 

outcomes from the National Establishment Time Series (NETS) database (1990–2013).11 

OSHA’s annual SST primary and secondary target lists (US Occupational Safety and Health 

Administration 2011) report the name, address, and corresponding area office of each 

establishment for which injury rates in the prior year’s ODI survey exceeded the SST directive’s 

injury rate thresholds. These target lists also indicate which of these establishments were 

assigned to inspection.  

The ODI dataset (US Occupational Safety and Health Administration 2013) contains the 

annual survey results that establishments reported to OSHA from 1996 to 2011, including annual 

counts of injuries involving days away from work (serious injuries) and of injuries involving job 

transfers or restrictions—which together are called DART (days away from work, restricted 

work, or a transfer) injuries. ODI also reports injury rates, which are annual injury counts per 

100 full-time workers, and contains each establishment’s annual average employment and total 

labor hours worked and its DUNS number, a unique establishment-level identifier. The ODI 

dataset is an unbalanced panel: it includes a different (but somewhat overlapping) set of 

establishments each year. The ODI sought to survey all establishments with at least 40 

employees in hazardous industries every three years. Beginning around 2005, ODI resurveyed 

the following year those establishments reporting at least seven DART injuries per 100 full-time 

workers. Many establishments on the SST target lists report ODI data nearly every year12 

because (a) OSHA’s DART rate threshold for re-sampling establishments in the ODI survey was 

below (more lax than) its threshold for placing establishments on the SST primary target list (and 

at or above the threshold used to place establishments on the secondary list) and (b) injury rates 

tend to be serially correlated.13   

                                                 

9 We obtained SST target lists and ODI survey data from OSHA after signing a memorandum of understanding. 
10 We downloaded OSHA inspection records in December 2014 from the agency’s publicly available database, 

available at: https://enforcedata.dol.gov/views/data_summary.php. 
11 NETS is a proprietary database distributed by Walls and Associates (Donald Walls, dwalls2@earthlink.net). 
12 Among the establishments that were ever on an SST target list, 25 percent reported injury data in at least 10 of the 

16 years of the ODI program (1996–2011) and 50 percent reported injury data in at least 7 years of these 16 years.  
13 For example, among establishments that appeared on the SST list in successive years, the correlation between 

their ODI-reported DART rates in successive years is 0.55. 
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The IMIS database (US Occupational Safety and Health Administration 2014) includes 

every inspection attempted by OSHA. Each record includes the establishment’s name and 

address, the inspection date, what triggered the inspection (e.g., the SST program, a recent 

serious accident, an employee complaint), whether the inspector was unable to carry out the 

inspection (e.g., if the company had moved or gone out of business), and the number of 

violations and value of penalties.  

NETS (NETS 2016) is an annual panel dataset extracted from Dun and Bradstreet data that 

seeks to include all establishments in the United States. We extracted each establishment’s 

unique DUNS number, its first and last year in operation, whether it was part of a multi-unit 

firm, and annual employment and credit rating.  

To construct our sample, we used the DUNS numbers to link establishments on any of 

OSHA’s SST 2001–2010 target lists to their corresponding records in ODI and NETS. We found 

100 percent of the SST target list establishments in ODI and 97 percent in NETS; we dropped 

the 3 percent that we could not match to NETS. Because the IMIS database does not include 

DUNS numbers, we linked the establishments on the SST target list to IMIS records by fuzzy-

matching names, addresses, and industries using MatchIt software, the Stata reclink command, 

and a manual process. We linked 82 percent of the establishments on the SST target lists to at 

least one inspection record in IMIS.14 

During our 2001–2010 sample period, annual SST target lists ranged from 8,404 to 12,153 

establishments, totaling 101,463 across all these years. We refer to the calendar year of an annual 

SST target list as a “directive year”15 and we refer to each time OSHA placed an establishment 

on an SST target list (in a given directive year) as an “establishment-directive.” These 101,463 

establishment-directive observations comprised 40,946 unique establishments, because some 

establishments were on target lists in multiple directive years. 

 Creating the Randomized Sample 

For most of our analyses, we narrowed our dataset to the subset of establishments on the 

SST target lists that were at risk of a randomized inspection (henceforth, the “randomized 

                                                 

14 We retain the 18 percent of establishments on the SST target list that did not link to IMIS records. While our 

matching algorithm might have failed to identify some of their corresponding IMIS records, some target list 

establishments were probably never inspected and thus do not have any inspection records in IMIS. 
15 For example, all establishments placed on the target list issued on May 14, 2007 have a directive year of 2007. 
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sample”). To do so, we first excluded the establishments on area office target lists in a given 

directive year when the area office did not assign inspections using randomization: when they 

assigned either none or all of the establishments on their target list to inspection. Second, we 

excluded establishments that OSHA told its area offices to inspect with certainty: those OSHA 

manually added to its SST target lists solely due to its concern that they had reported 

exceptionally low (and thus potentially inaccurate) injury rates to ODI or because they did not 

respond to the survey at all. Third, we omit those establishments that, according to the IMIS 

database, had already received a comprehensive safety inspection within the previous two years 

(which OSHA extended to three years, as of 2009) and were therefore ineligible for SST 

inspection.16 Finally, we exclude the few establishments that, according to NETS, were not in 

operation two years prior to the directive year (the baseline injury-rate year SST relied on) or 

were not in operation during the directive year and thus could not have been inspected. 

The remaining establishments were either randomly assigned for an SST inspection 

(“assigned to inspection”)—our treatment group—or were eligible but not assigned (“not 

assigned to inspection”)—our control group. Table B.1 in Appendix B has more details on how 

we constructed the randomized sample. 

The randomized sample includes 16,141 establishment-directives at risk of being randomly 

assigned to inspection, with 6,977 assigned to inspection and 9,164 not assigned. These 16,141 

establishment-directives correspond to 13,029 unique establishments. We construct a panel 

around these 16,141 establishment-directives: a “pre-period” of the four years prior to the 

directive year and a “post-period” of the directive year and the four subsequent years.17 

We do not observe any ODI-reported outcomes in the post-period for 2,405 (15 percent) of 

the 16,141 establishment-directives in our randomized sample, largely due to (a) establishments 

on target lists in later directive years having fewer opportunities to appear again in the ODI 

because the ODI survey ended in 2011 and (b) establishments shutting down or becoming 

                                                 

16 We also omitted the 9,617 cases in which area offices explicitly marked such ineligible establishments as 

“deleted” in the target list database. Through conversations with area office directors, we learned that many area 

offices implemented their deletions, but did not input them into the SST target list database. This is one reason that 

we remove ineligible establishments manually. 
17 Our estimation samples contain fewer than 145,269 observations (16,141  9) because (a) most establishments 

were not included in the ODI survey in all nine years, (b) some ceased operation within five years of their directive 

year, and (c) the ODI survey ended in 2011 (one year after our final directive year, 2010). 
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ineligible for ODI by, for example, shrinking to fewer than 40 employees. In Appendix C, we 

further discuss sources of sample attrition and—importantly—show that attrition of those 

assigned to inspection was statistically indistinguishable from attrition of those not assigned.  

Table 1 reports summary statistics18 and Table B.2 in Appendix B reports the industry 

distribution of our sample. 

Randomization implies that those assigned and those not assigned to inspection should be 

balanced on baseline characteristics. To assess whether this was the case in our randomized 

sample, we regress an assigned to inspection dummy on a series of baseline characteristics 

(using lagged values pertaining to the years before the directive year) and a set of fixed effects 

for area-office×directive dyads, the level at which the randomization took place. We report 

results in Table 2;19 a Wald test failed to reject the null that the coefficients on the nine variables 

jointly differed from zero (p = 0.19), bolstering confidence in the randomization. 20  

 Serious Injuries 

Our primary measure of workplace safety is an establishment’s annual number of serious 

injuries (those resulting in at least one day away from work). We focus on these injuries because 

they are the most serious type reported to ODI and are less prone to measurement error due to 

misreporting (Biddle and Roberts 2003; Boden, Nestoriak, and Pierce 2010); see Appendix D for 

a discussion of the validity of ODI injury data. Moreover, serious injuries are enormously costly: 

in 2005, the midpoint of our sample period, the 1.2 million injuries causing days away from 

work in the United States (US Bureau of Labor Statistics 2007) triggered more than $60 billion 

in costs, based on an estimated cost of $53,000 per injury (in 2018 dollars; see Appendix E). To 

reduce the effect of large outliers of the number of serious injuries per year, we top-code this 

variable at its 99th percentile in our sample, which is 54. 

                                                 

18 We follow OSHA’s rules and calculate injury rate as the number of injuries divided by (total working hours / 

200,000). 200,000 is the number of hours 100 full-time employees would work in a year. 
19 The two variables in this model from NETS (employment and PAYDEX score) had missing values for a small 

number of observations. We replaced missing values with the variable means and included dummy variables 

denoting these recodings. 
20 Establishments assigned to inspection are statistically indistinguishable from those not assigned to inspection in 

terms of all baseline characteristics except for DART injury rate and total working hours, both from two years prior. 

The difference in DART rates (p=0.043) is miniscule in magnitude—only 0.02 percent of the variable mean of 

10.34. Establishments assigned to inspection have 3.8 percent more total working hours (p=0.088). While it is not 

surprising to find a statistically significant difference for two variables, given that we examined nine, we report 

robustness tests that estimated the evaluation models described below when controlling for total working hours in t - 

2, with virtually identical results.  
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II. Methods 

We first describe how we estimate the average effect of randomized inspections. We then 

explain how we estimate heterogeneous treatment effects and use those estimates to evaluate 

alternative targeting policies. 

 Estimating Average Treatment Effects of Randomized SST Inspections  

We used the following methods to estimate the intention-to-treat effect of assignment to a 

randomized SST inspection and then use an instrumental variable specification to estimate the 

treatment effect of receiving an inspection.  

Estimating Intention-to-treat Effects.—We use the following specification (prespecified in a 

pre-analysis plan; see Appendix F) to estimate the intention-to-treat effect of OSHA assigning an 

establishment to inspection:  

𝑦𝑖𝑗𝑡𝜏
𝑝𝑜𝑠𝑡 = 𝐹(𝛼1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑖𝑡 + 𝛼2𝑦𝑖𝑡

𝑝𝑟𝑒 + 𝜸𝑿𝑖𝑡 +  𝜇𝑗𝑡 + 𝜃𝜏 + 𝜖𝑖𝑗𝑡𝜏 ). (1) 

𝑦𝑖𝑗𝑡𝜏
𝑝𝑜𝑠𝑡

 is the annual count of serious injuries for establishment i—within the geographic boundary 

of area office j and on the SST target list in year t—realized τ years relative to directive year t. In 

this specification, τ ranges from 0 (the directive year) to 4 (four years after the directive year), 

meaning we include up to five years of data for each establishment-directive. In our main 

specification, we use a Poisson specification, modelling the right-hand side of equation (1) as the 

conditional mean function of y.  

Assignedit is a dummy coded 1 if establishment i was randomly assigned to an SST 

inspection in directive year t, and 0 if it was eligible but not assigned. The coefficient on 

Assignedit, 𝛼1, represents the intention-to-treat effect of assignment to inspection. To improve 

precision, we control for 𝑦𝑖𝑡
𝑝𝑟𝑒

: establishment i’s injury count averaged over the four years prior 

to the directive year, sometimes called an analysis of covariance (ANCOVA) specification 

(McKenzie 2012).21 (In robustness checks, we instead include the pre-period observations in the 

                                                 

21 When we estimate Equation 1 with a Poisson regression, this control variable 𝑦𝑖𝑡
𝑝𝑟𝑒

 is the average of historical 

log(y+1), rather than the average of historical y. In a Poisson regression, a coefficient on the latter estimates how 

much a one-unit change in historical y is correlated with a one-percent change in post-period y, whereas a coefficient 

on the former estimates how much a one-percent change in historical y is correlated with a one-percent change in 

post-period y, which is a more appropriate metric to capture the correlation between historical and post-period 

outcomes. We add 1 to 𝑦𝑖𝑡
𝑝𝑟𝑒

 before taking the log to account for zeroes. When we instead estimate Equation 1 with 

OLS (as we do in robustness checks), we change 𝑦𝑖𝑡
𝑝𝑟𝑒

 to equal the average of historical y in levels. 
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sample—rather than including their average as a control variable—and use a difference-in-

differences design, which yields essentially identical results.) 

𝑿𝑖𝑡 refers to control variables, which includes the number of years of data on which the 

historical mean 𝑦𝑖𝑡
𝑝𝑟𝑒

 is based (to account for varying precision in 𝑦𝑖𝑡
𝑝𝑟𝑒

, since we do not observe 

ODI-reported data in all years for all establishments) as well as a dummy equal to one for 

nursing homes on the 2003 SST directive.22 In some specifications, 𝑿𝑖𝑡 also includes total 

working hours (or its log) in year t - 2. 𝜇𝑗𝑡 represents fixed effects for area-office–directive-year 

dyads. 𝜃𝜏 represents fixed effects for each τ year relative to the directive-year. We cluster 

standard errors by establishment.  

Equation (1) estimates the average annual effect of assignment to SST inspection over the 

directive year and four subsequent years, but this average might mask effects that vary over time. 

We thus also estimate equation (2), a distributed lag model, to estimate the annual difference in 

injuries—in each of the four years prior to, the year of, and each of the four years following the 

directive year—between establishments that were and were not assigned to inspection: 

𝒚𝒊𝒋𝒕𝝉 =  𝑭(∑ 𝜷𝒌𝑫𝝉=𝒌 ∗ 𝑨𝒔𝒔𝒊𝒈𝒏𝒆𝒅𝒊𝒕𝒌∈[−𝟒,𝟒]  + 𝝁𝒋𝒕 ∗ 𝟙(𝝉 ≥ 𝟎) + 𝑿𝒊𝒕 ∗ 𝟙(𝝉 ≥ 𝟎) + 𝝀𝒊𝒕 + 𝜽𝝉 + 𝝐𝒊𝒋𝒕𝝉) , (2) 

where 𝟙(𝜏 ≥ 0) equals 1 when 𝜏 ≥ 0, and 0 otherwise. This specification includes both pre- and 

post-period years for each establishment-directive (𝜏 ∈ {−4, 4}). 𝐷𝜏=𝑘 is a dummy equal to 1 if 

𝜏 = 𝑘. 𝛽𝑘 coefficients estimate the difference in outcome 𝑦 between establishments assigned and 

not assigned to inspection if 𝜏 = 𝑘, for 𝑘 ∈ {−4, 4}. 𝜆𝑖𝑡 is a fixed effect for each establishment-

directive, which effectively replaces 𝑦𝑖𝑡
𝑝𝑟𝑒  from equation (1) to control for time-invariant 

differences across establishment-directives. As in equation (1), 𝜇𝑗𝑡 is a fixed effect for each area-

office–directive-year, and 𝑿𝑖𝑡 is a vector of establishment-directive controls (here, log hours in 

the year t - 2 and the dummy for nursing homes on the 2003 directive); we multiply these by 

𝟙(𝜏 ≥ 0) because otherwise 𝜇𝑗𝑡 and 𝑿𝑖𝑡 would be absorbed by 𝜆𝑖𝑡. We cluster standard errors by 

establishment. 

                                                 

22 We include this dummy because OSHA did not originally include nursing homes on its SST Target List for the 

2003 SST directive, which was initiated in June 2003, due to another concurrent national program on nursing 

homes. However, in September 2003 OSHA revised the 2003 directive and added nursing homes to the primary list 

of the 2003 Target List. Because of this delay, relatively few nursing homes were assigned to inspection in 2003. 

This dummy variable accounts for this differential treatment. 
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Instrumental Variables Specification.—While the randomization of assignment to an SST 

inspection provides a clean experimental design, assignment imperfectly predicts receiving an 

inspection for several reasons.  

First, not all establishments assigned to an SST inspection were actually inspected. In some 

instances, inspectors could not find establishments assigned to inspection. Some area offices 

successfully petitioned OSHA headquarters for permission to not inspect all of the 

establishments it had assigned them. Also, OSHA issued the annual SST directives and target 

lists assigning establishments to inspection between April and August, but area offices did not 

begin conducting those inspections until months later. Together, these factors resulted in only 18 

percent of establishments randomly assigned to SST inspection actually being inspected by the 

end of the calendar year in which OSHA placed them on the target list (the directive year), and 

only 73 percent by the end of the following calendar year (Appendix Figure A.2).23  

Second, some eligible establishments that were not assigned to inspection in a given 

directive year were assigned to inspection in a subsequent year. Almost all establishments on the 

SST target list in one year also qualify to be ODI-surveyed in a subsequent year and OSHA 

placed many on a later SST target list. Thus, 28 percent of our control establishments (those 

eligible but not assigned to inspection in a given directive year) received an SST inspection 

within the next four calendar years.24 

Given this imperfect adherence, comparing injuries between establishments that were 

randomly assigned to SST inspection in a given year to those that were eligible but not assigned 

(the “intention-to-treat” estimate) underestimates the effect of receiving an SST inspection.  

To estimate the average treatment effects of inspection on injuries, we instrument whether 

an establishment has been SST-inspected with whether OSHA assigned it to inspection in the 

directive year. This approach scales the intention-to-treat estimate by the extent to which 

assignment to inspection increases the probability of being inspected. Specifically, we estimate 

the following variant of equation (1): 

                                                 

23 It is possible that OSHA did inspect some of the seemingly uninspected establishments, but our procedure to link 

SST with OSHA’s information system (IMIS) failed to find their corresponding inspections in IMIS. 
24 Establishments might receive other types of inspections, but we find essentially zero difference between the 

establishments assigned to inspection and not assigned to inspection with respect to the likelihood of experiencing a 

non-SST OSHA inspection. Thus, we do not consider this potential source of bias to be an important factor in our 

context. 
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𝑦𝑖𝑗𝑡𝜏
𝑝𝑜𝑠𝑡 = 𝐹(𝛿1𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑𝑖𝑡𝜏

̂ + 𝛿2𝑦𝑖𝑡
𝑝𝑟𝑒 + 𝜿𝑿𝑖𝑡 +  𝜇𝑗𝑡 + 𝜃𝜏 + 𝜂𝑖𝑗𝑡𝜏 ). (3) 

𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑𝑖𝑡𝜏
̂  is the predicted value from the following first-stage equation, in which 

𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑𝑖𝑡𝜏 is a dummy coded 1 if establishment i was SST-inspected at any time between the 

directive year t and t+𝜏 (where τ ranges from 0 to 4, as in equation (1)) and coded 0 otherwise: 

𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑𝑖𝑡𝜏 = 𝜋1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑖𝑡 + 𝜋2𝑦𝑖𝑡
𝑝𝑟𝑒 + 𝜷𝑿𝑖𝑡 +  𝜇𝑗𝑡 + 𝜃𝜏 + 𝜈𝑖𝑗𝑡𝜏. (4) 

For equations (3) and (4), 𝑦𝑖𝑗𝑡𝜏
𝑝𝑜𝑠𝑡

, 𝑦𝑖𝑡
𝑝𝑟𝑒

, 𝑿𝑖𝑡 , 𝜇𝑗𝑡, and 𝜃𝜏 are the same as in equation (1). 𝜂𝑖𝑗𝑡𝜏 and 

𝜈𝑖𝑗𝑡𝜏 are error terms assumed to be independent and identically distributed (i.i.d.). 

Instrumenting inspected with assigned in equation (3) meets the two requirements for the 

estimate of 𝛿1to identify the effect of an SST inspection on outcome y. First, as we show below, 

the first-stage relationship modelled in equation (4) is strong. Second, the exclusion restriction is 

satisfied: assigned only affects outcome y through its influence on inspected because (a) an 

establishment only learned it had been assigned to SST inspection when an inspector arrived and 

(b) assignments only affected an inspector’s actions by allocating SST inspections.  

We use an IV-Poisson regression model to estimate the causal effect of being inspected on 

serious injury count. We consider other specifications in robustness checks described below.  

 Alternative Targeting Policies 

OSHA might have averted more injuries by using different approaches to targeting. The 

potential gains from alternative targeting regimes depend on the degree of heterogeneity in 

treatment effects across establishments and on OSHA’s ability to identify establishments where 

those treatment effects are largest. Historically, OSHA sought to target establishments with 

“serious health and safety problems” and, to identify them, focused on those with high injury 

rates two years prior. We consider three alternative targeting metrics OSHA could have used to 

assign inspections. The first two metrics are better measures of “serious health and safety 

problems” (one based on historical data, the other on machine learning) and the third is a 

machine-learning–based estimate of the treatment effects of inspections. 

Historical Counts of Serious Injuries.—Our first alternative targeting metric is historical 

injuries (𝐼𝑛𝑗𝑖𝑡
𝑝𝑟𝑒

): the average annual number of serious injuries at an establishment over the four 

years prior to the directive year. This metric is similar to the two-year lagged injury rate that 

OSHA used for SST, but differs in three important ways. First, historical injuries incorporates 
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four years of historical data, as opposed to being a single observation from two years prior. 

Using multiple years of data can overcome mean reversion, because a single year of high injuries 

could reflect bad luck (Ruser 1995). Second, historical injuries is a measure of injury counts, as 

opposed to rates. Counts are a more useful targeting criterion if there are economies of scale in 

inspecting and remediating hazards. Third, whereas SST’s targeting regime relied on injuries 

resulting in days away from work, job restriction, or job transfer (“DART”), we only consider 

the more serious subset: injuries resulting in days away from work. As described in Section IIC, 

such injuries are less prone to misreporting than are less-consequential injuries that result in job 

transfers or restrictions. 

Predicting Serious Injuries with Machine Learning.—Historical injuries might not be the 

best predictor of which establishments currently have the most serious health and safety 

problems. Thus, as a second alternative targeting metric, we consider expected injuries, which is 

the number of serious injuries (those leading to days away from work) an establishment would 

experience if not assigned to inspection, given its baseline characteristics Z, averaged across the 

assignment year and four subsequent years (𝐸[𝑌(0)| 𝑍], or simply Y(0), in the Rubin (1974) 

causal framework). 

This metric has two potential advantages over the average historical injury count. First, 

expected injuries refers to the number of injuries that would actually occur (absent an inspection) 

in the year when inspectors are considering visiting the establishment, as opposed to historical 

injuries that have already occurred. Second, expected injuries recognizes that injuries might be a 

function not only of historical injury counts but also of many other variables—such as employer 

size, regional characteristics, and business conditions—and that these factors could affect injury 

counts in nonlinear ways. 

We predict expected injuries focusing on establishments not assigned to inspection (those 

for which expected injuries is actually observed). We use the ensemble machine-learning 

procedure Super Learner, which minimizes the mean squared error of out-of-sample predictions 

by using cross-validation, to find the optimal weighted average of multiple machine-learning 

methods (van der Laan, Polley, and Hubbard 2007). Our Super Learner library includes random 
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forest (Breiman 2001), the Generalized Additive Model, and a linear interaction model.25 Vector 

Z (baseline characteristics) includes a host of factors including the establishment’s size, age, 

injury record, inspection record, safety compliance record, geographic setting, industry 

characteristics, and temporal factors. Appendix G lists the full set of variables included in Z. We 

refer to the resulting prediction of expected injuries as simply predicted injuries. 

Estimating Heterogeneous Treatment Effects of Inspections.—To serve its goal of making 

the most “effective use of its enforcement resources,” OSHA would in principle want to 

maximize the number of injuries inspections averted—that is, to direct inspections where their 

treatment effects are largest. These treatment effects might or might not be highly correlated with 

historical or predicted injuries. For example, if inspectors are better able to identify fixable safety 

issues at establishments with many serious injuries, then establishments with high historical 

injury counts will also have large treatment effects. But if such establishments face high costs of 

remediating hazards, they might instead be relatively unresponsive to inspections (Athey 2017).  

We refer to an establishment’s conditional average treatment effect—its treatment effect 

given its baseline characteristics (Z)—as its “treatment effect.” Following Rubin’s (1974) 

potential outcomes framework, we define an establishment’s expected treatment effect as 

(E[Y(1)|Z) - (E[Y(0)|Z);  

that is, the difference between the establishment’s outcome if it were assigned to inspection 

given a set of characteristics Z (E[Y(1)|Z)]) and if were not assigned to inspection (E[Y(0)|Z]), 

the latter being expected injuries in our scenario. 

A challenge to estimating treatment effects is that, unlike injuries, they require an 

unobservable counterfactual. We estimate each establishment’s treatment effect using a causal 

forest (Wager and Athey 2018), a method that builds on Breiman’s (2001) flexible random 

forest. A random forest first builds many regression trees, each of which is a form of nearest-

neighbor matching in which the set of neighbors maximizes both similarity within a leaf and 

                                                 

25 These three learners are those that received non-zero weight when we initially ran Super Learner on the entire 

randomized sample with several additional learners in the library (generalized boosting regression, neural network, 

generalized linear model, and Bayesian generalized linear model). We used the default parameters for each 

algorithm, except that we restricted the smallest leaves in the random forest to have at least 50 observations, because 

small leaves can increase mean squared error (Athey and Imbens 2016). 
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divergence across leaves. The random forest then averages predictions of the many trees to 

reduce variance and improve predictive power.  

Wager and Athey’s (2018) causal forest modifies the random forest to estimate 

heterogeneous treatment effects by searching for high-dimensional combinations of covariates 

associated with different treatment effects. To avoid overfitting, we create each regression tree 

with one subsample of the data and estimate the treatment effect at each leaf with a second 

subsample (which Wager and Athey refer to as the “honest” approach). 

For a causal forest to estimate unbiased treatment effects, two considerations must hold. 

First, conditional on covariates Z, assignment to inspection must be independent of the potential 

outcomes. This consideration is satisfied among the establishments in our randomized sample 

because assignment to inspection was random conditional on area-office–directive-year. Second, 

there must be enough treatment and control observations in a given leaf (Athey and Imbens 

2016), so we include only leaves with at least 50 observations and for which the share of 

treatment or control observations is no less than 10 percent. We include the same covariates Z as 

used to predict injuries (see Appendix G). 

 Evaluating Alternative Targeting Policies  

Evaluating the number of injuries that OSHA could have averted had it used any of these 

alternative targeting policies is challenging for a few reasons. Most importantly, relevant to our 

two alternative policies that rely on machine learning, predicted values of expected injuries and 

of treatment effects might reflect noise or sampling variation, as opposed to true heterogeneity. 

Additionally, multiple considerations could invalidate our ability to estimate the number of 

injures the regulator could avert under different targeting regimes. We discuss these concerns in 

the following two sections. 

Estimating the Effects of Inspections for Different Groups.—Our machine learning methods 

might not generate consistent estimates of expected injuries or the treatment effect for individual 

observations and might therefore lead to misleading estimates of the effects of alternative 

policies that target inspections based on these metrics (Chernozhukov et al. 2020). To estimate 

how many injuries OSHA would avert under each alternative policy, we follow the method 

developed in Chernozhukov et al. (2020) to produce consistent estimates of average treatment 

effects for specific subsamples.  
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To apply their method, we first randomly partition the establishments in the randomized 

sample into two halves, which we refer to as the training sample and the holdout sample.26 We 

use the training sample to estimate model parameters, and then apply these parameters to the 

holdout sample to predict expected injuries and treatment effects. First, focusing on the subset of 

establishments in the training sample that were not assigned to inspection, we use Super Learner 

to construct a function that predicts expected injuries—the number of injuries an establishment 

would experience when not assigned to inspection. Second, we use causal forest on the entire 

training sample to construct a function that estimates establishments’ treatment effects. Third, we 

apply these two functions to the holdout sample to compute each of those establishments’ 

predicted injuries and estimated treatment effect.  

Because a given individual establishment’s estimated treatment effect might be biased, we 

follow Chernozhukov et al. (2020) to estimate average treatment effects for specific subsets of 

the data. For example, one policy that OSHA could follow is to assign the same number of 

inspections each year, but allocate them to those establishments at which it expects inspections to 

avert the most injuries (i.e., establishments with the largest estimated treatment effects). Define a 

group G such that 𝐺1 indicates that an establishment’s estimated treatment effect is high enough 

to be assigned to inspection under this policy and 𝐺0 indicates otherwise. To estimate the number 

of injuries OSHA would avert under this policy, we estimate the following weighted linear 

regression on the holdout sample: 

𝑦𝑖𝑡
𝑝𝑜𝑠𝑡 = 𝛼1 +  𝛼2𝑌(0)𝑖𝑡

̂ + ∑ 𝛾𝑘(𝐷𝑖𝑡 − 𝑝(𝑍𝑖𝑡)) ∗ 𝟙(𝐺𝑖𝑡
𝑘 ) + 𝜈𝑖𝑡 ,

1

𝑘=0

 (5) 

where 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡

 is an establishment’s annual number of serious injuries averaged over the five “post-

period” years comprising the directive year and four subsequent years. D is an indicator for 

whether an establishment was assigned to treatment, p(Z) is the proportion of establishments in 

its area-office directive list eligible for inspection that were assigned to inspection that directive 

year (the “propensity score”), 𝑌(0)̂ is our prediction of an establishment’s expected injuries,27 

                                                 

26 Chernozhukov et al. (2020) refer to the training sample as the “auxiliary sample” and the holdout sample as the 

“main sample.” 
27 Chernozhukov et al. (2020) refer to 𝑌(0)̂ as B(Z).  
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and 𝜈 is an i.i.d. error term. Following Chernozhukov et al. (2020), the regression is weighted by 

𝜔 = {𝑝(𝑍) ∗ (1 − 𝑝(𝑍)) }−1.  

Here, 𝛾𝑘̂ is a consistent estimate of the mean number of injuries averted per establishment 

among the establishments in group Gk. We estimate the total number of injuries averted under a 

given targeting policy, ∑ (𝛾𝑘̂ ∗ Nk)𝑘 , where 𝑁𝑘 is the number of establishments in group Gk that 

OSHA would assign to inspection under that policy. 

Due to sampling variation, the holdout sample might not be representative of the entire 

randomized sample. We follow Chernozhukov et al. (2020) to obtain point estimates and 

confidence intervals of the average treatment effects among establishments assigned to 

inspection in each policy. We conduct 250 iterations of the above process, each time randomly 

splitting the data into new training and holdout samples and saving the key coefficients (𝛾𝑘̂). For 

each of these 250 iterations, we also reverse the roles of the training and holdout samples and 

repeat the same procedure outlined above, obtaining another set of coefficients for each iteration 

pertaining to the other half of the sample split. For each iteration, we then take the average of 

these two coefficients, akin to twofold cross-validation.28 Examining the distribution of these 

250 average coefficients, we use the median (50th percentile) as our point estimate of the group 

average treatment effect for the policy and, pursuant to Chernozhukov et al. (2020), use the 2.5th 

and 97.5th percentiles as the range of our 90-percent confidence interval.29 

We seek to evaluate the effect of alternative targeting policies that apply to the entire 

historical SST target list, which includes both our randomized sample and the subset for which 

inspections were assigned nonrandomly (the nonrandomized sample). However, we can apply 

Chernozhukov et al.’s (2020) procedure only to our randomized sample because the propensity 

score p(Z) might be correlated with potential outcomes of establishments in the nonrandomized 

                                                 

28 This process to obtain point estimates and confidence intervals for the group average treatment effects deviates 

slightly from Chernozhukov et al. (2020). That technique does not take the step of reversing the roles of the training 

and holdout samples for each sample split; rather, it generates estimates only from the holdout sample and then uses 

the median coefficient values (and standard errors) across these iterations as its estimates of the group average 

treatment effect (and its standard error). Our approach—to instead average the coefficients estimated on the holdout 

sample and training sample for each split, and then use the median of these averages across the 250 iterations as the 

estimated group average treatment effect—is inspired by Chernozhukov et al. (2018) and Jacob (2020). Our version 

yields essentially identical point estimates, but smaller confidence intervals, than Chernozhukov et al. (2020). We 

thank Daniel Jacob for guidance in implementing this approach.  
29 The 90-percent confidence interval on these estimates corresponds to the 2.5th and 97.5th percentiles of the 

distribution, rather than the 5th and 95th, because Chernozhukov et al. (2020) note that the repeated sample splitting 

results in additional uncertainty. 
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sample, which could bias our estimates of treatment effects. In Appendix H, we explain how we 

adapt the above procedure to estimate the effects of policies that re-target the entire historical 

SST target list, and we show that our approach is robust to various potentially confounding 

factors. 

Potential Threats to Estimating the Effects of Alternative Policies.—Two considerations 

might challenge our ability to estimate the effects of alternative targeting policies, even with 

unbiased estimates of average treatment effects for subsets of the data. First, a new targeting 

scheme might change behaviors—and thus outcomes—of inspected as well as uninspected 

establishments. Second, our analysis uses data from our entire 2001–2010 sample period to 

construct establishments’ predicted injuries and estimated treatment effects, but each year the 

regulator would only have data through the prior year to construct these measures. Section IIID 

discusses these concerns in more detail, explains how we address them, and shows that none 

meaningfully invalidates our estimates of alternative targeting policies. 

III. Results 

 Average Effects of OSHA’s SST Inspections  

Columns 1 and 2 of Table 3 report estimates of the average effects of assignment to an SST 

inspection on an establishment’s number of serious injuries. The first column displays Poisson 

regression results from the intention-to-treat specification from equation (1). Establishments 

assigned to SST inspection experience 3.4 percent fewer injuries over the directive year and four 

following years (β = -0.035, SE = 0.017, p = 0.04) than do those not assigned. The average 

marginal effect indicates that being assigned to inspection leads, on average over this five-year 

period, to a decline of 0.19 in the annual number of serious injuries from the sample annual 

average of 5.35. This estimate is essentially unchanged when we control for baseline log total 

working hours from two years before the directive year (year t - 2) (column 2).  

To investigate the extent to which the average effect on injuries of being assigned to 

inspection varies over time, Figure 1 shows the annual assigned to inspection coefficients and 

their 95-percent confidence intervals from a Poisson regression estimating the intention-to-treat 

distributed lag specification in equation (2) (the omitted year is t - 2, two years prior to the 

directive year). During the four years prior to the directive year, the coefficients hover around 

zero, consistent with random assignment. Beginning with the directive year ( = 0), the 
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coefficients become consistently negative, hovering between -0.04 and -0.05, and are 

statistically significant in years  = 0 and  = 1. 

To estimate the effect of inspection (treatment-on-the-treated effect), we need to account for 

the fuzziness in inspection assignment described in Section IIIA. We use OLS to estimate the 

first-stage effect of assignment to SST inspection in the directive year on the probability of 

actually being SST-inspected, corresponding to equation (4). Being assigned to inspection 

increases the probability of actually being inspected over the directive year and the four 

following years by 46 percentage points (p < 0.01) above the 17-percent inspection rate over this 

period among those not assigned in the directive year (column 3). Column 4 reports the effect of 

an SST inspection on serious injuries, an IV-Poisson estimate of equation (3). On average, SST 

inspections lead to 8.7 percent fewer serious injuries per year (β = -0.091, SE = 0.042, p = 0.03). 

The average marginal effect indicates that, over this five-year period, SST inspections lead to an 

average decline of 0.48 in the annual number of serious injuries, implying that the average SST 

inspection averted (5 * 0.48 =) 2.4 serious injuries over the five-year period. Given our estimate 

that a serious injury costs $53,000 during our sample period (see Appendix E), the average 

randomized inspection averted just over $125,000 in injury costs over this five-year period30—

roughly 35 times the cost of conducting an inspection.31 

Our estimates are robust to a number of alternative specifications and other checks that we 

summarize here and describe in detail in Appendix I. We estimated equation (1) using a 

difference-in-differences design, and we also estimated it dropping establishments that had ever 

received a violation from OSHA for injury recordkeeping. We also estimated equation (1) with 

an ANCOVA model in which we collapsed all of an establishment’s post-period annual 

observations into a single (averaged) observation. We also estimated average intention-to-treat 

effects with targeted maximum likelihood estimation combined with Super Learner (van der 

                                                 

30 Our estimate that SST inspections led to 8.7 percent fewer DAFW injuries is similar to Levine, Toffel, and 

Johnson’s (2012) estimate that inspections by California’s Division of Occupational Safety and Health led to 9.9 

percent fewer injuries that triggered workers’ compensation claims. This paper only considers DAFW injuries, a 

subset of injuries eligible for workers compensation considered by Levine, Toffel, and Johnson (2012). This 

difference likely explains why our estimate that SST inspections have a $125,000 social benefit is lower than 

Levine, Toffel, and Johnson’s (2012) estimate that Cal-OSHA inspections had a $355,000 social benefit.  
31 We estimate that it cost OSHA roughly $3,400 to conduct a typical inspection during our sample period. We 

derive this estimate by dividing OSHA’s FY2009 federal enforcement budget of $194 million by the 37,700 

inspections conducted by federal OSHA in FY2009 (US Department of Labor 2008). We assume that one-third of 

OSHA’s enforcement budget is overhead and that SST inspections cost the same as other inspections. 
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Laan and Rose 2011) and with the method outlined in Chernozhukov et al. (2020). All of these 

yielded results, reported in columns 1–5 of Table I.1 in Appendix I, that were economically 

similar to and statistically indistinguishable from the results reported in Table 3.  

 How Heterogeneous Are Treatment Effects of Inspections—and Why? 

As described at the start of Section IIB, the potential gains from alternative targeting depend 

on the degree of heterogeneity in treatment effects, as well as on OSHA’s ability to identify the 

establishments where inspections will avert the most injuries. Before assessing how many 

injuries OSHA could avert though alternative targeting policies, we first present visual evidence 

of the degree of estimated treatment effect heterogeneity and examine the establishment 

characteristics associated with high or low estimated treatment effects. 

Heterogeneity in Treatment Effects.—To assess the extent to which the estimated treatment 

effects exhibit variation, in each of our 250 sample splits (described in Section IIC) we retain the 

Best Linear Predictor of the treatment effect for each establishment in the holdout or 

nonrandomized sample (Chernozhukov et al. 2020). 32 We categorize the distribution of these 

treatment effects into centiles, calculate the average treatment effect among the establishments in 

each centile, and save these 100 averages. We repeat this process for each of the 250 sample 

splits. Next, we calculate the median across the 250 splits of the average estimated treatment 

effect values of the first centile and plot this as the first (leftmost) point on Figure 2. We then 

repeat this for each of the other centiles to plot the 100 points in Figure 2. While these estimates 

are likely biased (Chernozhukov et al. 2020), they nonetheless provide a sense of the 

heterogeneity in treatment effects. Figure 2 indicates that the estimated treatment effects of 

assignment to inspection exhibit substantial heterogeneity, particularly at the very top. The 

integral under the curve indicates that if OSHA assigned every establishment in this sample to 

inspection, 68 percent of the total injuries it would avert would occur among the establishments 

in the top 20 percent of treatment effects. Treatment effects being concentrated in a relatively 

small subset of establishments suggests that there might be large gains to changes in targeting 

OSHA’s limited inspections. 

                                                 

32 The Best Linear Predictor of an establishment’s treatment effect is obtained from the regression coefficients in 

Equation H.1, as 𝛽1̂ + 𝛽2̂ ∗ (𝑆 − 𝐸𝑆). See Chernozhukov et al. (2020) for details on notation. 
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Sources of Heterogeneity in Treatment Effects. We next describe the differences in baseline 

characteristics between the group of establishments with the highest versus the lowest estimated 

treatment effects. Following Chernozhukov et al. (2020), within each of our 250 sample splits, 

we identify the establishments with an estimated treatment effect in the top 20 percent of the 

combined holdout sample and nonrandomized sample and the establishments in the bottom 20 

percent. We conduct t-tests to assess whether these two groups’ average baseline characteristics 

differ. Across these 250 splits, we calculate and save (a) the medians of the relevant variable 

means, (b) the medians of those variables’ within-split standard deviations, and (c) the median t-

test p-values.  

The DART injury rate two years prior to the directive year—the metric OSHA used to 

construct the SST target lists—is only slightly higher among establishments with the top 20 

percent treatment effects versus the bottom 20 percent (12.5 versus 11.5; p < 0.01, Table 4, row 

1). In contrast, establishments with the top 20 percent estimated treatment effects have 

substantially more historical injuries (19.5 versus 4.8; p < 0.01, row 2) and more predicted 

injuries (12.8 versus 3.0; p < 0.01, row 3). Establishments with high estimated treatment effects 

also have more employees, are more likely to be in the manufacturing sector, are less likely to be 

nursing homes, experienced more fatal injuries two years prior to randomization, and had more 

prior inspections triggered by a worker complaint.  

 Effects of Alternative Targeting Policies 

We now estimate how different targeting rules affect the number of injuries OSHA could 

have averted. Each of our policies maintains OSHA’s rule under the historical SST program that 

an establishment is ineligible for an inspection if it received one in the prior two years. 33  

How Many Injuries Could OSHA Have Averted through Alternative Targeting? OSHA 

allocated its SST inspections by creating a target list of establishments with high DART injury 

rates two years before and then prioritized within them by establishing a threshold that, roughly, 

placed the establishments with the top third of DART injury rates on the primary list and the rest 

                                                 

33 We maintain this rule because our estimates of the effects of SST inspection are conditional on inspections of any 

particular establishment being conducted at least three years apart. Thus, because we cannot know if the treatment 

effect of inspections would differ if they were conducted within one or two years of each other, we do not allow for 

such instances in the policies we consider.  
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on the secondary list. Among the establishments on the 2001–2010 target lists that were eligible 

for SST inspection, OSHA assigned to inspection 43 percent of those on the primary lists and 10 

percent of those on secondary lists. Using methods from Chernozhukov et al. (2020) (and 

described further in Appendix I), we estimate that the historical SST program averted an average 

of 0.168 (90-percent confidence interval of -0.193 to -0.140) serious injuries per year per 

establishment assigned to inspection (Table 5, row 1). As expected, this result is quite similar to 

the average marginal effect obtained from our Poisson regression (column 1 of Table 3).  This 

new estimate of the historical policy’s average effect serves as the benchmark against which we 

evaluate the benefits of alternative targeting policies. 

We now estimate how many injuries OSHA would have averted had it assigned all 

inspections nonrandomly each year to establishments with the highest value of each of our three 

targeting metrics: historical injuries, predicted injuries, and estimated treatment effects. In each 

scenario, we have OSHA assigning to inspection the same number of establishments each year 

as were assigned under the actual SST policy: 16,861 over the 10-year period.34 

Targeting establishments with the most historical injuries would have averted an average of 

0.312 (90 percent CI of -0.393 to -0.222, row 2) serious injuries per year among assigned 

establishments, nearly twice as many as the 0.168 averted under the historical SST policy (row 

1). Targeting establishments using the highest predicted injuries would have averted an average 

of 0.357 (90 percent CI of -0.491 to -0.227, row 3) serious injuries per year, averting 2.1 times 

as many as averted under the historical SST policy. And targeting based on the highest estimated 

treatment effects would have averted an average of 0.364 (90 percent CI of -0.620 to 0.072, a 

wider CI that includes zero, row 4) serious injuries per year, 2.2 times as many as averted under 

the historical SST policy.  

Given the number of establishments assigned to inspection, we can also estimate the total 

number of injuries that OSHA would avert under each policy. Considering injuries over a five-

year period, targeting on historical injuries, predicted injuries, and estimated treatment effects 

would avert 12,140, 15,934, and 16,524 more injuries, respectively, than OSHA’s historical SST 

                                                 

34 This number (16,861) differs from the number of establishments assigned to inspection on OSHA’s 2001–2010 

target lists (28,163) reported in Table A.1 in Appendix A. There are two reasons. First, for this analysis, we have 

excluded the 9,170 establishments on the 2001–2010 target lists without any post-period ODI data. Second, we 

restrict the analysis to establishments that were not SST-inspected in either of the prior two years, since they were 

ineligible for inspection under OSHA’s rules. 
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policy (based on numbers in column 6). Based on our estimate that an injury causing days away 

from work imposes a social cost of $53,000, these additional averted injuries would have 

generated social value of $643 million, $844 million, and $876 million, respectively. 

Variations on the Benchmark Targeting Policies.—We now estimate the number of injuries 

OSHA could avert, relaxing some assumptions embedded in the benchmark targeting policies. 

Maintaining OSHA’s Inspection Budget. Establishments with more employees tend to 

have larger estimated treatment effects (Table 4) as well as more historical injuries and 

predicted injuries (results not shown). But inspecting larger workplaces likely takes more 

inspector time. 

We therefore consider policies in which OSHA targets the establishments with the largest 

values of each of our targeting metrics, but maintains the total cost (rather than number) of 

inspections under the historical SST policy. As a rough approximation, we model the cost of 

inspections as proportional to log10 of the establishment’s employees. That is, if inspecting an 

establishment with 25 employees requires one day, we assume that inspecting an establishment 

with 250 employees requires two days. To create targeting groups based on historical injuries, 

we begin with the establishment with the most historical injuries and successively add those with 

the next-highest historical injuries until the sum of log(FTEs) of the establishments in this group 

equals that of those that were assigned to inspection that year under SST. We refer to this group 

as the “high-priority group” and to the remaining establishments as the “low-priority group.” We 

repeat this process for our other two targeting metrics.  

Constraining total inspection costs to the historical policy’s budget reduces the number of 

assignments to inspection by roughly 10 percent for each policy. Despite slightly fewer 

establishments assigned to inspection, the estimated number of injuries averted (rows 5–7 of 

Table 5) remains essentially unchanged from the benchmark policies, regardless of the targeting 

metric.35   

                                                 

35 The estimated number of injuries averted declines by a small amount when targeting on historical injuries and 

treatment effects, and actually increases slightly when targeting on predicted injuries. This latter result arises, even 

though the number of inspections is lower in this policy than in the benchmark policy, due to the exclusion criteria 

we impose to mimic OSHA’s rules that an establishment cannot be inspected if it was inspected in either of the prior 

two years. This restriction means that the set of establishments eligible each year for each policy is slightly different. 

If we omit this restriction, the gap reverses. In all cases, these differences are small and not statistically significant. 
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Maintaining Randomization. The policies described above, being deterministic, prevent 

the regulator from using randomization to rigorously estimate the effectiveness of inspections. 

Deterministic policies might also reduce the threat effect associated with the possibility of being 

inspected that can motivate uninspected establishments to improve safety, an effect known as 

general deterrence (Cohen 2000; Shimshack and Ward 2005; Gray and Shadbegian 2007).  

Thus, we also consider a targeting policy that incorporates randomization that preserves the 

SST policy’s probability of assignment-to-inspection and thus the threat of inspection. In this 

approach, OSHA maintains the same proportion of establishments on the primary and secondary 

target lists as it did with the SST policy (with the primary list consisting of the top 39 percent of 

eligible establishments and the secondary containing the rest). With our policy, OSHA ranks 

establishments based on our three targeting criteria instead of the SST program’s criterion (the 

DART rate from two years prior). OSHA randomly assigns all inspections, setting the 

probability of assignment-to-inspection within the high-priority list to equal that of the SST 

primary list (43 percent) and within the low-priority list to maintain the inspection budget of the 

SST program (resulting in a probability of 9 percent).  

Our results indicate that OSHA could avert an average of 0.24 injuries per year per assigned 

establishment if this targeting policy were based on historical injuries (90 percent CI of -0.363 

to -0.118; see Table 5 row 8), 0.241 injuries per year per assigned establishment if based on 

predicted injuries (90 percent CI of -0.387 to -0.083, row 9), or 0.205 injuries per year per 

assigned establishment if based on estimated treatment effects (90 percent CI of -0.365 to -0.046, 

row 10). These correspond to 136 percent, 136 percent, and 117 percent, respectively, of the 

number of injuries averted under the SST policy. These treatments effects are all statistically 

significantly different from zero, but not statistically significantly different from each other or 

from the estimate based on the historical policy. 

 Threats to the Validity of Our Estimates of Counterfactual Policies 

Our estimates are robust to changes in threat effects on uninspected establishments (the 

Lucas critique) and to using data from the future to estimate treatment effects.  

Assessing Potential Bias from a Threat Effect of Inspections.—An inspection regime can 

reduce injuries via direct effects on inspected establishments—the focus of our analysis—and 

via threat effects on uninspected establishments (Cohen 2000; Shimshack and Ward 2005; Gray 
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and Shadbegian 2007; Blundell, Gowrisankaran, and Langer 2020). Thus, managers at 

uninspected establishments might change their behavior under a new targeting rule (Lucas 

1976), which could make our estimated treatment effects misleading.  

Alternative targeting policies will change the threat effect only if managers adjust their 

behavior in response to changes in their perceived risk of being inspected. If managers are 

perfectly informed of OSHA’s targeting rules, those anticipating a high probability of being 

inspected might increase their effort to improve compliance, while those anticipating a low 

probability might reduce their effort.  

It is unlikely that a weaker threat effect could offset the benefits of targeting that we report. 

Consider the alternative policy in which OSHA re-assigns all inspections to those establishments 

with the highest estimated treatment effects each year (Table 5, row 4). For diminished threat 

effects to offset the benefits yielded by our analysis, we estimate that the remaining 80 percent 

of uninspected establishments would need to increase their injury rates by 68 percent of the 

amount that their injuries would decrease if they were assigned to inspection.36 

We consider such a magnitude of the threat effect implausible. Even though OSHA 

published its targeting rules in the Federal Register each year, they almost never appeared in 

industry publications. Our conversations with health and safety professionals indicated that most 

managers did not know OSHA’s targeting rules.37  

We can also directly test for the importance of threat effects by seeing if workplaces that 

faced a higher risk of inspection decreased injuries more than similar workplaces facing lower 

risk of inspection. Specifically, we estimate a regression discontinuity model using OSHA’s 

threshold for determining its SST primary list. We look for evidence of whether uninspected 

establishments that had injury rates just above the cutoff—and thus faced a much higher risk of 

                                                 

36 We obtain the 68-percent estimate as follows. We estimated that OSHA averts 0.365 annual injuries at 

establishments assigned to inspection in this alternative policy, which is 0.20 more than was averted than under the 

historical SST policy (Table 5, Column 3). For threat effects to undermine these benefits, the remaining 80 percent 

of uninspected establishments would thus need incur on average 0.05 additional annual injuries. To put this 0.05 

value in perspective, the data underlying Figure 2 revealed that the establishments in the bottom 80 percent of 

estimated treatment effect had an average of 0.073 injuries averted if assigned to inspection. That is, the change in 

the threat of inspection would need to increase injuries by 68 percent of the amount that injuries would fall if these 

establishments were assigned to inspection (0.05 / 0.073 = 68 percent). 
37 For example, in March 2015, we spoke with a safety and health professional who had worked with thousands of 

establishments, many of which had recently experienced an OSHA inspection. He indicated that most of those 

establishments had no idea about the SST program, let alone its targeting criteria (personal communication). 
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inspection—exhibit evidence of greater safety effort than uninspected establishments just below 

the cutoff.  

To calculate how far an establishment is from the cutoff, we subtract the injury cutoff that 

OSHA used for the primary list in directive year t, which is based on injury rates in year t - 2, 

from the establishment’s own injury rate in year t - 2. (See Appendix J for details.) We provide 

graphical evidence to illustrate the discontinuous change in the risk of inspection at the primary 

list threshold. For Figure 3, panels A and B, the x-axis depicts how far an establishment is from 

the cutoff (the primary list’s injury rate threshold). Figure 3, panel A shows that those with a 

lagged injury rate above this threshold faced a nearly sharp discontinuity in the probability of 

being on the primary list, from zero to roughly 0.9. Figure 3, panel B shows that those just above 

this threshold were also roughly 30 percentage points more likely to receive an SST inspection 

in the calendar year of or following the directive year, compared to those just below the 

threshold.  

If establishments adjust their safety hazards based on their risk of being inspected, then 

those that were just above the primary cutoff (thus facing a higher risk of inspection) will, even if 

they are not actually inspected, engage in more safety efforts that decrease injury rates than 

those just below the threshold. To isolate the effect of the higher threat of inspection, we restrict 

attention to the subsample of establishments that (a) had injury rates in t - 2 that put them just 

above or just below the primary list cutoff, (b) were eligible for an SST inspection, and (c) were 

not assigned one.  

Figure 3, panel C illustrates the results of our test of the threat effect. It depicts a binned 

scatterplot of residuals from regressing the log number of serious injuries during the calendar 

year following the directive year (year t + 1) on OSHA-region fixed effects, year fixed effects, a 

manufacturing industry dummy, and log(ℎ𝑜𝑢𝑟𝑠)𝑡−2. The solid lines depict best-fit lines with 

separate slopes for each side of the cutoff. There is no change in the number of injuries in year t 

+ 1 between uninspected establishments that just barely did and did not make it onto the primary 

list. Appendix J provides the corresponding regression estimates and other details of this 

analysis.38  

                                                 

38 We can tweak this regression discontinuity design to estimate the local average treatment effect of being SST-

inspected on subsequent injuries, in the spirit of Li and Singleton (2019). We do so in Appendix K, where we apply 

this approach to a similar sample, but include the assigned-to-inspection establishments. 
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If establishments adjusted their safety efforts due to changes in the risk of inspection, we 

would expect to observe those that just barely made it onto the primary list experiencing fewer 

injuries than those that just barely did not, even among those not actually assigned to inspection. 

Figure 3, panel C and Appendix J provide no such evidence.  

This analysis suggests that establishments are unlikely to adjust their injuries in response to 

the changes to OSHA’s targeting rules that we consider—changes that would be subtler than the 

discontinuity at the primary list cutoffs examined here. These results do not imply that threat 

effects are irrelevant, but rather that the differing threat of inspections would not substantially 

change the behavior of uninspected establishments under the targeting regimes we analyze. 

If—contrary to the evidence just presented—threat effects were important in our setting, 

then most of our results would likely underestimate the benefits of our targeting policies. 

Consider our policies that exclusively target inspections nonrandomly. While our policy of rank-

ordering establishments on historical injuries might eliminate any threat effect (because 

establishments could in theory know if they rank highly enough to be targeted), policies that rely 

on machine learning might enhance the threat effect. Assume that (a) establishments have a 

noisy signal of their ranking based on predicted injuries or estimated treatment effect and (b) the 

threat effect increases attention to safety in the same way that inspections do (for example, by 

triggering additional management hours dedicated to promoting safety). Then, our policies that 

target based on criteria generated by machine learning algorithms increase the threat of 

inspection among establishments (those with high predicted injuries or estimated treatment 

effects) for which we expect greater injury reductions than we expect for the establishments that 

faced a higher threat of inspection under the SST program (those with one year of high injury 

rates). Furthermore, we found that OSHA would still avert more injuries than it did under the 

SST policy if it used our policy that maintains the level of threat that held under SST but 

prioritized inspections using any of our three alternative metrics. In short, if threat effects are 

important, we have little reason to believe that they attenuate the value of the proposed 

alternative targeting approaches.  

Assessing Potential Bias from Using Data from the Future.—Our analyses have used data 

from our entire 2001–2010 sample period to construct establishments’ predicted injuries and 

estimated treatment effects. In reality, when OSHA constructs its target lists in a given year, only 

data through the prior year are available. To assess whether our estimates of the number of 
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injuries averted under alternative targeting policies might be materially different if based only on 

data available to the agency when it was constructing its target lists, we reestimate our models 

using only data from the 2001–2006 randomized sample (the first half of our sample period) and 

then use those results to generate predicted injuries and estimated treatment effects for 

establishments in the 2007–2010 randomized sample (the second half of our sample period). We 

compare these estimated benefits of targeting inspections during 2007–2010, when we use these 

two metrics generated based only on the 2001–2006 data, with the results of our main approach, 

which generated these metrics based on all of the data (2001–2010). 

Specifically, we use predicted injuries or estimated treatment effects trained on the 2001–

2006 sample to identify which establishments to place in the high- and low-priority groups 

during 2007–2010. As in our main analysis, we run a regression corresponding to equation (5) to 

estimate the average number of injuries averted. In contrast to our main analysis, however, we 

only estimate the regression once, since we are not randomly partitioning the data as we did in 

our main analysis.39 We therefore report the estimated average treatment effect 𝛾1̂ from this 

regression (rather than the median of 𝛾1̂ across 250 sample splits). This yields an estimated 

number of averted injuries per year from assignment to inspection among establishments in the 

high-priority group of 0.792 (SE = 0.367) when targeting on predicted injuries and 0.589 (SE = 

0.323) when targeting on estimated treatment effects (columns 1 and 2 of Appendix Table A.3). 

Both estimates are only slightly smaller than (and not statistically significantly different from) 

the corresponding estimates for inspections assigned during the second half of our time period 

(2007–2010) based on parameters derived from the entire sample period (i.e., our main approach 

described in Section IIC); namely, 0.967 (SE = 0.292) when targeting on predicted injuries and 

0.664 (SE = 0.286) when targeting on estimated treatment effects (columns 3 and 4 of Appendix 

Table A.3).40  

                                                 

39 We do not conduct the sample-splitting procedure here because we do not have to worry about overfitting leading 

to bias in our machine learning estimates. That is, we use sample splitting in our main analysis to estimate the 

models on one half of the sample, then apply these models to the second half of the sample, repeating this process 

many times because one random partition of the sample might not be representative. Here, because we estimate the 

models on the first half of the sample (2001–2006) and are applying it to the second half of the sample (2007–2010), 

we do not have to perform this repeated sample splitting. 
40 For simplicity, in this exercise we omit the exclusion criteria that establishments are ineligible for inspection if 

they were inspected in either of the prior two years.  
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In short, these results suggest that our use of all years of data to construct our targeting 

metrics does not materially overestimate the benefits of alternative targeting policies. 

IV. Why Did Targeting on Predicted Injuries Perform  

Better Than Targeting on Treatment Effects?  

OSHA wants to allocate its scarce inspections where they avert the most injuries; that is, 

where the treatment effect is largest. However, in most of the alternative targeting approaches 

we considered, we estimated that OSHA would avert the most injuries by targeting inspections 

not on estimated treatment effects, but rather on predicted injuries. Furthermore, our estimates 

for targeting based on estimated treatment effects were much less precise. To understand why, it 

is useful to think of the regulator’s problem of how to target inspections as a kind of bias-

variance tradeoff. In particular, the regulator might better achieve its objective (of averting 

problems) by choosing to target inspections based on a criterion (such as the number of 

problems) that is a biased measure of that objective but can be estimated more precisely.  

While inspecting establishments with high treatment effects clearly serves the regulator’s 

objective to avert the most injuries, it is not obvious that inspecting establishments with high 

expected injuries serves this goal as well. In other words, expected injuries is a biased measure 

of the regulator’s objective. However, in our case, this bias is likely small. Conceptually, it is 

plausible that OSHA inspectors could avert more injuries at workplaces with more injuries—as 

would occur if there are economies of scale in remediating hazards. Empirically, we found high 

correlation among establishments’ estimated treatment effects and predicted injuries; across our 

250 sample splits, the median correlation coefficient (r) was 0.78.  

Furthermore, because treatment effects are fundamentally difficult to estimate, they will 

inherently be estimated with high variability. Indeed, even with a very large sample size like 

ours, treatment effect estimates were quite unstable. This imprecision means that ranking 

establishments based on their estimated treatment effects does an imperfect job of ranking them 

by their true treatment effects. As a result, targeting those with the highest estimated treatment 

effects will result in some establishments with low actual treatment effects being inspected (a 

Type I error), and some establishments with high actual treatment effects being uninspected (a 

Type II error). The regulator can predict injuries with much more precision and, as a result, more 

accurately target those with high expected injuries. Indeed, predicted injuries was much more 

stable across sample spits than estimated treatment effects. We estimate that the instability in 
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establishments’ predicted injuries across sample splits was nearly 10 times smaller than the 

instability in their estimated treatment effects.41  

Given that the regulator could more accurately identify establishments with the highest 

expected injuries than those with the highest estimated treatment effects and given that 

establishments with many injuries tend to be those with the largest treatment effects, it is 

perhaps not surprising that we found that OSHA would avert just as many (if not more) injuries 

targeting on predicted injuries than on estimated treatment effects. We expect targeting on 

estimated treatment effects will be more effective than targeting on predicted problems in 

settings in which treatment effects (a) can be estimated with more precision, or (b) are not as 

strongly correlated with the level of problems. 

V. Conclusion 

OSHA inspections of dangerous workplaces substantially improved workplace safety. Our 

estimates imply that the average inspection caused a 9-percent decline in serious injuries (those 

causing days away from work), averting an average of 2.4 serious injuries over five years at each 

inspected establishment. We estimate that each inspection yielded a social benefit of roughly 

$125,000, roughly 35 times OSHA’s cost of conducting an inspection. 

However, we also found that the agency could have averted substantially more injuries had 

it used any of our alternative targeting policies. OSHA could have averted over twice as many 

serious injuries by targeting its inspections to establishments with the highest estimated 

treatment effects and nearly as many—and in some cases more—by targeting based on average 

historical serious injury counts or on predicted serious injury counts. It was surprising to find 

that, in some scenarios, more injuries could be averted from a targeting regime based on 

predicted injuries than from a regime based on estimated treatment effects. However, estimating 

establishments’ expected number of injuries absent an inspection is a much easier prediction 

                                                 

41 We measure this instability by considering the standard deviation in establishments’ estimated treatment effects 

and predicted injuries across our 250 sample splits. Across all establishments in our sample, the mean estimated 

treatment effect was -0.169, with a standard deviation of 0.15. For the average establishment in our dataset, the 

standard deviation of estimated treatment effects across the 250 sample splits was 0.12, which is 80 percent of the 

0.15 standard deviation in the overall distribution of treatment effects. In comparison, across all establishments in 

our sample, the mean predicted injuries was 5.1 with a standard deviation of 5.8. For the average establishment in 

our dataset, the standard deviation in its predicted injuries across the 250 sample splits was 0.49, a mere 8.4 percent 

of the 5.8 standard deviation in the overall distribution of predicted injuries. The 8.4-percent instability in 

establishments’ predicted injuries across sample splits is nearly 10 times smaller than the 80-percent instability in 

establishments’ estimated treatment effects across sample splits. 
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problem than estimating establishments’ treatment effects. Moreover, in our setting, the two 

metrics turned out to be highly correlated. Targeting historical outcomes or predicted outcomes 

would be less likely to outperform targeting based on treatment effects in settings in which 

treatment effects can be estimated precisely or where predicted problems and treatment effects 

are less correlated.  

Our approach also enables regulators to learn where inspections are relatively ineffective. 

For example, OSHA could investigate why nursing homes have high injury rates but avert 

fewer-than-average injuries after being inspected. Perhaps this is due to OSHA lacking standards 

for musculoskeletal diseases, which account for a large share of injuries in nursing homes; if so, 

this finding might inform OSHA about the possible need to create such standards.  

Our study has several limitations. One is that we estimated the effects of alternative 

targeting policies only on establishments that had been on OSHA’s historical SST target lists. In 

reality, OSHA could choose its annual inspection targets from a much larger set of 

establishments. Our not considering this broader population means that our results are weakly 

conservative, as the restriction might have caused our results to underestimate the gains of our 

alternative targeting policies. Other limitations of our study include our not considering effects 

of inspections beyond five years and our focusing only on the 29 states where OSHA is the 

primary regulator. We also did not measure the effects of inspections on illnesses or on less 

consequential injuries not resulting in days away from work. Finally, data limitations prevented 

us from considering injuries sustained by temporary or contract workers.  

With these limitations in mind, we show that combining randomization and machine 

learning can substantially improve regulatory agencies’ performance. This approach could 

improve the effectiveness of many other organizations that target inspections, from tax and food 

regulatory agencies to multinational firms assessing suppliers’ process quality and working 

conditions. Moreover, our study provides guidance to the nascent practice of regulatory agencies 

targeting inspections in part based on algorithms. For example, the US Food and Drug 

Administration targets inspections of foreign food manufacturers based on their predicted risk of 

producing contaminated food (US Government Accountability Office 2016), the US Bureau of 

Safety and Environmental Enforcement has begun targeting inspections of offshore oil and gas 

operations based on their perceived risk of safety incidents (US Bureau of Safety and 

Environmental Enforcement 2018), and the city of Chicago has begun using risk-based 
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forecasting to help determine the order in which it inspects restaurants (Spector 2016). Our 

research reveals how agencies can estimate the relative benefits of algorithms that vary in 

simplicity and transparency as well as in threat effects to encourage compliance among 

uninspected establishments. 
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Table 1: Summary Statistics for the Randomized Sample, +/- 4 Years from Directive Year

n mean sd median min max

Number of times on prior years’ SST target lists [SST] 143,757 1.2 1.6 1.0 0.0 9.0

Number of serious injuries [ODI] 90,343 6.5 8.9 4.0 0.0 54.0

Serious injuriesa / 100 FTEa [ODI] 90,343 3.9 3.6 3.1 0.0 16.6

Injuries with days away, restricted or transfer / 100 FTE (DART rate)b [ODI] 90,343 7.6 5.0 6.7 0.0 23.6

Total hours worked, 000s [ODI] 90,346 284.8 331.2 183.0 0.0 2369.8

Average number of employees [ODI] 90,346 149.5 176.8 96.0 1.0 1257.0

Number of employees [NETS] 137,566 135.1 153.1 89.0 1.0 1000.0

Minimum PAYDEX score [NETS]c 125,794 67.7 10.7 70.0 2.0 96.0

Number of OSHA inspections in calendar yeard [IMIS] 143,757 0.2 0.5 0.0 0.0 3.0

Number of SST inspections in calendar year [IMIS] 143,757 0.1 0.3 0.0 0.0 2.0

The sample consists of the 16,141 establishment-directives on the 2001–2010 annual SST target lists included in our randomized
sample. Establishment-directive refers to a specific instance of an establishment being on an annual SST target list. The criteria for
the randomized sample are summarized in Table A.1.
The table includes data from a 9-year window, consisting of the 4 years prior to the directive year (the year the establishment was
placed on the target list), the directive year, and the four years following.
The data source from which the variable is drawn is indicated in brackets. Variables from ODI are only observed in years in which
an establishment was included in the ODI survey. NETS variables are observed for all years that an establishment reports to Dun
& Bradstreet that it is in operation. For other variables, the number of observations is less than 145,269 (= 16, 141 × 9) due to
right-censoring (our final directive year is 2010 and our data end in 2013).
Unbounded variables (all except Number of times on prior years’ SST target lists and Minimum PAYDEX score) are top-coded at
their 99th percentiles.
a Serious injuries are those that cause days away from work.
b Injury rate variables are reported as the number of injuries per 100 full-time employees (FTE). They are calculated by dividing the
number of injuries in a calendar year by the number of FTE (which is calculated as the total number of hours worked divided by
2,000), and multiplying this ratio by 100.
c PAYDEX is a monthly score, ranging 0–100, assigned to an establishment by Dun & Bradstreet to reflect the speed with which it
pays back its creditors, with higher scores reflecting faster payment. We report the minimum PAYDEX score over all monthly reports
in a year.
d OSHA inspections include those triggered by an incident (i.e., a serious accident, complaint, or referral) or pre-planned via one of
OSHA’s programs (including SST).
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Table 2: Regression Results Indicate That Baseline Characteristics Are Balanced Between
Those Assigned and Not Assigned to SST Inspection

Total OSHA inspections t− 1 through t− 4 0.003
(0.004)

Number of times on prior years’ SST target lists -0.002
(0.003)

Number of serious injuries, t− 2 -0.000
(0.001)

Serious injuries / 100 FTE, t− 2 0.001
(0.002)

Injuries with days away, restricted or transfer / 100 FTE, t− 2 -0.002
(0.001)*

ln(Average number of working hours), t− 2 0.038
(0.022)+

ln(Average number of employees [ODI]), t− 2 -0.017
(0.022)

ln(Employment [NETS]), t− 2 -0.003
(0.007)

Minimum PAYDEX score [NETS], t− 2 -0.001
(0.000)

Area-office–year FE Y
Observations 16141
R2 0.238
p-value on joint significance 0.190

This table reports results of an OLS regression model in which the dependent variable is an indicator
variable equal to 1 if an establishment is assigned to SST inspection and the explanatory variables
are the variables reported in the table and area-office–directive fixed effects. The sample includes
all establishments eligible for randomized SST inspections in area-office–years that randomized their
target lists, as described in Table A.1. The unit of analysis is the establishment-directive. Standard
errors clustered by establishment are reported in parentheses. **p<.01, *p<.05, +p<.1.
Variables indicated with “t− 2” are from two years prior to the directive year.
NETS data on employment and PAYDEX are missing in a small share of observations. We recode
missing values to the variable mean and control for (but do not report) indicator variables that denote
these observations.
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Table 3: Regression-estimated Effects of SST Inspection on Serious Injuries

(1) (2) (3) (4)
# of serious injuries SST # of

insp- serious
ected injuries

Intention-to-treat (First Treatment-
stage) on treated

Assigned to SST inspection -0.035 -0.037 0.458
(0.017)* (0.017)* (0.006)**

SST-inspected -0.091
(0.042)*

log(hours) in t− 2 0.258 0.255
(0.019)** (0.019)**

Average marginal effect -0.19 -0.20 -0.48
Specification Poisson Poisson OLS IV-Poisson
# observations 40,993 40,993 40,993 40,993
# establishment-directives 13,736 13,736 13,736 13,736
# establishments 11,083 11,083 11,083 11,083
# area-office–directives 383 383 383 383
Mean dep var, estabs not assigned 5.35 5.35 0.17 5.35

Serious injuries refers to those resulting in days away from work. All regressions
include area-office–directive and tau-year (number of years since the directive year)
fixed effects. Each regression also controls for the mean of the establishment’s depen-
dent variable (or log(1+ dependent variable) in Poisson regressions) over the 4 years
prior to the directive year and for the number of years over which this baseline mean
is calculated. SEs, in parentheses, are clustered by establishment. +p<.1, *p<.05,
**p<.01.
Regressions restricted to randomized sample, described in Table A.1, and a 5-year
window of the directive year and 4 years following.
Columns 1–2 report Poisson regression estimates of the effect of being assigned to SST
inspection on an establishment’s annual number of serious injuries, which are intent-
to-treat estimates. Column 3 reports an OLS estimate of the increased probability
(in percentage points) that establishments assigned to SST inspection in the directive
year actually received an SST inspection. Column 4 reports the IV-Poisson regression
estimate of the effect of receiving an SST inspection on an establishment’s annual
number of serious injuries.
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Table 4: Differences in Characteristics among Establishments with Estimated Treatment Effects in the Top and Bottom
20 Percent of the Distribution

(1) (2) (3) (4)
Mean and SE of variable for Difference Percent

establishments with estimated : in means difference
treatment effect in:

Top 20% Bottom 20%

Injuries with days away, restricted or transferred / 100 FTE (DART rate), t− 2 12.51 11.541 1.101 8.4%
(0.047) (0.041) (0.063)

[ 0.000]
Historical injuriesa 19.823 4.699 15.183 321.9%

(0.110) (0.023) (0.113)
[ 0.000]

Predicted injuriesb 12.969 3.05 9.946 325.2%
-0.072 -0.013 -0.075

[ 0.000]
Nursing homes 0.078 0.162 (0.089) -51.9%

-0.002 -0.003 -0.004
[ 0.000]

Manufacturing 0.550 0.453 0.094 21.4%
-0.004 -0.004 -0.006

[ 0.000]
# employees [NETS], t− 2 389.004 105.546 281.809 268.6%

(6.524) (0.338) (6.534)
[ 0.000]

Injuries with other recordable cases / 100 FTE, t− 2 5.219 4.100 1.159 27.3%
-0.04 -0.036 -0.054

[ 0.000]
ln(Total days away from work resulting from injuries), t− 2 5.834 3.941 1.967 48.0%

(0.012) (0.012) (0.017)
[ 0.000]

Any fatal injuries, t− 2 0.015 0.006 0.009 150.0%
(0.001) (0.001) (0.001)

[ 0.000]
Standalone firm, t− 1 0.244 0.381 -0.142 -36.0%

(0.003) (0.004) (0.005)
[ 0.000]

Establishment age, t− 1 29.219 26.612 2.527 9.8%
(0.239) (0.204) (0.313)

[ 0.000]
Minimum PAYDEX score [NETS], t− 2 67.434 67.79 -0.394 -0.5%

(0.074) (0.075) (0.106)
[ 0.000]

Establishment has ever been inspected prior to this year 0.602 0.402 0.199 49.8%
-0.004 -0.004 -0.006

[ 0.000]
Establishment had a complaint inspection in t− 1 through t− 3 0.205 0.066 0.138 210.6%

-0.003 -0.002 -0.004
[ 0.000]

Number of times on prior years’ SST target lists 1.878 1.23 0.667 52.7%
-0.017 -0.013 -0.021

[ 0.000]
State-year leave-one-out-mean serious injury rate t− 2 3.013 2.947 0.068 2.2%

-0.008 -0.007 -0.01
[ 0.000]

We conduct 250 random even splits of the randomized sample. In each iteration, we train a causal forest on the training sample to predict
treatment effects for establishments in the holdout and nonrandomized samples. Among establishments in those samples, we identify those
with the top 20% and bottom 20% of predicted treatment effects and calculate the means of the characteristic in each row for each of
those two groups. Column 1 reports the medians of these 250 means for the top-20% groups, with the median associated standard error in
parentheses. Column 2 reports these for the 250 bottom-20% groups. We also calculate the difference of these two means in each iteration.
Column 3 reports the median of these 250 differences, with standard errors in parentheses and the p-values on a two-tailed t-test in brackets.
See Section 3.3 for further information.
a Historical injuries is the annual number of serious injuries, averaged t− 1 to t− 4
b Predicted injuries is the predicted annual number of serious injuries if not assigned to inspection, averaged t to t+ 4
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Table 5: Number of Serious Injuries OSHA Averts under Alternative Targeting Policies

(1) (2) (3) (4) (5) (6) (7)
Policy Targeting metric Average number

of annual serious
injuries averted
per establish-
ment, among
those assigned

Number of establish-
ments assigned to in-
spection on the. . .

Total
number
of serious
injuries
averted
over 5
years

Additional
injuries
averted
com-
pared to
historical
policy

...high- pri-
ority list

...low-
priority
list

OSHA’s policy (high-priority =
DART rate, t− 2a

-0.168
12,458 4,403 14,163OSHA’s “primary list”; low- [ -0.193; -0.140]

priority = OSHA’s secondary list)

Historical injuries
-0.312

16,861 0 26,303 12,140Inspect those with highest metric, [ -0.393; -0.222]
preserving the historical

Predicted injuries
-0.357

16,861 0 30,097 15,934
total number of inspections [ -0.491; -0.227]

Estimated treatment effect
-0.364

16,861 0 30,687 16,524[ -0.620; 0.072]

Historical injuries
-0.332

15,126 0 25,109 10,945Inspect those with highest metric, [ -0.414; -0.233]
preserving the historical

Predicted injuries
-0.419

14,944 0 31,308 17,144
total cost of inspections [ -0.567; -0.274]

Estimated treatment effect
-0.393

15,223 0 29,914 15,751[ -0.681; 0.050]

Historical injuries
-0.240

11,788 4,276 19,277 5,114Maintain size and Pr(inspection) [ -0.363; -0.118]
of high- and low-priority lists

Predicted injuries
-0.241

11,798 4,188 19,262 5,099
from historical policy, [ -0.387; -0.083]
preserving the historical

Estimated treatment effect
-0.205

11,890 4,307 16,602 2,439total cost of inspections [ -0.365; -0.046]

aDART rate, t− 2 = Injuries with days away, restricted or transferred / 100 FTE, from two years prior to the directive year.
The estimates in Column 3 correspond to the γ coefficients, specified in Equation 5 in the text, to estimate Group Average Treatment
Effects. Each reported estimate in this column is the median of the average of two coefficient across 250 random splits of the sample into
training and holdout samples: one coefficient where the machine learning models are trained on the training sample and the regression is
estimated on the holdout sample, the other where the roles of the training and holdout samples are reversed. The 90% confidence intervals,
reported below the coefficients in brackets, are estimated analogously. See Section 2.3 for details.
The estimate in Column 6 is the number of establishments assigned to inspection (the sum of Columns 4 and 5), multiplied by the (negative
of the) average treatment effect among assigned establishments (Column 3), multiplied by 5 (the window of years over which we estimate
the effects of assignment to inspection).
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Figure 1: Temporal Effects of Assignment to Inspection on Serious Injuries, by Year Relative to Directive Year
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Results from a distributed-lag intent-to-treat regression specification (corresponding to Equation 2 in the text)
with the dependent variable equal to the number of serious injuries (those resulting in days away from work) an
establishment experiences in a year. Each dot is a coefficient on Assigned to inspection interacted with a dummy
for each corresponding tau year, with a 95% confidence interval. The omitted year is t− 2 (two years prior to
the directive year).
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Figure 2: Percentiles of Estimated Number of Serious Injuries Averted per Year If Assigned to SST Inspection
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Estimates of the percentiles of the treatment effect of assignment to SST inspection among the set of
establishments on OSHA’s SST target lists from 2001–2010. Each dot represents the median, across 250 sample
splits, of the corresponding centile of the Best Linear Predictor of establishments’ treatment effect. See Section
3.2.1 for details. The dashed horizontal line is the mean estimated treatment effect in the sample (0.18).
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Figure 3: Regression Discontinuity Results Provide No Evidence That a Change in Establishments’ Risk of
Inspection Affects Injury Rates
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Each figure displays a binned scatterplot, in which the dependent variable is provided in the figure title and the
x-variable, defined in the text, determines whether an establishment’s injury rate from year t− 2 is high enough
to make it eligible for the SST primary list in year t. In Figures 3a and 3b, the sample includes those
establishments considered for the 2001–2010 SST target lists that had not received an inspection in the prior two
years. In Figure 3c, the sample is further restricted to establishments that were on either the secondary or
primary lists but were not assigned to SST inspection. See text for further details.
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Appendix A  SST Program Details 

Each year from 1996 to 2011, the OSHA Data Initiative (ODI) surveyed between 60,000 

and 80,000 workplaces with at least 40 employees in a set of hazardous industries OSHA 

identified based on US Bureau of Labor Statistics (BLS) data.1, 2 OSHA sent the ODI survey 

mid-year and establishments reported summary data on their injuries, illnesses, and employment 

from the previous calendar year, based on logs that OSHA required them to keep of every work-

related injury and illness.3 

As part of the SST program that OSHA operated from 1999 to 2014, each year—between 

April and August—OSHA created a primary and a secondary SST target list based on the prior 

year’s ODI survey data. The primary list consisted of the roughly 3,500 establishments whose 

prior-year ODI survey indicated the highest rates of injuries causing days away from work, 

restricted work, or a transfer (DART injuries) or the highest rates of injuries causing days away 

from work (DAFW injuries). Both DART rate and DAFW rate were measured as the number of 

such injuries reported over a year per 100 full-time employees working 40-hour weeks that year. 

The secondary list contained the roughly 7,000 establishments with the next-highest rates. In the 

early years of our sample period, these cutoffs were based exclusively on DART rates; starting in 

2005, they were a function of both DART and DAFW rates. For example, in 2008, the primary 

list included establishments whose 2007 ODI data indicated that in 2006 they experienced 

DART rates of at least 11 or DAFW rates of at least 9 and the secondary list included 

establishments reporting DART rates between 7 and 11 or DAFW rates between 5 and 9. The 

specific cutoffs for the primary and secondary lists changed each year and, beginning in 2009, 

varied by industry. We restrict our analysis to the 2001–2010 target lists because those are the 

only years for which we could obtain primary and secondary lists from OSHA. Establishments 

on the primary and secondary lists in those years reported average DART rates of 12.8 and 7.0, 

                                                 

1 Specifically, the US Bureau of Labor Statistics (BLS) Survey of Occupational Injuries and Illnesses gathered data 

each year from a sample of approximately 200,000 establishments drawn from all private-sector industry 

establishments. OSHA selected for the SST program a subset of industries that BLS classified as “high hazard 

industries.” OSHA used BLS annual “high hazard industries” lists until 2003, when BLS stopped updating them, 

and from then on used the 2003 edition. 
2 OSHA intended to survey each establishment meeting these criteria—that is, with at least 40 employees and in the 

specified hazardous industries—at least once every three years.  
3 OSHA Form 300, which OSHA standard 29 CFR 1904 requires employers to complete, is available at 

https://www.osha.gov/recordkeeping/RKform300pkg-fillable-enabled.pdf. 

https://www.osha.gov/recordkeeping/RKform300pkg-fillable-enabled.pdf
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respectively, both of which are several times the average DART rate of 2.3 for all private-sector 

establishments over this period (US Bureau of Labor Statistics 2015).  

After constructing the year’s primary and secondary lists, OSHA notified each of its 81 

area offices of all those establishments on the primary list that were located in that office’s 

region. If an area office did not anticipate having sufficient resources to inspect its entire primary 

list, a “cycle” ensued whereby the office entered the number it anticipated being able to inspect 

into OSHA software. The software then randomly assigned the subset of establishments from the 

primary list that the area office was to inspect. If the area office inspected them all before OSHA 

headquarters issued the next year’s list, another cycle ensued whereby the area office estimated 

how many additional inspections it could conduct and the software generated a new random set 

of establishments from the remainder of its primary list. When an area office had at least 

attempted inspections at all of its primary list, it repeated this process with the secondary list (for 

details, see US Occupational Safety and Health Administration 2008b). Thus, most area offices 

were assigned to inspect a random subset of either their primary or secondary list (but never 

both).  

When an OSHA inspector arrived to conduct an SST inspection, he or she explained that 

the establishment was being inspected because it had a relatively high injury rate.4 The 

inspection itself was similar to other types of OSHA inspections: the inspector walked through 

the establishment to assess hazards that could lead to injuries or illnesses, then conducted a 

closing conference with representatives from management and (sometimes) the employees. The 

inspector typically discussed any violations and also “the strengths and weaknesses of the 

employer’s occupational safety and health system and any other applicable programs, and 

advises the employer of the benefits of an effective program and provides information, such as 

OSHA’s website, describing program elements” (US Occupational Safety and Health 

Administration 2016: 3–20). If the inspector discovered violations of OSHA regulations, a few 

weeks later OSHA would issue a citation and typically assess a fine. Establishments could appeal 

fines and OSHA often reduced them if the violation was remediated immediately.  

 

                                                 

4 OSHA did not inform establishments that they were on the SST target list until an inspector showed up 

unannounced for an inspection.  
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Table B1: Pipeline from Full SST Target Lists to the Randomized Sample

Primary list Secondary list Primary & secondary lists

Assigned to Not Assigned to Not Assigned to Not
inspection assigned inspection assigned inspection assigned

# % of # % of # % of # % of # % of # % of
total total total total total total

Number of establishment-directivesa on 2010 SST target lists and...

In states under federal OSHA jurisdictionb 20,708 100.0 13,314 100.0 7,455 100.0 50,349 100.0 28,163 100.0 63,663 100.0

Restrict to area-office–directives that randomized lists

On a primary list that was started but not exhausted c 8,084 39.0 10,063 75.6 . . . .

Primary list exhausted, and on a secondary started but not exhausted c . . . . 5,150 69.1 7,472 14.8

Located in an area-office–directive that randomized (overall) . . . . . . . . 13,234 47.0 17,535 27.5

Restrict to establishments eligible for SST inspection

Not subject to deletion criteria d 6,589 31.8 7,747 58.2 4,145 55.6 5,234 10.4 10,734 38.1 12,981 20.4

Drop establishments targeted for concerns with ODI reporting quality

Has non-missing ODI data in directive year e 6,363 30.7 7,474 56.1 4,032 54.1 5,094 10.1 10,395 36.9 12,568 19.7

DART and DAFW rates meet selection criteria for corresponding list e 5,935 28.7 7,099 53.3 3,923 52.6 5,003 9.9 9,858 35.0 12,102 19.0

Cross-checks that establishment exists

Found in NETS 5,813 28.1 6,941 52.1 3,850 51.6 4,913 9.8 9,663 34.3 11,854 18.6

Alive in year t − 2 [NETS] f 5,496 26.5 6,556 49.2 3,684 49.4 4,721 9.4 9,180 32.6 11,277 17.7

Alive in year t [NETS] g 5,316 25.7 6,341 47.6 3,593 48.2 4,585 9.1 8,909 31.6 10,926 17.2

Final steps for analysis sample

Not a nursing home in 2002 directive h 5,151 24.9 5,980 44.9 3,398 45.6 4,079 8.1 8,549 30.4 10,059 15.8

SST cycle is opened i 4,806 23.2 5,980 44.9 3,308 44.4 4,079 8.1 8,114 28.8 10,059 15.8

DART rate, employment, hours (all from t − 2) in common support 4,805 23.2 5,968 44.8 3,305 44.3 4,073 8.1 8,110 28.8 10,041 15.8

Area-office–directive has ≥ 1 assigned and not-assigned meeting restrictions 4,279 20.7 5,253 39.5 2,698 36.2 3,911 7.8 6,977 24.8 9,164 14.4

a An establishment-directive refers to a specific instance of an establishment being placed on a particular year’s SST target list.
b Restricts to the 29 states under federal OSHA jurisdiction. While a few of the 21 states with state-run OSHA offices participated in SST, they were not subject to oversight
from the federal office. See Figure A.1 for details.
c Restricts to establishments on (a) the primary list and belonging to an area-office–directive that assigned strictly between 5 and 95% of its primary list to inspection, or (b)
the secondary list and belonging to an area-office–directive that assigned 100% of its primary list to inspection and assigned strictly between 5 and 95% of its secondary list to
inspection. This is the subset of the target lists that was randomized.
d An establishment is subject to the deletion criteria if, within 2 years prior to the directive start date—or 3 years, beginning with the 2009 SST directive start date—it had an
inspection in IMIS coded as a comprehensive safety inspection or as a records-only inspection or if it is a nursing home and had a focused inspection.
e A subset of establishments that either do not respond to the ODI survey or report very low injury rates are placed on the target list each year to assess the reliability of their
reported data. Because these establishments are targeted precisely because of concerns over the accuracy of their data, we remove them from our sample.
f Drops establishments that, according to NETS, were not in operation two calendar years before the directive year.
g Drops establishments not alive at the start of the directive year, as such establishments were ineligible for SST inspection.
h The 2002 SST directive said nursing homes were to be excluded from the 2002 target list, due to OSHA’s concurrent National Emphases Program on nursing homes. We
therefore drop such establishments from the sample.
i An area office could assign subsets of its target list to inspection in cycles. Once it inspected each establishment in a cycle, it could create another one. In some cases, if an Area
Office had created a cycle but had not yet opened it (i.e., begin inspecting it), it was told by OSHA headquarters to move on (e.g. to the next year’s target list). We therefore
drop such unopened cycles from our sample. We identify unopened SST cycles as those in which less than 5% of eligible establishments in the cycle show up in IMIS with an
SST inspection in the directive year.
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Table B2: Industry Tabulation for SST Target Lists and Randomized Sample
Subset

(1) (2) (3) (4)
All SST Randomized

target lists sample
Count % of total Count % of total

Agriculture, forestry, fishing 764 0.8% 150 0.9%

Mining 59 < .01% 4 < .01%

Construction 38 < .01% 4 < .01%

Manufacturing 50,349 54.8% 9,148 56.7%

Wholesale trade 10,436 11.4% 1,770 11.0%

Retail trade 4,827 5.3% 863 5.3%

Transportation, warehousing 14,894 16.2% 2,291 14.2%

Other services 1,173 1.3% 221 1.4%

Nursing homes 9,291 10.1% 1,690 10.5%

Number of establishment-directives 91,831 16,141

An establishment-directive corresponds to a unique instance of an establishment being
included on an annual SST target list from 2001 to 2010 (some establishments are
included in multiple years’ target lists). The sample in Columns 1 and 2 includes
the entire 2001–2010 SST target lists in states under federal OSHA jurisdiction. The
subsample in Columns 3 and 4 includes the subset of establishment-directives on the
SST target lists that are included in our randomized sample, as described in Table A.1.
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Table B3: Targeting on Predicted Injuries or Estimated Treatment Effects Yields
Similar Benefits Whether via Machine Learning Metrics Based a) Only on Data OSHA
Would Have Had Available or b) on All Data

Sample = 2007–2010 target lists
Predicted injuries and Treatment effects estimated on: 2001–2006 sample 2001–2010 sample

(1) (2) (3) (4)

Assigned to inspection if targeting on highest -0.792 -0.967
predicted injuries (0.367)* (0.292)***
Assigned to inspection if targeting on highest -0.589 -0.664
estimated treatment effects (0.323)+ (0.286)**

# observations 4,785 4,785 4,785 4,785

The dependent variable in each column is equal to the average number of injuries an establishment
experienced over the 5-year period comprising the directive year and 4 subsequent years. The
sample is establishment-directives in the randomized sample on the 2007–2010 SST target lists.
Would be assigned in benchmark policy is a dummy equal to 1 if an establishment’s estimated
treatment effect or predicted injuries is high enough to be assigned to inspection in this policy.
See Section 3.4.2 for details. In Columns 1–2, estimated treatment effects and predicted injuries
are estimated from a causal forest (Super Learner) run on the 2001–2010 target lists, using the
method described in Section 2.3. The regression estimates correspond to the median γ̂1 from
Equation 5 across 250 sample splits, estimated on the 2007–2010 sample. In Columns 3–4, the
models underlying estimated treatment effects and predicted injuries are trained on the 2001–2006
samples, then applied out of sample to the 2007–2010 samples; the estimates correspond to γ̂1
from Equation 5 estimated once on the 2007–2010 sample.
Robust standard errors in parentheses. +p<.1, *p<.05, **p<.01.
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Figure B1: The 29 States That OSHA Directly Regulates (in Gray)

Private-sector establishments in the 29 states in gray are under federal OSHA jurisdiction. Source:
www.osha.gov/dcsp/osp/. Map created with https://mapchart.net/usa.html.
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Figure B2: SST Inspection Rates by Year Relative to Directive Year
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The figure shows the percent of establishments in our randomized sample with at least one completed SST
inspection by the end of each calendar year relative to the directive year, separately for those assigned and not
assigned to inspection.
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Appendix C  Sample Attrition 

As discussed in Section 3.1, we do not observe ODI-reported injury data in any year of 

the post-period (the directive year and four following calendar years) for 15 percent of our 

randomized sample (though most have post-period data for other outcomes we examine). Such 

attrition might be a concern if, for example, it is correlated with assignment to SST inspection. 

Here we discuss the sources of our sample attrition and assess its relationship with assignment to 

inspection.  

Table C.1 illustrates factors leading to sample attrition. While the overall attrition rate is 

14.9 percent, this falls to 10.9 percent among those establishments on the 2001–2007 SST target 

lists. Because the ODI survey ended in 2011, establishments on the 2008–2010 lists had fewer 

opportunities to be surveyed. When we further restrict the sample to those establishments that 

never change industry and whose employment never drops below 40 in the post-period, the 

attrition rate drops slightly from 10.9 percent to 9.8 percent. This suggests that factors that would 

render establishments ineligible for the ODI survey are not a major source of sample attrition. 

The final row of Table C.1 assesses the role of establishment survival: one clear way to 

exit the sample is to shut down. Indeed, further restricting the sample to those establishments 

alive during the entire post-period reduces the attrition rate to 5.9 percent. Thus, over 60 percent 

of the sample attrition can be explained by straightforward observable characteristics.  

 

Table C.1: Sources of ODI Attrition 

 (1) (2) (3) 

 

Number of establishment-directives in 

the randomized sample that…  

  

…lack ODI data 

in the post-period 

…have ODI data 

in the post-period 

% with no 

ODI data: 

(1)/[(1)+(2)] 

Analysis sample 2,405 13,736 14.9% 

 …and in 2001–2007 target lists 1,269 10,353 10.9% 

  …and employment [NETS] remained above 40 1,064 9,674 9.9% 

   …and never changed industry 916 8,457 9.8% 

    …and remained alive during sample period 491 7,864 5.9% 

 

More pressing than why sample attrition occurs is whether it is correlated with 

assignment to SST inspection. In Table C.2, we report the coefficients from a series of 

regressions that predict an indicator variable equal to 1 if an establishment has ODI-reported data 
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in any of the post-period years, with the key explanatory variable being assigned to SST 

inspection and controlling for directive-year fixed effects. The columns report estimates of this 

model on each of the sample restrictions in Table C.1.  

Reassuringly, in all columns, the coefficient on assigned to SST inspection is tiny and 

statistically indistinguishable from zero, implying that the attrition in ODI-reported data is 

unlikely to bias our estimates of the effects of SST inspections on ODI-reported outcomes. 

 

Table C.2. Does Assignment to Inspection Predict ODI Attrition? 

  (1) (2) (3) (4) (5) 

Sample =  

Randomized 

sample 

2001–

2007 

target 

lists 

…and 

employment 

[NETS] 

remained 

above 40 

…and 

never 

changed 

industry 

…and 

remained 

alive 

      

Assigned to SST inspection 0.0022 0.0077 0.0086 0.0087 0.0062 

 (0.0055) (0.0058) (0.0058) (0.0062) (0.0052) 

Directive-year fixed effects Y Y Y Y Y 

Observations 16,141 11,622 10,738 9,373 8,355 

R-squared 0.041 0.003 0.003 0.003 0.003 

Dependent variable sample mean  0.851 0.891 0.901 0.902 0.941 

      

Each column reports estimates from a separate OLS regression, in which the dependent variable is an 

indicator of whether an establishment has ODI-reported data in any of the five years made up of the 

directive year and the four following years. Robust standard errors in parentheses. +p<.1, *p<.05, 

**p<.01.  
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Appendix D Validity of ODI-reported Injury Rates 

Because our analysis relies on injury data that establishments self-report to OSHA as part 

of the OSHA Data Initiative (ODI), data accuracy could be a concern. 

First, we note that measurement error in ODI-reported injuries—at least for those injuries 

employees report to their employer—might not be a significant concern in practice. Messiou and 

Zaidman (2005) compared establishment-level workers’ compensation data to ODI-reported data 

in 2003 and—while finding differences—found no systematic underreporting of injuries to ODI. 

Moreover, OSHA routinely audits a random sample of ODI respondents to verify the accuracy of 

their ODI responses by comparing them to the establishment’s OSHA log forms, assessing large 

fines if the ODI response is found to be inaccurate. The threat of such audits provides employers 

incentives to report accurately to ODI and OSHA’s prior audits have found low rates of 

misreporting (ERG and National Opinion Research Center 2009; ERG 2013). 

Still, one may be concerned about measurement error affecting our estimates. There is 

very likely classical measurement error (that is, pure noise) in injuries reported to ODI. In 

addition, there is evidence in other contexts that injuries reported to government surveys are 

often an undercount. Many factors could explain this divergence, but two primary ones are that 

(a) some employees might not report some injuries to their employers and (b) some employers 

might not report some injuries to OSHA (for a thorough discussion of these factors, see Azaroff, 

Levenstein, and Wegman 2002). Younger employees are less likely to report their injuries, as are 

employees who suffer less-serious injuries and those who work in states that offer less-generous 

workers’ compensation benefits (Biddle and Roberts 2003). Smaller employers are less likely to 

report injuries to OSHA (Oleinick, Gluck, and Guire 1995; Dong et al. 2011) and all employers 

are less likely to report less-serious injuries to OSHA (Boden, Nestoriak, and Pierce 2010).5 

As long as these sources of measurement error in injury reporting are unaffected by 

OSHA inspections, they will increase the standard errors of our estimates but not bias the 

coefficients. More worrisome is the potential for inspections to affect the accuracy of self-

                                                 

5 A few studies have compared the US Bureau of Labor Statistics’ Survey on Occupational Injuries and Illnesses 

(SOII) to workers’ compensation data to estimate the reliability of data collected by the SOII. While the SOII is 

distinct from ODI, its format is quite similar and both rely on employers’ logs of OSHA-recordable injuries; thus, 

lessons from these studies probably apply to ODI. A consistent finding is that injuries which are more acute and 

easier to diagnose (such as amputations) are reported quite accurately in the BLS survey, whereas chronic injuries 

(such as carpal tunnel syndrome), injuries that are more difficult to diagnose (such as those that result in hearing 

loss), and occupational illnesses are more likely to be misreported (Ruser 2008; Nestoriak and Pierce 2009). 
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reported injuries. On the one hand, inspections could increase reported injuries; for example, if 

OSHA issues recordkeeping violations that motivate employers to keep more complete injury 

records. In this case, even if inspections truly lead to lower injuries, this effect would bias 

regression estimates towards inspections increasing injuries reported to the ODI. On the other 

hand, inspections could decrease the reporting of subsequent injuries by leading establishments 

to perceive that this would reduce the likelihood of future inspections. In this case, inspections 

could lead to fewer reported injuries while having no effect on their actual occurrence.  

While the extent of such bias is unobservable, we nonetheless address this concern in 

several ways. First, our primary outcome is the most serious class of injuries—those causing 

days away from work—for which the potential for measurement error is smaller than for total 

injuries (Boden, Nestoriak, and Pierce 2010). Second, given evidence that underreporting injuries 

is more common among smaller establishments, the extent of underreporting should be mitigated 

by the fact that ODI only surveyed establishments with at least 40 employees until 2009 and with 

at least 20 employees thereafter. Third, we conducted a robustness check which excluded from 

our analysis any establishment that OSHA had ever cited for a recordkeeping violation, which in 

our sample constitutes roughly 7 percent of establishments assigned to inspection and 4 percent 

of establishments not assigned to inspection. 
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Appendix E Estimating the Social Cost of Serious Injuries during Our 

Sample Period 

Waehrer et al. (2007) estimate that the social cost of a serious injury—the combined costs 

to employers, workers, and the rest of society from injuries causing days away from work—in 

2002 was $37,016. Our goal is to estimate the cost in 2005—the median year of our sample—but 

in 2018 dollars. 

According to Leigh (2011), medical costs make up roughly a quarter of the social costs of 

injuries, with the remaining three-quarters made up of indirect costs such as foregone wages and 

loss to home production (e.g. child care, cooking and cleaning). Because medical care spending 

rose 24 percent from 2002 to 2005,6 we scale up 25 percent of the $37,016 figure ($9,254) by 24 

percent to estimate that the medical cost portion was $11,475 in 2005. We assume that indirect 

costs grew at the rate of inflation, noting that, according to the US Bureau of Labor Statistics,  

the consumer price index (CPI) rose by 8.6 percent from 2002 to 2005.7 We therefore scale up 

the indirect portion (75 percent of $37,016) by 8.6 percent to estimate it as $30,150 in 2005. 

Thus, we estimate a serious injury in 2005 to cost $41,625 ($11,475 + $30,150) in 2005 dollars. 

To convert this to 2018 dollars, we note that the US Bureau of Labor Statistics reports 

that the CPI rose by 28.6 percent from 2005 to 2018.8 Thus, the social cost of a 2005 serious 

injury in 2018 dollars is $41,625* 1.286 = $53,529. 
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Appendix F Pre-specification Plan 

We pre-specified our design and posted our subsequent pre-analysis plan to the Open 

Science Framework at https://osf.io/2snka/. 

The first version of our pre-analysis plan, posted in July 2015, provided the basic outline 

of our study and described our primary outcome variables and our planned empirical 

specifications to estimate the overall effects of inspections. We also uploaded the Stata code we 

would use to estimate our regressions.  

To ensure that estimates are not vulnerable to large outliers or threats to identification, we 

conducted a series of tests to pre-specify our regression specification. We first blinded ourselves 

to each establishment’s assignment status. In each of 500 simulation runs, we created an 

assigned to placebo inspection dummy that randomly assigned 0 or 1 to each establishment-

directive in our randomized sample, with a probability corresponding to the proportion of 

establishments that OSHA historically assigned to inspection. We then estimated the effect of 

assigned to placebo inspection on various outcomes using several functional forms and 

approaches to handle outliers.9 Our objective was to identify which specifications most often 

yielded a precisely estimated zero coefficient on the assigned to placebo inspection dummies 

across all simulations. This procedure led us to choose the specification described in Section 

2.1.2.10 

After posting this plan, we found several minor glitches in our pre-specified design, 

which we therefore updated over the next months. For example, because we initially believed a 

large share of establishments assigned to control in one year would become assigned to treatment 

(that is, assigned to inspection) in later years, we originally planned to estimate the effects of 

inspections using outcomes within a window of three years before and after the focal year. 

However, while creating our analysis sample, we learned that this “crossover” of controls was 

not as large as we thought and that our power would increase if we estimated outcomes using a 

window of four years before and after the focal year. As another example, we pre-specified that 

one specification would control for “employment” but we had intended “ln(employment).”  

                                                 

9 For example, we considered OLS specifications in regressions with injury rate (both level and log) as the 

dependent variable. 
10 We posted our pre-analysis plan to the Open Science Framework on July 10, 2015 at https://osf.io/2snka/.  

ps://osf.io/2snka/
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After specifying our randomized sample in the original pre-analysis plan, we learned of 

some unique features of the SST program in 2002 and 2003 that we deemed important to 

incorporate into our analysis. We also made some improvements to our fuzzy linking between 

the SST target lists and IMIS, which slightly changed our analysis sample. 

We incorporated these changes in an updated version of our pre-analysis plan, which we 

uploaded to the Open Science Framework in January 2016. 

Our initial and updated pre-analysis plans included plans to assess the effects of OSHA 

inspections on business outcomes, but we decided not to include those analyses in this paper.  
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Appendix G Predictors in the Machine Learning Analyses 

This appendix lists the variables we included in the two machine learning exercises: 

1) Using causal forest to construct establishments’ estimated treatment effects 

2) Using Super Learner to construct establishments’ predicted injuries 

 

When any establishment was missing a variable, we replaced it with that variable’s sample mean.  

Location and year variables 

 Dummies for 10 OSHA regions 

 Dummy if the establishment is in a large metro area 

 Number of days after a work-related injury until the injured worker can receive workers’ 

compensation, as determined by the establishment’s state  

 State leave-one-out mean11 annual serious injury rate,12 lagged 2 years  

 Dummies for directive year 

Industry and size variables 

 Establishment’s annual total working hours, lagged 1 and 2 years  

 Establishment’s annual log employment reported in NETS, lagged 1 year 

 4-digit SIC leave-one-out mean annual serious injury rate, lagged 2 years  

 3-digit SIC leave-one-out mean annual penalties assessed at OSHA inspections, lagged 1 

year 

 Dummy for manufacturing sector  

 Dummy for nursing home sector 

Compliance-related variables 

 Dummy if establishment had any OSHA inspection prior to directive year 

 Dummy if establishment had any OSHA complaint inspection from t-1 to t-3 

                                                 

11 A leave-one-out mean is the mean of the variable, excluding the focal establishment. 
12 Serious injury rate refers to the annual number of injuries causing days away from work per 100 full-time 

workers. 
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Other establishment characteristics  

 Establishment age reported in NETS, lagged 2 years  

 Dummy for standalone firm, lagged 1 year  

 Establishment's minimum monthly PAYDEX score, lagged 2 years 

Variables related to injuries and to ODI  

 Number of years establishment was previously on an SST target list 

 Establishment’s average annual number of serious injuries, t-1 to t-4 

 Establishment’s annual serious injury rate, lagged 1, 2, and 3 years  

 Establishment’s annual transfer/restriction injury rate, lagged 2 years  

 Establishment’s annual other recordable injury rate, lagged 2 years  

 Establishment’s annual serious injury rate, squared, lagged 2 years  

 Establishment’s total annual number of days away from work due to injuries, lagged 2 

years  

 Dummy for "has ODI data in t-1"  

 Dummy for "has ODI data in t-3"  

 Establishment’s annual serious injury rate from t-2, interacted with dummies for 4 

employment quartiles (from NETS) in t-2. 

 

The causal forest to estimate treatment effects also included the percentage of establishments 

selected for inspection in the establishment’s area-office–directive primary or secondary list.  
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Appendix H Assessing Generalizability: Can Results from the Randomized 

Sample be Applied to the Nonrandomized Sample?  

Our estimation of the number of injuries OSHA could avert under alternative targeting 

policies relies on using half of the randomized sample to (a) generate predicted injuries that 

establishments would experience if not assigned to inspection (that is, 𝑌(0)), and (b) generate 

estimated treatment effects that establishments would experience if they were assigned to 

inspection (that is, 𝑌(1) − 𝑌(0)). We then use these estimates, which were trained and validated 

on the randomized sample, to estimate the effects of counterfactual policies that target 

establishments from the overall historical SST target lists, including establishments beyond our 

randomized sample (the “nonrandomized sample”). Establishments in the nonrandomized sample 

include those that (a) were on an area office’s target list in a directive year in which fewer than 5 

percent or more than 95 percent of the establishments listed were assigned to inspection, (b) had 

been inspected under SST in the prior two years, and (c) met other exclusion criteria described in 

Table B.1 in Appendix B. In this appendix, we first briefly describe our approach to generalizing 

from the randomized sample. We then discuss and empirically assess threats to the validity of 

our approach.  

Generalizing from the Randomized Sample 

We adapt the Chernozhukov et al. (2020) procedure to generate estimates that pertain to 

the entire historical SST target lists as follows. Each time we partition the randomized sample 

into training and holdout samples, we also keep a random 50-pecent partition of the 

nonrandomized sample. In the training sample, we use the causal forest to estimate treatment 

effects and the Super Learner to estimate predicted injuries if not assigned to inspection. We 

then apply these models to construct predicted injuries and estimated treatment effects for all 

establishments in the holdout sample and the random 50-percent subset of the establishments in 

the nonrandomized sample that we kept. We use the combined holdout sample and 

nonrandomized subsample to construct the groupings that correspond to each targeting policy. 

Next, we estimate regressions of Equation 5 on the holdout sample to generate the coefficients 

(𝛾s) that correspond to the mean number of injuries averted among the establishments in each 

group. We estimate the total number of injuries averted under a counterfactual policy by 
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multiplying the 𝛾s by the number of establishments in each group (in both the randomized and 

nonrandomized samples) that OSHA assigns to inspection in the policy.  

Addressing Potential Threats to Validity 

There are two reasons that the estimates from our procedure might not generalize to the 

entire historical SST target lists and thus might result in misleading estimates of targeting policy 

counterfactuals. First, if establishments in the randomized and nonrandomized samples have 

different distributions of observable characteristics (different Zs), then our estimate of the 

average treatment effect of establishments that would be targeted in a particular policy 

(estimated on the randomized sample only) would be biased. Second, establishments in the 

randomized and nonrandomized sample could have different unobservable characteristics, in 

which case a causal forest model estimated on the randomized sample would poorly predict 

treatment effects for the nonrandomized sample (even if the two groups’ distributions of 

observables were indistinguishable). We address these concerns below. 

Do Establishments in the Two Samples Have Different Observable Characteristics? 

If establishments in the randomized and nonrandomized samples have different 

distributions of observable characteristics, then the two groups might well have different 

distributions of underlying treatment effects and expected injuries. However, this potential 

concern is alleviated in our context because we find that the distributions of our estimates of 

these two metrics in the randomized sample are very similar to their distributions in the 

nonrandomized sample, as is apparent in Panels (a) and (b) of Figure H.1. Panel (a) depicts the 

distribution of predicted injuries generated from applying a Super Learner that was trained on 

those establishments in the randomized sample that were not assigned to inspection, and then 

applied to the rest of the randomized sample and to the nonrandomized sample. Panel (b) depicts 

the distribution of estimates of treatment effects generated from applying a causal forest on all 

establishments in the randomized sample (including those assigned to inspection) and then 

applied to the nonrandomized sample. Because the distributions of both metrics are very similar 

across the two samples, it is unlikely that any differences in observable characteristics between 

the randomized and nonrandomized samples render our estimates of counterfactual policies 

inconsistent.  
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Figure H.1. Distribution of predicted injuries and estimated treatment effects for Establishments 

on the SST Historical Target List in the Randomized versus Nonrandomized Sample 

Panel A: Predicted injuries 

 

Panel B: Estimated treatment effects  

 
The sample for these kernel density plots is the establishments on the 2001–2010 historical SST target lists. 

Predicted injuries are estimated using a Super Learner to predict 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅ among all establishments not assigned to 

inspection in the randomized sample and extrapolating the estimates to the rest of the target list. Estimated treatment 

effects are estimated using a causal forest to predict treatment effects for all establishments in the randomized 

sample and extrapolating the estimates to the rest of the target list. 
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Do Establishments in the Two Samples Have Different Unobservable Characteristics? 

Our machine learning estimates of the models underlying an establishment’s treatment 

effect of assignment to inspection and its expected injuries if not assigned to inspection are 

estimated on the randomized sample. These models could have poor out-of-sample predictive 

power for the nonrandomized sample if establishments in the two samples had different 

unobservable characteristics.  

Unfortunately, we cannot test the out-of-sample predictive power of our model to 

estimate treatment effects because an establishment’s underlying treatment effect (𝑌(1) − 𝑌(0)) 

is unobservable. Fortunately, we can test whether the model that predicts expected injuries 

(𝑌(0)) generates predictions that are less accurate in the nonrandomized sample than in the 

randomized sample because uninspected establishments’ injuries are (eventually) observable. We 

can do the same for an estimate of the model determining the number of injuries an 

establishment would experience if assigned to inspection (𝑌(1)).  

Recall that in the Chernozhukov et al. (2020) algorithm, we estimate expected injuries 

(𝑌(0)) using a Super Learner to predict 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 (the number of serious injuries an establishment 

experiences averaged over the assignment year and four subsequent years) for the establishments 

assigned to control in the training sample. We then use the results to generate 𝑌(0)̂—our 

prediction of expected injuries—for those in the holdout sample and the nonrandomized sample. 

We repeat this process 250 times. 

To test whether the predictions of expected injuries are more accurate or less accurate for 

the holdout subset of the randomized sample compared to the nonrandomized sample, we 

conduct the following exercise. For each of our 250 iterations, among establishments not 

assigned to inspection, we regress realized 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 on 𝑌(0)̂ separately for those in the holdout 

sample and those in the nonrandomized sample. Among those establishments that OSHA did not 

assign to inspection, 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 equates to 𝑌(0). Thus, we are regressing establishments’ realized 

expected injuries (𝑌(0)) on its predicted value, 𝑌(0)̂. We save the median coefficient and 

standard error on 𝑌(0)̂, as well as the median R2, across the 250 iterations.  

We find that for these establishments not assigned to inspection, both in the holdout 

sample and in the nonrandomized sample, the median coefficients on 𝑌(0)̂ are close to 1 and the 

estimates are statistically indistinguishable from each other (Table H.1, Columns 1 and 2). The 
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R2s are high and nearly identical and the root mean squared error (MSE) are also nearly 

identical. In other words, our model to predict expected injuries, which was estimated on half of 

the randomized sample, has equal predictive power with respect to realized injuries for the other 

half of the randomized sample and for the nonrandomized sample. 

We go one step further to perform a similar exercise to assess predictions of the number 

of injuries an establishment would experience if assigned to inspection; that is, 𝐸[𝑌(1)|𝑍], or 

𝑌(1). In each of our 250 iterations, we estimate 𝑌(1) using a Super Learner to predict injuries 

among those in the training sample that were assigned to inspection. We then use this model to 

generate 𝑌(1)̂ for both the holdout and nonrandomized samples. Analogous to what we did 

before, in each iteration we regress realized 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 on its predicted value for establishments 

assigned to inspection, first in the holdout sample and then in the nonrandomized sample. 

As reported in Columns 3 and 4 of Table H.1, we find that 𝑌(1)̂ has essentially equal 

predictive power for the holdout sample and the nonrandomized sample.  

Overall, this exercise bolsters confidence that our estimates derived from applying the 

Chernozhukov et al. (2020) procedure to the randomized sample generate unbiased estimates of 

the number of injuries OSHA could avert by re-targeting the entire SST target list. 
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Table H.1. Comparing the Predictive Power of Establishments’ Estimated Injuries If Not 

Treated, 𝑩(𝒁), for the Randomized Controls and for the Nonrandomized Samples 

 

 Dep var = Average annual # of serious injuries during post-period 

  (1) (2)   (3) (4) 

Sample =  
Establishments not assigned to 

inspection in the… 
 Establishments assigned to 

inspection in the… 

  

Holdout sample 

(subset of the 

randomized 

sample) 

Nonrandomized 

sample 
  

Holdout sample 

(subset of the 

randomized 

sample) 

Nonrandomized 

sample 

Expected injuries if 

not assigned (𝑌(0)̂) 

1.028 1.063  
  

(0.033) (0.008)  
        

Expected injuries if 

assigned (𝑌(1)̂) 
  

 1.025 1.086 

  
 (0.036) (0.013) 

      
Root MSE 3.82 4.03  3.84 4.20 

R2 0.68 0.70   0.68 0.71 

 
The table assesses whether our machine-learning–based estimates of the annual number of serious injuries an 

establishment would experience if not assigned to inspection (Y(0)) and the number it would experience if it were 

assigned to inspection (Y(1)) have differential predictive power for establishments in the randomized sample vs. the 

nonrandomized sample. For each of 250 splits of the data, we train the Super Learner algorithm on establishments 

not assigned to inspection in the training sample (a random half of the randomized sample) to train the model to 

predict Y(0) and then apply the model to construct predicted injuries (𝑌(0)̂) in the holdout sample (the other half of 

the randomized sample) and the nonrandomized sample. In each split, focusing on establishments that were not 

historically assigned to inspection, we regress establishments’ realized mean annual serious injury count on their 

𝑌(0)̂, separately for establishments in the holdout sample (Column 1) and the nonrandomized sample (Column 2). 

We use an analogous procedure in Columns 3 and 4 to assess the predictive power of 𝑌(1)̂, restricting to 

establishments that were assigned to inspection in the historical policy. The table reports the median coefficient and 

SE on 𝑌(0)̂ and 𝑌(1)̂ and the median R2, across the 250 splits. 
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Appendix I  Robustness Checks on Estimate of Intention-to-treat Effect on 

Injuries 

We consider several other specifications as robustness checks for our ANCOVA model 

(Equation 1).  

In a pre-specified robustness check, we estimated the effect of assignment to inspection 

using a difference-in-differences specification.13  

We also sought to minimize the chances that our estimates were contaminated by 

inspections leading to more complete reporting of injuries. Therefore, we reestimated the 

intention-to-treat specification corresponding to Column 1 of Table 3 but excluded any 

establishment that OSHA had ever cited for recordkeeping violations during our sample period 

(7 percent and 4 percent of establishments assigned and not assigned to inspection, 

respectively).14  

We also averaged the outcomes during the directive year and four following years into 

one observation per establishment-directive to construct a new dependent variable, 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

. We 

reestimate the ANCOVA model (omitting the 𝜏-year fixed effects, 𝜃𝜏) on this outcome, using 

OLS rather than Poisson because the outcome includes non-integer values.  

As a final check, we report the average intention-to-treat estimate from the 

Chernozhukov et al. (2020) procedure. Chernozhukov et al. (2020) also lets us estimate the 

overall average effect of assignment to inspection, which is β1 from the following regression 

model estimated on the holdout sample: 

𝑌 = 𝛼1 + 𝛼2𝐵(𝑍) + 𝛽1(𝐷 − 𝑝(𝑍)) + 𝛽2(𝐷 − 𝑝(𝑍)) ∗ (𝑆 − 𝐸𝑆) + 𝜖 . (I. 1) 

See Chernozhukov et al. (2020) for details on notation. We estimate 𝛽1̂ from the holdout sample. 

As noted in Section 2.3.1, we conduct 250 iterations of this process on 250 sample splits, then 

reverse the roles of the training and holdout samples and repeat the same process, obtaining 

another set of coefficients for each iteration pertaining to the other half of the sample split. For 

                                                 

13 We estimate the following difference-in-differences regression model for this robustness check: 

𝑦𝑖𝑗𝑡𝜏 =  𝛼1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑖𝑡 ∗ 𝟙(𝜏 ≥ 0) + 𝜇𝑗𝑡 ∗ 𝟙(𝜏 ≥ 0) + 𝜆𝑖𝑡 + 𝜃𝜏 + 𝜖𝑗𝑖𝑡𝜏 .  
All variables here are defined as in Equations 1 and 2. We control for 𝑃𝜏 separately to account for changes in injuries 

(and other outcomes) following the directive year that would have occurred even without an SST inspection. 
14 As one other robustness check, we drop establishment-year observations for which the establishment, according to 

the NETS database, is no longer in operation. We lose only a few hundred observations and obtain essentially 

identical estimates (results not shown). 
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each iteration we take the average of these two coefficients. We use the median point estimate as 

our point estimate of the average treatment effect and use the 2.5th and 97.5th percentiles as the 

range of our 90-percent confidence interval. 

We report results from these specification checks in Table I.1. The difference-in-

differences estimate (Column 1:  = -0.033, SE = 0.017) is nearly identical to the estimate from 

the ANCOVA specification ( = -0.035, SE = 0.017). Excluding establishments with any 

recordkeeping violation during our sample period (Column 2) yields a coefficient ( = - 0.040, 

SE=0.018) slightly larger in magnitude than that from our baseline specification, which is 

consistent with the idea that establishments cited for recordkeeping violations are subsequently 

less likely to underreport injuries. Our OLS estimate on the collapsed outcome variable (Column 

3) yields a point estimate of  = - 0.178 (SE = 0.081), which, as a percent of the control mean (-

0.178/ 4.62 = 3.8 percent), is essentially identical to the estimate from the Poisson model. 

Finally, the point estimate using Chernozhukov et al. (2020) (-0.168, 90% CI = [-0.193, -

0.140] is quite similar to our OLS estimate in Column 3 but is actually more precise. In short, 

our results are robust to these several specification checks.  
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Table I.1: Intention-to-treat Effects of SST Inspection on Serious Injuries: Robustness and 

Alternative Specification 
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Appendix J Assessing the Lucas Critique: Can We Estimate Effects of 

New Targeting Rules Using Historical Data? 

Our approach to estimating the effects of alternative targeting strategies does not consider the 

potential behavioral effects on uninspected establishments. Because alternative targeting 

strategies change the threat of inspection, such behavioral changes could render our estimates 

misleading. In Section 3.4.1, we provided evidence that such effects are, in fact, unlikely to be 

important in our setting. This appendix provides more details and evidence to support that 

conclusion. In particular, we use a regression discontinuity (RD) design that yields no evidence 

that establishments experienced a change in injuries in response to discrete changes in the threat 

of inspection in the historical SST program. These non-results bolster confidence that our main 

analyses yield accurate estimates of the effects of alternative targeting regimes despite our not 

considering their potential effects on uninspected establishments.  

Quantifying the Change in the Threat of Inspection at the Primary and Secondary Cutoffs  

To determine establishments’ distance from the primary and secondary list cutoffs, we 

reviewed the annual SST directives over 2001–2010 to identify the relevant injury rate cutoffs 

for each year’s directive (which in all cases were based on injury rates two years prior). As 

described in Appendix A, in the early years of this range, these cutoffs were based exclusively on 

DART rates. For example, the 2002 primary list comprised establishments whose DART rates 

exceeded 14 in the year 2000. In the later years, the cutoffs were a function of DART and 

DAFW rates. For example, the 2006 primary list comprised establishments whose 2004 DART 

rates exceeded 12 and establishments whose 2004 DAFW rates exceeded 9. For each directive 

year t, we calculate the difference between establishment i’s relevant injury rate from t-2 and the 

relevant cutoff (which we designate c). For example, 𝐷𝐴𝑅𝑇𝑖,𝑡−2 − 𝑐𝑝𝑟𝑖,𝑑𝑎𝑟𝑡,𝑡 is this quantity for 

an establishment’s DART rate relative to the DART element of the primary list cutoff. The 

distance metric to determine an establishment’s eligibility for the primary list in year t is 

calculated as:  

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒊𝒕
𝒑𝒓𝒊

=  𝐦𝐚𝐱{(𝑫𝑨𝑹𝑻𝒊,𝒕−𝟐 − 𝒄𝒑𝒓𝒊,𝒅𝒂𝒓𝒕,𝒕), (𝑫𝑨𝑭𝑾𝒊,𝒕−𝟐 − 𝒄𝒑𝒓𝒊,𝒅𝒂𝒇𝒘,𝒕)}. (𝐉. 𝟏) 

An establishment is eligible for the primary list in year t if this distance metric is zero or positive; 

larger values denote establishments with injury rates further away (increasingly worse) than the 

cutoff. We analogously calculate this distance metric for the secondary list.  
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Our sample restrictions for this analysis are similar to those in our main analysis: we drop 

establishments (a) whose recent inspection histories make them ineligible for SST inspection, (b) 

whose ODI data quality were flagged as questionable, (c) that were not alive in year t-2 

according to NETS, or (d) that reported fewer than 40 employees to ODI in year t-2. See Table 

B.1 for details about these criteria.15 The regression discontinuity design does not require 

randomization, so we include all area offices, not just the subset of those that randomized their 

target lists. 

Figures 3a and 3b and the associated discussion in Section 3.4.1 provided graphical 

evidence that establishments just above the primary or secondary cutoffs faced a higher threat of 

inspection than those just below. To quantify the magnitude of this change in threat level, we 

estimate the following regression model on the sample described in the previous paragraph: 

𝒚𝒊𝒕𝝉 =  𝜶 + 𝜸 ∗ 𝟙(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝒊𝒕
𝒑𝒓𝒊

≥  𝟎) + 𝒇(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝒊𝒕
𝒑𝒓𝒊

) + 𝛃 𝑿𝒊𝒕 + 𝝐𝒊𝒕𝝉. (𝐉. 2) 

The outcome variable y is an indicator coded 1 if establishment i was SST-inspected in 

year t or t+1. 𝟙(⋅) is an indicator function that equals 1 for establishments eligible for the primary 

list—that is, when 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝒆𝒊𝒕
𝒑𝒓𝒊

≥ 0—and 0 for those ineligible. 𝑓(⋅) is a polynomial in 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝒊𝒕
𝒑𝒓𝒊

; we use the approach developed by Calonico et al. (2019) to select the degree of the 

polynomial. To improve precision on our estimate of 𝛾, we include the following controls in 𝑋𝑖𝑡: 

year fixed effects, OSHA-region fixed effects, manufacturing and nursing-home-industry 

dummies, and the log of the establishment’s total working hours in year t-2. We use an 

analogous specification—but with 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑠𝑒𝑐—for the secondary list cutoff. To establish the 

sample for these regressions, we use the approach developed by Calonico et al. (2019) to select 

the bandwidth around the cutoffs—that is, the range of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑝𝑟𝑖

 and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑠𝑒𝑐 above and 

below zero included in our regressions—that minimizes mean squared error (MSE) and which 

we refer to as the MSE-optimal bandwidth. 

Table J.1 reports the results. Corroborating the visual evidence in Figure 3b, Column 1 

reveals that just barely making it above the primary cutoff yields a 31-percentage-point increase 

                                                 

15 We also drop nursing homes for all years except 2009–2010 for this analysis. Nursing homes were excluded from 

the secondary list in all years prior to 2009. While they were included on the primary list in earlier years, their 

inclusion was not based on the same cutoff rule as other industries.  
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in the probability of receiving an SST inspection in that or the following year (p < 0.01). Column 

2 reveals an essentially identical increased threat of inspection at the secondary cutoff.  

Quantifying the Change in Injuries Associated with the Change in Threat of Inspection at 

the Primary and Secondary Cutoffs  

Having established that the threat of inspection changes substantially at the primary and 

secondary list thresholds, we use a regression discontinuity design to examine whether 

establishments above these thresholds, which faced a greater threat of inspection, had better 

safety outcomes, which would suggest that establishments facing a higher inspection threat 

improved their safety management effort. Because a regression discontinuity design is valid only 

if being just above or just below the cutoff is random, we first conduct a test of whether 

establishments manipulated their injury rates around the cutoffs, in which case the randomization 

would be violated. 

Do Establishments Manipulate Reported Injuries to Reduce Threat of Inspection?  

As shown above, among establishments with injury rates near the cutoff for primary or 

secondary list, those whose injury rates two years prior were just above a cutoff face 

discontinuously higher threat (risk) of inspection than those whose historical injury rates were 

just below a cutoff. If the threat effect were important and managers knew OSHA’s targeting 

rule, establishments would have an incentive to underreport their injuries to keep below the 

cutoffs. We look for evidence of this by assessing whether there is bunching of reported injury 

rates just below the cutoff levels for the primary and secondary lists.  

Conceptually, such bunching is unlikely for two reasons. First, it is difficult for 

establishments to misreport their injuries to ODI, as explained in Appendix D. Second, the 

cutoffs for the SST directive in a given year were based on injury rates from two years prior and 

the SST cutoffs usually changed from year to year, making them difficult to predict.  

To test for the presence of bunching, Figure J.1 reports the density of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑝𝑟𝑖

 and 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑠𝑒𝑐. If establishments are strategic and able to misreport their injuries, then we should 

see bunching of reported injuries just below the cutoffs for the primary and secondary lists. 

However, the density appears smooth in both cases and a formal manipulation test based on 
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Cattaneo, Jansson, and Ma (2018) fails to reject that the density is not continuous.16 Thus, we 

find no evidence that establishments strategically misreport injuries to reduce their threat of 

inspection. 

Do Establishments Facing a Higher Risk of Inspection Subsequently Experience Fewer Injuries? 

Comparing injury rates of establishments just above these cutoffs to those of 

establishments just below them risks confounding two factors that might improve safety: the 

threat of being inspected and the experience of being inspected. The latter contaminates our 

desired estimate of the threat factor because establishments above these thresholds are actually 

inspected at higher rates than those below these thresholds. 

To isolate the threat effect on subsequent injury rates, we leverage the fact that in each 

year, some area offices inspected only a subset of establishments on their primary list and that 

other area offices completed their primary list and inspected only a subset of establishments on 

their secondary list. Thus, many establishments on primary and secondary lists were not 

inspected; we focus on a subset of these. 

Specifically, we use a regression discontinuity approach to estimate Equation J.1 for the 

following subsamples for which 𝛾 should reflect purely an estimate of increased threat of 

inspection. We first focus on establishments eligible for SST inspection that met the following 

three criteria: they (a) were in the jurisdiction of an area office that began its primary list, (b) had 

injury rates just above or just below the primary list cutoff (defining “just above” and “just 

below” using the MSE-optimal bandwidth approach described above), and (c) were not selected 

for SST inspection. We then focus on a second set of establishments eligible for inspection that 

met the following three analogous criteria pertaining to the secondary list: they (a) were in the 

jurisdiction of an area office that completed its primary list and began its secondary list, (b) had 

injury rates just above or just below the secondary list cutoff, and (c) were not selected for SST 

inspection. Establishments in these two subsamples faced a discontinuous threat of inspection at 

the cutoff but, due to OSHA’s resource constraints, were not actually inspected.  

Table J.2 reports our results. In Column 1, the dependent variable is an indicator coded 1 

when an establishment was subjected to an SST inspection in year t or t+1. Even though the 

                                                 

16 This evidence corroborates Li and Singleton (2019), who also find no evidence of bunching around the SST 

cutoffs. 
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estimate in Column 1 of Table J.1 indicated that the overall threat of inspection changed 

substantially at the primary cutoff, the actual inspection rates for this subsample barely changed 

across the cutoff. In Column 2, the dependent variable is log(serious injuries) in year t+1. 

Corroborating the visual evidence in Figure 3d, the estimate indicates no difference in 

subsequent injuries between those just above and just below the primary cutoff (= 0.00, SE = 

0.06). Columns 3 and 4 indicate a similar null threat effect for establishments just above the 

secondary cutoff.  

We conduct another test to assess the effect of heightened threat on injury rates. Columns 

5 and 6 focus on all establishments that (a) were in the jurisdiction of an area office that did not 

begin its secondary list and (b) had injury rates just above or below the secondary cutoff (again 

using the MSE-optimal bandwidth). While those just above the cutoff were at greater threat of 

inspection, none of the establishments in this sample were actually subjected to an SST 

inspection. As expected, Column 5 of Table J.2 shows that the change in the realized probability 

of inspection among these establishments near the cutoff is essentially zero. Corroborating the 

estimates in Columns 2 and 4, Column 6 shows no difference in subsequent injuries at the 

secondary cutoff for this subsample (=0.01; SE=0.03). 

To summarize, the estimates in this section provide no evidence that establishments’ 

safety changed in response to a change in their threat of inspection. First, we showed that 

reported injuries were not strategically bunched just below the primary or secondary list cutoffs, 

which would have suggested strategic misreporting to reduce the threat of inspection. Second, 

our regression results indicate that uninspected establishments’ injuries were unaffected by a 

change in their threat of inspection. 

This unresponsiveness to changes in the threat of inspection implies that such potential 

behavioral changes by establishments in response to a change in targeting strategy would be 

second-order relative to the specific deterrence effects of realized inspections. Thus, these results 

give us confidence that our main analysis estimates the overall effects of alternative targeting 

strategies on injuries, and that effects on uninspected establishments are minimal and thus not a 

serious confounding factor in our context. 
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Table J1: An Injury Rate Just Above the Primary or Secondary
List Cutoff Raised Establishments’ Risk of Inspection

(1) (2)
Dep var = SST-inspected in t or t+ 1

Sample= Establishments in boundary of area office that...
began primary list began secondary list

(c = primary (c = secondary
cutoff) cutoff)

Injury rate ≥ cutoff 0.31 0.30
(0.01)** (0.02)**

Robust p-value 0.000 0.000
# observations 22,054 8,170
Left bandwidth 2.30 1.15
Right bandwidth 1.53 1.70

The running variable in Column 1, defined in Equation H.1, determines
whether an establishment’s injury rates from two years prior render
it eligible for the SST primary list. The running variable in Column
2 is defined analogously for eligibility for the secondary list. In each
column, # observations refers to the number of establishments with
injury rates in year t − 2 within the left and right bandwidths around
the cutoff (also reported in each panel). The MSE-optimal bandwidths
are selected, based on the method in Cattaneo, Jansson, and Ma (2018),
separately for each regression. All regressions include controls for region
fixed effects and year fixed effects, a manufacturing dummy, and the log
of the establishment’s working hours from t− 2.
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Figure J1: Density of Establishments’ Injury Rates Relative to the Primary and Secondary List Cutoffs
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Note: These figures display the density of Distancepriit and Distancesecit —defined in Equation H.1—in the top

and bottom panels, respectively. Distancepriit and Distancesecit are the “running variables” that determine
whether an establishment’s injury rate from year t− 2 is high enough to make it eligible for the SST primary or
secondary list, respectively, in year t. The sample includes those establishments that a) were considered for the
2001–2010 SST Target Lists (except nursing homes for all years prior to 2009), b) had not received an inspection
in the prior two years, and c) reported injury rates that resulted in the absolute value of their Distancepriit or
Distancesecit being less than 2.0.
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Table J2: Establishments Facing a Higher Threat of Inspection Did Not Experience a Change in Injuries

(1) (2) (3) (4) (5) (6)
Sample= Establishments not assigned to inspection and in boundary of area office that...

began primary began secondary did not begin secondary

Dep var = SST-inspected in log injuries, SST-inspected in log injuries, SST-inspected in log injuries,
t or t+ 1 t+ 1 t or t+ 1 t+ 1 t or t+ 1 t+ 1

Injury rate ≥ cutoff 0.02 0.00 0.02 -0.03 -0.00 0.02
(0.01) (0.06) (0.01)* (0.05) (0.00) (0.03)

Robust p-value 0.143 0.985 0.029 0.565 0.801 0.546
# observations 14,263 4,776 8,166 4,072 23,345 12,187
Left bandwidth 1.86 1.20 1.28 1.34 1.73 1.52
Right bandwidth 1.75 1.01 1.23 1.23 0.92 1.77

The running variable in Columns 1–2, defined in Equation H.1, determines whether an establishment’s injury rates from
two years prior render it eligible for the SST primary list. The running variable in Columns 3–6 is defined analogously for
eligibility for the secondary list. In each column, # observations refers to the number of establishments with injury rates in
year t−2 within the left and right bandwidths around the cutoff (also reported in each panel). The MSE-optimal bandwidths
are selected, based on the method in Cattaneo, Jansson, and Ma (2018), separately for each regression. All regressions include
controls for region fixed effects and year fixed effects, a manufacturing dummy, and the log of the establishment’s working
hours from t− 2.
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Appendix K Did Inspections of Establishments near the SST Cutoffs 

Reduce Injuries?  

The analysis in Section 3.4.1 and Appendix J showed that the increased threat of 

inspection near the SST cutoff did not affect establishments’ subsequent injury rates. Using a 

slightly different sample, we can also use this regression discontinuity approach to estimate the 

local average treatment effect of (realized) SST inspections on establishments’ subsequent 

injuries. This approach complements our main approach outlined in Section 2.3.1, which 

leverages the subset of randomized inspections to estimate the average effects of SST 

inspections.  

In Panel A of Figure K.1, we replicate Figure 3c, but use a broader sample of 

establishments eligible for an SST inspection whose lagged DART rates were just above or 

below the primary list cutoff that year, including not only establishments meeting these criteria 

that were not inspected (as in Figure 3c) but also those that were inspected. With this broader 

sample, Panel A of Figure K.1 depicts the sum of the direct and threat effects of inspections. 

Because Figure 3c already showed no threat effect at the cutoff, any change in injuries at the 

cutoff in Figure K.1 represents the direct effect of being inspected. Panel A of this figure reveals 

that establishments just barely above the primary list cutoff and thus placed on the primary list 

subsequently exhibited a discontinuous downward shift in serious injuries the following year. 

Panel B illustrates a similar discontinuity at the secondary cutoff. 

We quantify this graphical effect by applying the same regression discontinuity design 

discussed in Appendix J to samples akin to those used in Appendix J, except here we also 

include establishments that were actually assigned to inspection. We report results in Table K.1. 

Given this sample, 𝛾 represents the combined effects on injuries of a heightened threat of 

inspection and of an actual inspection, but because the results in Appendix J reveal essentially no 

threat effect, 𝛾 effectively represents an intention-to-treat estimate of the effect of being 

inspected. Corroborating the visual evidence in Figure K.1, the point estimate in Column 1 

indicates that establishments just above the primary cutoff subsequently experience 7 percent 

(p=0.08) fewer serious injuries than those just below.17 Column 2 indicates a similar reduction in 

                                                 

17 This evidence corroborates Li and Singleton (2019), who estimate the effects of SST inspections using a similar 

research design (using the primary list cutoff only) and find similar magnitudes.  
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injuries for establishments just above the secondary cutoff (𝛽̂ = −0.08, 𝑝 = 0.09). In Column 3, 

we combine the two samples from Columns 1–2 to generate a single intention-to-treat estimate 

of the effect of receiving an SST inspection, based on crossing either the primary or secondary 

cutoff. The point estimate is quite similar to that from both Columns 1 and 2 and, consistent with 

the larger sample size, more precise (𝛽̂ = −0.07, 𝑝 = 0.02). 

These results bolster the evidence in the main text that realized inspections improve 

safety.18 
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18 It is instructive to compare the magnitude of the average treatment effect of SST inspections implied by our main 

estimates in Section 3.1 to the effect size implied in Table J.1. Specifically, the estimate reported in Column 1 in 

Table J.1 implies an “intent to treat” effect of SST inspection on serious injuries of 6.7 percent (𝛽̂ =
−0.07, exp(−0.07) = −0.067). Scaled by the “first-stage” coefficient in Column 1 (the extent to which being just 

above the primary cutoff raised the risk of inspection) implies a local average treatment effect of SST inspections of 

-0.067/0.31 = 21.7 percent. This estimate is twice as large as our main estimate of the average treatment effect of 

SST inspections in Section 3.1, which is 9 percent. The implied magnitude is similar for the secondary cutoff. There 

are two reasons that these estimates might differ. First, our main approach estimates an average treatment effect, 

whereas the result in Table K.1 is a local average treatment effect pertaining only to the establishments with injury 

rates near the cutoff; if treatment effects are heterogeneous, these two effects could differ. Second, the results in 

Table K.1 only consider injuries one year after the directive year, whereas our main estimates consider the effects on 

injuries up to four years after the directive year. 



Figure K1: Further Evidence That SST Inspections Led to Fewer Injuries: Intention-to-treat Estimates from a
Fuzzy Regression Discontinuity Design
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(b)

Each figure displays a binned scatterplot, in which the x-variable is the “running variable” that determines
whether an establishment’s injury rate from year t− 2 is high enough to make it eligible for the SST primary list
(top panel) or secondary list (bottom panel) in year t. For each figure, the y-variable is provided in the title.
The sample includes those establishments that were considered for the 2001–2010 SST target lists (except
nursing homes for all years prior to 2009) and were eligible for an SST inspection.
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Table K1: Further Evidence that SST Inspections Led to Fewer In-
juries: Intention-to-treat Estimates from a Fuzzy Regression Discon-
tinuity Design

(1) (2) (3)
Sample= Establishments in boundary of area office that began...

primary list secondary list either primary
or secondary

Dep var = log injuries, t+ 1

Injury rate ≥ cutoff -0.07 -0.08 -0.07
(0.04)+ (0.04)+ (0.03)*

Robust p-value 0.083 0.091 0.021
# observations 7,447 4,664
Left bandwidth 1.02 1.57 1.17
Right bandwidth 1.74 1.48 1.56

The running variable in Column 1, defined in Equation J.1, determines whether
an establishment’s injury rates from two years prior render it eligible for the
SST primary list. The running variable in Column 2 is defined analogously for
eligibility for the secondary list. In each column, # observations refers to the
number of establishments with injury rates in year t − 2 within the left and
right bandwidths around the cutoff (also reported in each panel). The MSE-
optimal bandwidths are selected, based on the method in Cattaneo, Jansson,
and Ma (2018), separately for each regression. All regressions include controls
for region fixed effects and year fixed effects, a manufacturing dummy, and the
log of the establishment’s working hours from t− 2.
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