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Abstract

We calculate the socially optimal level of illiquidity in an economy

populated by households with taste shocks and naive present bias. The

government chooses mandatory contributions to accounts, each with

a different pre-retirement withdrawal penalty. Collected penalties are

redistributed through the tax system. When households have homo-

geneous present bias (β), the social optimum is well approximated by

a single account with an early-withdrawal penalty of 1 − β. When

households have heterogeneous present bias, the social optimum is well

approximated by a two-account system: (i) an account that is always

completely liquid and (ii) an account that is completely illiquid until

retirement.

∗The authors gratefully acknowledge financial support from from the TIAA Institute,
the Pension Research Council, the Eric M. Mindich Fund for Research on the Foundations
of Human Behavior, and the Social Security Administration. The views expressed in this
paper are not endorsed by the Social Security Administration or other funders. The au-
thors received insightful comments from Marios Angeletos, Emmanuel Farhi, Mike Golosov,
Francesco Lippi, Ben Lockwood, Greg Mankiw, Christian Moser, Matthew Rabin, David
Richardson, John Sabelhaus, Dmitry Taubinsky, Iván Werning, and seminar participants
at the ASSA, Einaudi Institute for Economics and Finance, Harvard University, MIT, the
SSA RRC, and the NBER. We are very grateful to Kartik Vira for outstanding research
assistance.
†Corresponding Author. dlaibson@harvard.edu

1



1 Introduction

How liquid is a socially optimal savings system? Flexibility allows households

to consume in ways that reflect their idiosyncratic preferences. However, liq-

uidity allows households with self-control problems to overconsume. What

combination of accounts approximates the (feasible) social optimum? Possible

forms of illiquidity include a perfectly illiquid retirement account (like some

defined-benefit pensions or the U.S. Social Security system) or a partially liq-

uid account (like defined contribution plans that allow penalty-based early

withdrawals).

Almost all developed countries have some form of compulsory savings that

is completely illiquid (e.g., U.S. Social Security). Nevertheless, there are sub-

stantial differences among retirement savings systems. For example, in many

countries, defined-contribution (DC) savings accounts have mandatory con-

tributions and balances that are completely illiquid before age 55 (Beshears,

et al., 2015). In the United States, by contrast, DC contributions are volun-

tary, certain types of withdrawals are allowed without penalty, and, for IRAs,

withdrawals may be made for any reason if a 10% penalty is paid. Liquidity

engenders significant pre-retirement “leakage”: for every $1 contributed to the

DC retirement accounts of U.S. households under age 55, $0.40 simultaneously

flows out of the 401(k)/IRA system, not counting rollovers or loans (Argento,

Bryant, and Sabelhaus, 2014).1 It is not clear whether allowing such leakage is

consistent with overall social welfare maximization. Nevertheless, most media

1About half of these withdrawals (dollar-weighted) are made in a category that avoids
the 10% penalty.
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coverage bemoans leakage.2

Our paper evaluates the optimality of an N -account system comprised

of liquid, partially illiquid, and completely illiquid accounts. The illiquidity

is obtained with compulsory deposits and linear penalties for pre-retirement

withdrawals. We focus on systems with two accounts and systems with three

accounts. We show that such simple systems come extremely close to delivering

the welfare obtainable from a fully general (non-linear) mechanism; we find an

upper bound for social welfare and show that two- and three-account systems

nearly obtain this bound.

We study preferences that include both normative taste shocks and non-

normative self-control problems due to present bias: i.e., the discount function

{1, β δ, β δ2, . . . , β δt}, where the degree of present bias is 1 − β (Phelps and

Pollak, 1968; Laibson, 1997). Our model adds government redistribution and

present-bias heterogeneity to the commitment vs. flexibility framework of

Amador, Werning, and Angeletos (2006; hereafter AWA).3

There is a growing literature that studies how present bias effects retire-

ment savings and how goverments should optimally respond.4 Our model is

2See Anne Tergesen, “The Rising Retirement Perils of 401(k) ‘Leakage’”, The Wall Street
Journal, April 2, 2017. For a similar industry perspective, see Hewitt Associates (2009).

3Halac and Yared (2014) study the commitment vs. flexibility tradeoff with persistent
shocks and show that the second-best optimal mechanism features history dependence. Bond
and Sigurdsson (2018) study the commitment vs. flexibility trade-off in three periods,
identifying conditions that produce a first-best allocation.

4For example Laibson, Repetto, and Tobacman (1997, 2003) study the design of U.S.
401(k)’s, Galperti (2015) studies optimal screening among agents with different levels of
present bias, Pauluszynski and Yu (2019) study the effects of preference heterogeneity across
educational groups, Yu (2021) studies screening between sophisticates and naives, Pavoni
and Hakki (2017) study optimal lifecycle taxation, Maxted (2021) identifies isomorphisms
between optimal policies with time consistent and present-biased agents (in economies in
which agents are always in the interior of their action space).
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related to the model of Moser and Olea de Souza e Silva (2019), who also gen-

eralize AWA by allowing for mechanisms with inter-household transfers. In

their model, households have unobservable earnings ability and unobservable

β, whereas we study the case of unobservable taste shocks and unobservable β.

Moser and Olea de Souza e Silva find that optimal savings institutions include

some forced savings, a result that also emerges in AWA and in our own paper.

Like Moser and Olea de Souza e Silva, we find that optimal savings mecha-

nisms are characterized by more mandatory savings than currently exists in

the U.S. system. Most importantly, our paper is the first to show how highly

simplified retirement savings systems (e.g., two- and three-account systems

with linear early-withdrawal penalties) come very close to generating welfare

levels that arise under the fully general optimized non-linear mechanism with

transfers.5 We contribute to the literature that identifies settings in which

very simple mechanisms provide good welfare approximations to arbitrarily

complex, optimal mechanisms.6

Finally, a large literature studies how firms attempt to exploit agents with

present bias.7 By contrast, our paper studies how a benign planner would set

up a simple socially optimal pension scheme.

We divide our analysis into the cases of homogeneous and heterogeneous

5There is a literature on optimal taxation when consumers have present bias, including
Laibson, Repetto and Tobacman (1998), Gruber and Köszegi (2001, 2004), O’Donoghue
and Rabin (2006), Lockwood (2016), Farhi and Gabaix (2018), Allcott, Lockwood and
Taubinsky (forthcoming). See Bernheim and Taubinsky (2018) for a review of behavioral
public economics.

6For example, see Reichelstein (1992), Bower (1993), Sappington and Weisman (1996),
Gasmi et al. (1999), McAfee (2002), Rogerson (2003), and Chu and Sappington (2007).

7For example, see Dellavigna and Malmendier (2004, 2006), Heidhues and Koszegi (2010),
Sulka (2020), and several literature reviews: Heidhues and Koszegi (2018), Ericson et al
(2019), and Cohen et al (2020).
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present bias. In the homogeneous case, all agents have the same value of β.

In this case, our model implies that a single partially illiquid account with

(Pigouvian) early-withdrawal penalty π ' 1 − β closely approximates the

welfare obtained by the optimal general mechanism.

We then relax homogeneity, and consider an economy in which agents have

heterogeneous present bias. In this heterogeneous case, we find that completely

illiquid savings accounts play an important role in improving welfare. Specifi-

cally, the social optimum is well-approximated by a three-account system with

a perfectly liquid savings account, a partially illiquid savings account (with an

early-withdrawal penalty of approximately 13%), and a completely illiquid sav-

ings account. More strikingly, the social optimum is also well-approximated by

an even simpler two-account system with a completely liquid savings account

and a completely illiquid savings account. In both the two- and three-account

systems the completely illiquid savings account receives a substantial manda-

tory contribution from the household–enough to almost smooth consumption

between working life and retirement even if all other wealth is consumed during

working life. The completely illiquid savings account caters to the households

with relatively low β values. Fully illiquid savings generates large welfare gains

for these low-β agents, and these welfare gains swamp the welfare losses of the

high-β agents (who are made only slightly worse off by being forced to shift

some of their wealth from completely liquid accounts to completely illiquid

accounts).

To the extent that there is a role for low-balance partially illiquid accounts

in the heterogeneous-β economy, we find that such accounts should have low
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early-withdrawal penalties–in most calibrations, the penalty is slightly above

10%. This implies that the partially illiquid accounts look much like a typical

401(k) account in the U.S. Moreover, these partially illiquid accounts display

a high level of leakage in equilibrium. In other words, early withdrawals (i.e.,

pre-retirement withdrawals) are commonplace. This leakage results in part

from normative taste shocks and in part from self-control problems (i.e., low

β). The costs of the partially illiquid account to low-β types (who end up

paying most of the early-withdrawal penalties) and benefits to high-β types

(who benefit from a fiscal externality) are nearly offsetting.

Section 2 describes the planner’s problem–i.e., account allocations and

early-withdrawal penalties that maximize social welfare subject to informa-

tion asymmetries between the planner and the households. Section 2 presents

the benchmark case against which we will compare all other cases: the laissez

faire policy of completely liquid accounts. Section 2 also analyzes the case

of homogeneous present bias without inter-household transfers (AWA): i.e.,

resources collected by the government must be destroyed rather than redis-

tributed (i.e., ‘money burning’).

Section 3 analyzes the solution to the planner’s problem with homogeneous

present bias with inter-household transfers. Section 4 analyzes the solution to

the planner’s problem in the case of inter-household transfers and heteroge-

neous present-bias. We show that the fully optimal retirement savings system

is well-approximated by two- and three-account systems, which have a com-

pletely liquid account and a (well-funded) completely illiquid account. In the

three-account system, welfare is nearly identical to welfare in the two-account
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system and welfare in the fully general, non-linear system. Accordingly, little

can be gained by advancing from two accounts to an arbitrary number of ac-

counts. In addition, we find that the optimal partially illiquid account in the

three-account system is characterized by a high rate of leakage.

Section 5 presents robustness analysis. In Section 6, we conclude and

discuss the many strong assumptions that we make in our model and resulting

questions of generalizability. Five online appendices contain proofs, including a

method for calculating welfare for the optimal general (non-linear) mechanism

(Appendix D).

2 Model

We study a two-period model of consumption for a continuum of households,

with idiosyncratic taste shock θ and idiosyncratic present bias β. In period

1, a household consumes c1(θ, β). In period 2, a household consumes c2(θ, β).

One can think of period 1 as working life and period 2 as retirement. We will

sometimes refer only to c1 and c2 for notational simplicity; dependence on θ

and β is implied.

In this model, we give households access to N savings accounts with ini-

tial mandatory balances (xn)Nn=1 and linear early-withdrawal penalties (πn)Nn=1

(which will usually turn out to be positive). In equilibrium, households choose

to withdraw from the low-penalty accounts first. The N -account system is

equivalent to a budget set that is piecewise linear and convex, whereas the

general mechanism imposes neither of these restrictions. We show that the
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welfare that arises from the N -account framework with N ≤ 2 is very close to

the welfare for the optimal general mechanism. In Appendix D, we present a

method for characterizing the optimal general mechanism. We focus most of

our paper on the N -account framework because of its similarity to the actual

retirement savings systems that are currently in use around the world.

2.1 Preferences of households

Preferences in period 1 are given by

θ u1(c1) + β δ u2(c2),

where θ is a stochastic taste shifter,8 ut : (0,∞) → R is the period-t utility

function, ct is period-t consumption, β is the present-bias discount factor, and

δ is the standard discount factor.9 Preferences in period 2 are given by u2(c2).

2.2 Information structure

We assume households are naive: they don’t anticipate present bias (see Strotz,

1956; O’Donoghue and Rabin, 1999a). The assumption of naivite is broadly

supported by the empirical literature (see reviews in Ericson and Laibson 2020;

Cohen et al 2021), although there are a range of results (e.g., see Alcott et al

8See Atkeson and Lucas (1992) for use of such taste shifters. There are also other ways
of modeling taste shifters. For example, consider u(c− θ), where θ is a taste shifter. This
case is beyond the scope of the current paper, but is part of ongoing work.

9This framework can be generalized WLOG by including a second independent stochastic
taste shifter (with mean 1, which is realized in period 2) that multiplies period 2’s utility
function.
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2021). The assumption of naivite eliminates the opportunity for screening in

a hypothetical ‘pre-period’.10

We assume that taste shifters, θ, and present bias, β, are private informa-

tion of each household in the economy. The social planner knows the aggregate

distributions of these (independent) parameters. We denote the distribution

function of θ by F (·) and of β by G(·).

2.3 Preferences of the social planner

The social planner and the household (with taste shifter θ) have nearly iden-

tical preferences over consumption in periods 1 and 2. The only difference is

that the social planner does not normatively endorse present bias, implying

that the planner’s objective for a household is

θ u1(c1) + δ u2(c2).

The social planner chooses policies that maximize the social objective:

∫ ∫ (
θ u1(c1(θ, β)) + δ u2(c2(θ, β))

)
dF (θ) dG(β). (1)

The social planner takes account of the (endogenous) equilibrium policy func-

tions of the households, c1 and c2. The social planner creates incentives that

influence these policy functions, but can’t control them directly because the

planner doesn’t directly observe θ and β for each household. The social plan-

10Galperti (2015) studies screening in a contracting setting where agents are sophisticated,
have private information about their degree of present bias, and contract with a firm. See
also Moser and de Souza e Silva (2019) and Yu (2019).
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ner’s mechanism uses total resources bounded by the aggregate endowment

Y .

Equation (1) implies that the planner has two motives in changing the

allocations that emerge in a laissez faire system. First, the planner would

like to generate more savings, because only households, and not the planner,

have present bias. Second, the planner would like to generate inter-personal

reallocations from agents with low θ values to agents with high θ values. The

first motive is an inter-temporal reallocation (within a household) and the

second motive is an inter-personal redistribution.

2.4 Timing

Time 0: The planner sets up N accounts, each with gross rate of return

R, where N is a constraint discussed in the next section. Each of the N ac-

counts is characterized by two variables: an initial allocation xn and a linear

withdrawal penalty πn, which applies only to withdrawals in period 1 (i.e., an

early-withdrawal penalty).11 If a consumer withdraws ω dollars from account

n in period 1, the consumer actually receives (1− πn)ω dollars.12 A com-

pletely liquid account has πn = 0, a partially liquid account has 0 < πn < 1,

and a completely illiquid account has πn = 1. For the planner, the choice vari-

ables are the allocations to the N accounts, (xn)Nn=1, and the respective early

withdrawal penalties, (πn)Nn=1. The planner chooses the account allocations

in a way that respects the economy’s overall budget balance:
∑N

n=1 xn will

equal Y plus the aggregate value of the early withdrawal penalties collected

11WLOG, there are no withdrawal penalties in period 2.
12The framework admits negative penalties for period 1 consumption (i.e., subsidies).
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in equilibrium.

Time 1: Self 1 maximizes welfare from the perspective of time 1 (including

present bias). This generates withdrawals from the accounts established at

time 0. Consumption is c1(θ, β).

Time 2: Self 2 spends any remaining funds in their accounts. Consumption

is c2(θ, β).

2.5 Summary of the N-account mechanism-design prob-

lem

We begin with the consumer’s problem, since consumer behavior is an input

to the planner’s problem. In period 1, the consumer with parameters θ and β

maximizes

max
(ωn)Nn=1

θ u1(c1) + β δ u2(c2), (2)

where consumption is given by

c1 =
N∑
n=1

(1− πn)ωn, (3)

c2 = R

N∑
n=1

(xn − ωn) . (4)

Conditional on the policy vectors (xn)Nn=1 and (πn)Nn=1, this generates consump-

tion levels c1(θ, β) and c2(θ, β), where we have suppressed the dependency on

(xn)Nn=1 and (πn)Nn=1.

We assume a continuum of consumers (with measure one), so integrating
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over taste-parameters, θ and β, is the same as integrating over consumers. In

period 0, the planner faces the problem

max
(xn)Nn=1, (πn)Nn=1

∫ ∫ (
θ u1(c1(θ, β)) + δ u2(c2(θ, β))

)
dF (θ) dG(β) (5)

subject to the constraints that (i) c1(θ, β) and c2(θ, β) are given by the con-

sumer’s problem (equations 2-4) and (ii) economy-wide budget balance is sat-

isfied: ∫ ∫ (
c1(θ, β) +

c2(θ, β)

R

)
dF (θ) dG(β) ≤ Y. (6)

In other words, the planner chooses the account allocation vector, (xn)Nn=1,

and the penalty vector, (πn)Nn=1, to maximize social surplus (equation 5) sub-

ject to the constraints that agents will exhibit present bias in their choices

(equations 2-4) and that total consumption does not exceed social resources

(equation 6). Although we assume the planner implements the N -account

allocation through involuntary contributions, the planner could implement

the same allocation under voluntary contributions through appropriate use of

contribution subsidies (e.g., matching contributions).13 We choose to use an

involuntary framing in our model presentation because it is without loss of

generality and notationally simpler (avoiding matching notation) and almost

all developed countries have some involuntary retirement savings (e.g., Social

Security in the United States, superannuation in Australia, the Central Prov-

13For example, if the planner sets an account-specific match threshold of z (i.e., the
maximum voluntary contribution that can be matched) and an account-specific match rate
of m (i.e., the match per dollar of voluntary contributions), then for all m greater than some
match rate m∗, the equilibrium account contribution will produce a total account balance
of x = (1 +m) z.
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ident Fund in Singapore, and the public pension system in Sweden, to pick a

few examples).14

The N -account problem summarized here is a restricted version of a com-

pletely general (non-linear) mechanism-design problem (our solution method

is explained in Appendix D). We compare our results to the solution of the

general mechanism-design problem below.

2.6 Laissez faire reference case: π = 0

In the analysis that follows, we always compare social welfare to a reference

case in which there are no early-withdrawal penalties–in other words, the agent

has access to only one account (x1 = Y ), and this account has no penalty for

early withdrawal (π1 = 0). This is a pure laissez-faire system, in which the

government does nothing to distort the decisions of each household (implicitly

ruling out redistribution).

2.7 Special case of no transfers: AWA (2006)

We consider a first deviation from the (laissez faire) reference case. We allow

the government to intervene by offering households a nonlinear budget set. As

in laissez faire, we continue to assume that each budget constraint holds at the

household level (instead of economy-wide), so that c1(θ) + c2(θ) ≤ Y , again

ruling out redistribution.

In Appendix A, we prove a generalization of a theorem by AWA (2006). In

14Some of these systems are funded, some of are unfunded, and some are hybrid. The key
unifying feature (for the purposes of our model) is that they are involuntary.
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particular, we show that under a set of assumptions about u1, u2, and F , an

optimal mechanism is a two-account system consisting of a completely liquid

account (that can be used in both period 1 and period 2) and a completely

illiquid account (that can be used only in period 2). This system does not

feature money burning, so, in equilibrium we have c1(θ) + c2(θ) = Y for all

households.15

3 Optimal Liquidity with Homogeneous Present

Bias and Inter-Household Transfers

In the previous section, we analyzed the case in which the government could

not make inter-household transfers. We now study the case in which the

government can make inter-household transfers. Specifically, we now replace

household-by-household budget balance (Equation 7) with overall budget bal-

ance (Equation 6). With overall budget balance, we show in Appendix C

that a combination of a perfectly liquid and a perfectly illiquid account is

not sufficient to maximize social surplus. Intuitively, when inter-household

transfers are possible (in the interior case, with partial separation), we can use

an incentive compatible mechanism to redistribute c1 away from low-θ types

(i.e., households with low marginal utility, ceteris paribus). We now turn to

studying socially optimal mechanisms in this environment.

15See Ambrus and Egorov (2013) for cases (that do not satisfy our assumptions) in which
money burning arises.
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3.1 Optimal policy with quasi-linear utility

To gain intuition about socially optimal mechanisms, it is helpful to begin by

studying the quasi-linear limit case of our model. Specifically, we consider the

case in which utility is linear in period 2, i.e. u2(c2) = c2. We obtain a useful

exact result that captures the intuition behind the general case in which utility

is concave in both periods.16

Theorem 1 Suppose that all households have the same value of β. Suppose

that inter-household transfers are possible. Assume that utility is strictly con-

cave in the first period, linear in the second period, and the solution is interior.

Then the socially optimal retirement system is a one-account system with a

Pigouvian tax on consumption in period 1:

π = 1− β.

This one-account system is also first-best efficient.

Proof. The wedge between the welfare criterion of the planner and the choice-

function of the agent, which is generated by present bias β < 1, can be exactly

offset by the early-withdrawal penalty π = 1− β. This Pigouvian tax corrects

the negative internality generated by overconsumption. With this penalty, the

16Our results with quasi-linear preferences are related to Pigouvian taxation results in
Diamond (1973), DellaVigna and Malmendier (2004) and Galperti (2015). DellaVigna and
Malmendier (2004) and Galperti (2015) study a setting in which a single household contracts
with a firm, subject to a participation constraint. By contrast, Diamond (1973) studies a
population of households with consumption externalities, subject to an aggregate resource
constraint.
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household’s (present-biased) Euler Equation reduces to:

(1− π) θ u′1(c1) = β θ u′1(c1) = β u′2(c2).

Crossing out identical terms, we obtain

θ u′(c1) = u′2(c2),

which is the planner’s Euler Equation (if the planner observed θ).

To this point, the argument does not rely on quasi-linearity, which we now

deploy to prove that the resulting allocation is also first-best. At the margin,

all agents are doing some consumption in period 2 (because we assume an

interior solution), so for all households the value of a marginal dollar of wealth

is u′2(c2) = 1. Accordingly, social welfare cannot be raised by changing the

level of inter-household transfers.

Quasi-linear utility in period 2 implies that all agents have the same period-

2 marginal utility (regardless of their period-2 consumption). Because marginal

transfers to period 2 have the same marginal value for all agents, and because

all agents have the same degree of present bias, a homogeneous Pigouvian cor-

rection achieves the first best allocation. Although this is not exactly true in

the general case in which the utility function is concave in both periods, the

special case of quasi-linear utility turns out to be a good proxy for the general

case. We next study that case.
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3.2 Optimal policy with N accounts

We now return to the general case in which the utility functions in periods 1

and 2, namely u1 and u2, are both strictly concave (as opposed to the quasi-

linear case, in which u2 is linear) and inter-household transfers are possible.

We now study optimal account structures using simulation results. Each simu-

lation has a different assumption on the number of accounts and the scope that

the planner has to set withdrawal penalties on those accounts. In addition, we

provide an upper bound for welfare improvements that can be achieved with

the completely general non-linear mechanism. This general non-linear mecha-

nism allows the planner to offer households a non-linear budget set from which

each household can pick a consumption pair, (c1, c2), rather than restricting to

an N -account structure. This non-linear mechanism is solved numerically us-

ing the differential equations.17 See Appendix D for a complete description of

our analysis of the general non-linear mechanism. We know that our reported

upper bound for welfare improvements in the general non-linear mechanism is

tight in practice because it is nearly identical to the welfare improvements that

we calculate for highly restricted finite-account cases with a small number of

linear accounts (e.g., N = 2), as we will show below.

In our benchmark simulations, we make the following functional form as-

17Our calculation of welfare improvements in the general non-linear mechanism is an
upper bound on welfare, because we omit a monotonicity restriction when we calculate the
optimum, leading us to refer to this as a ‘relaxed’ case of the general mechanism. In practice,
this monotonicity restriction has little or even no effect on welfare.

There is one final sense in which our general non-linear mechanism is an upper bound on
welfare because it relaxes restrictions imposed by the N -account framework. Specifically,
the N -account framework requires the budget set to be convex (so that low-penalty accounts
are depleted before high-penalty accounts), whereas the general non-linear mechanism does
not impose convexity.
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sumptions.

S1. The utility functions in periods 1 and 2 are u1(c) = u2(c) = ln(c);

S2. The density of the multiplicative taste shocks is a truncated normal

distribution. Specifically: we start with a normal distribution (mean

µ = 1 and standard deviation σ = 0.25); truncate it at the symmetrically

placed points 1−χ and 1 +χ (where χ = 2/3, resulting in a distribution

with support [1− χ, 1 + χ]); and rescale it so that it integrates to one.

Assumption S1 implies that the coefficient of relative risk aversion is one, a

magnitude that often (approximately) emerges in estimates of lifecycle savings

models18. In Section 5, we show that our paper’s findings are robust to varia-

tion in this assumption. Assumption S2 implies that a one standard deviation

taste shock will induce marginal utility in period 1 to change by ±24.2%.19 We

view this as a plausible assumption given the many uninsurable shocks that

buffet households, but we are not aware of formal estimates of this parameter.

In Section 5, we show that our paper’s findings are robust to variation in the

assumed value of σ.

We begin with Table 1, which reports the improvement in total welfare,

relative to laissez-faire, for different systems of accounts where the planner

chooses the optimal xn and πn. Specifically, each entry tells us how much social

welfare improves expressed as the equivalent percentage improvement in the

societal resource endowment; this is typically referred to as a money metric

18For example, see Gourinchas and Parker (1999) and Laibson et al (2021).
19This is slightly less than σ = 0.25 because of the truncation of the (deep) tails of the

distribution of taste shocks.
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Value of β
0.1 0.2 0.3 0.4 0.5

1 Flexible 69.658 31.775 17.124 9.630 5.347
2 Flexible 71.648 32.698 17.605 9.882 5.478

General Mechanism (Relaxed) 71.674 32.748 17.659 9.929 5.511
1 Liquid, 1 Illiquid 71.633 32.648 17.482 9.671 5.196

Value of β
0.6 0.7 0.8 0.9 1.0

1 Flexible 2.794 1.283 0.446 0.067 0.012
2 Flexible 2.860 1.314 0.458 0.070 0.012

General Mechanism (Relaxed) 2.881 1.325 0.462 0.071 0.014
1 Liquid, 1 Illiquid 2.542 1.018 0.256 0.015 0.000

Table 1: The welfare gain from four mechanisms (namely a single account
with an endogenous penalty (row 1); two accounts with endogenous penalties
(row 2); the general mechanism (relaxed), which allows for an arbitrary non-
linear budget set and does not impose the monotonicity restriction (row 3);
and a two-account system with one completely liquid account and one com-
pletely illiquid account (row 4)) calculated for 10 different values of β (namely
0.1, 0.2, ..., 1.0) in the homogeneous-β model. The welfare gain is calculated as
the percentage increase in household wealth that would produce the same aver-
age welfare in the laissez-faire case. Welfare is calculated using the planner’s
welfare criterion (i.e., without present bias in the welfare objective).

welfare criterion. We use this welfare reporting framework throughout the rest

of the paper (with the laissez-faire case as our benchmark in all analyses). The

columns of Table 1 represent different cases of homogeneous β, starting with

β = 0.1 and progressing to β = 1.0.20

The first row of Table 1 reports the case of one (flexible) account. We

refer to the account as flexible to emphasize that the planner sets both the

20There is a growing literature on estimation of present bias (e.g., Dellavigna and Paser-
man, 2005; Shapiro, 2005; Dellavigna and Malmendier, 2006; Gine, Karlan, and Zinman,
2010; Meier and Sprenger, 2010; Augenblick, Niederle, and Sprenger, 2015; see Cohen, et
al., forthcoming for a review of this literature).
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penalty-level, π1, and the mandatory initial balance, x1, for this account. The

second row of Table 1 reports the case of two (flexible) accounts. The third

row of Table 1 reports an upper bound for welfare improvements that can be

achieved with the completely general non-linear mechanism.21 The fourth row

of Table 1 reports the case of two accounts: a completely liquid account and

a completely illiquid account.

Table 1 reveals that a simple single-account system generates most of the

obtainable welfare gains. For example, for β = 0.6 (a natural value for a homo-

geneous calibration in light of current estimates in the empirical literature–see

Cohen, et al., forthcoming), one flexible account generates a social-welfare gain

equal to 2.794% of the endowment (relative to the laissez-faire reference case).

Two flexible accounts generate a social-welfare gain equal to 2.860% of the

endowment. The general non-linear mechanism generates a welfare gain that

is weakly bounded above by 2.881% of the endowment.

This analysis also reveals another important feature of the homogeneous

case: the optimal penalties are essentially Pigouvian corrections to present

bias. We can see this in Figure 1, where we report the optimal penalty for

the one-account case, which turns out to be nearly identical to (1 − β), both

of which are plotted in Figure 1. This near-Pigouvian result echoes the exact

Pigouvian correction that arises in the quasi-linear case (subsection 3.1).22

21We know that our reported upper bound for welfare improvements in the general non-
linear mechanism is tight in practice because it is nearly identical to the welfare improve-
ments that we calculate for highly restricted finite-account cases with a small number of
linear accounts (e.g., N = 2).

22Similar Pigouvian taxes also arise in the cases with more than one account. For example,
with β = 0.6 and two accounts, the penalties on those two accounts are respectively 0.32
and 0.42, straddling the exact Pigouvian correction of 1− β = 0.4.

20



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

, 
1
-

1-

Figure 1: The optimal penalty π∗ and the notional Pigouvian tax 1 − β as
a function of β in the case in which: (i) the population has homogeneous β;
(ii) the planner is confined to a mechanism with a single account, with penalty
π. Note that π∗ is always lower than 1 − β. In particular, π∗ is negative at
β = 1. This is due to the redistributional motives of the planner: she wishes
to redistribute from types with low θ to types with high θ.

However, an exact Pigouvian correction (which did arise in the quasi-linear

case) is not generally socially optimal because with concave utility, the plan-

ner would like to reallocate resources from low-θ types to high-θ types. This

redistributive motive is reflected in the fact that the socially optimal penalties

in the one-account case (for any given value of β) are all strictly below the cor-

responding value of (1−β). Intuitively, the households who will be paying the
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penalties are those households with the higher θ values. To transfer resources

to these households, the planner lowers the socially optimal penalty below the

(1− β) benchmark value. However, as one can see in Figure 1, this downward

adjustment is small in magnitude. Accordingly, the Pigouvian correction is

the dominant force in these simulations.

4 Optimal Liquidity with Heterogeneous Present

Bias and Inter-Household Transfers

In this section, we continue to allow inter-household transfers. We relax our

assumption of homogeneous β and study a heterogeneous population of β-

types. We amend our assumptions (A1-A6) by requiring that the support of

β be bounded strictly below by 0 and weakly above by 1 (generalizing A5),

and omitting assumption A4 (which assumes homogeneous β).

In the analysis of this heterogeneous-β case, we exploit the revelation prin-

ciple and study mechanisms in which agents reveal their intertemporal pref-

erences (between periods 1 and 2). Household utility θ u1(c1) + β u2(c2) is

maximized iff the following expression is also maximized over consumption:

θ

β
u1(c1) + u2(c2).

Roughly speaking, if we use a continuum of types, the revelation principle can

be implemented using variable φ = θ/β.23 Accordingly, we study mechanisms

23The primary assumption is that either θ or β or both have non-atomic distributions. It
follows that φ has a non-atomic distribution. Given the preferences that we have assumed,
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in which the agents each report φ and receive a consumption pair (c1, c2) that

depends on their report of φ. The social planner’s objective function (1),

therefore takes the form

∫
[E [θ|φ] u1(c1) + u2(c2)] dH(φ).

Here, E [θ|φ] is the conditional expectation of θ, given a household’s value of

φ. H(.) is the CDF of φ.

This representation highlights the importance of the conditional expecta-

tion E [θ|φ] , which is the weight the planner assigns to period 1 utility of a

household with value φ. Given heterogeneity in both θ and β, taste shock θ

cannot be directly inferred from φ. For a given impatient choice (i.e., high

revealed φ), the planner doesn’t know whether the household is making that

choice because of high θ (i.e., real need), or because of low β (more present

bias). The planner wants to give higher period-1 consumption to a high-θ

household, but not to low-β household.

As in the previous section, we begin with the quasi-linear case and then

provide quantitative simulations.

4.1 Optimal policy with quasi-linear utility

With homogeneous β, a planner knows β even without observing φ. By con-

trast, in the heterogeneous-β case that we are now studying, the planner has

individual choices will be monotonic, so there are only a countable number of values of
φ where the set of optimal choices is non-unique. Because φ is non-atomic, this set has
measure zero. By shifting from truth-telling in (θ, β) to truth-telling in φ, we reduce the
feasible set of mechanisms, but we do not change the optimal social welfare.
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to try to infer β and θ from φ. Because of this inference problem, exact Pigou-

vian taxation can not emerge. However, Theorem 2 shows that conditionally

expected Pigouvian taxation emerges as the socially optimal mechanism in a

quasi-linear economy.

Theorem 2 Suppose that inter-household transfers are possible. Assume that

utility is strictly concave in the first period and linear in the second period,

that the solution is interior and that E[ θ |φ ] is non-decreasing in φ = θ/β.

Then the optimal allocation is characterized by

E[ θ |φ ]u′1 (c1(φ)) = 1,

and the implied (local) marginal penalty rate for period 1 withdrawals is

π(φ) = E[ 1− β |φ ].

The proof of Theorem 2 is in Appendix E. This penalty is an ‘average

Pigouvian correction,’ in the sense that the marginal dollar of consumption

in period 1 is penalized with the conditional expected value of 1 − β, where

the conditioning is done with respect to the (truthfully) reported value of φ.

Heterogeneity in β gives rise to a range of marginal taxes needed to implement

the optimum. It is only at the extreme values of φ, φ= θ/β, and φ = θ/β, that

the planner can exactly infer the values of β, respectively β and β. Accordingly,

at these extreme values for φ, the planner chooses the most extreme Pigouvian
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tax rates, respectively, π = 1− β and π = 1− β.

4.2 Optimal policy with N accounts

We now switch from the case of quasi-linear utility to the case in which the

consumer has log utility in both periods. In the current and the following sub-

sections, we study optimal mechanisms using numerical solutions. As before,

each simulation has a different assumption on the (finite) number of accounts

and the scope that the planner has to set withdrawal penalties on those ac-

counts. We maintain simulation assumptions S1 and S2 from the previous

section. We assume that β is uniformly distributed on the interval [0.2, 1],

implying a mean value of 0.6. We explore the robustness of these particular

cases in Section 5.

Table 2 reports the welfare improvements (again using a money metric) that

are obtained when the planner shifts from the laissez-faire reference system to

an N -account system with (second-best) optimal disincentives to overconsume

in period 1. The first row of Table 2 reports the case of one flexible account.

The second row reports the case of two flexible accounts. The third row reports

the case of the general non-linear mechanism (see the earlier discussion in

Subsection 3.2 and the full derivation in Appendix D). The fourth row reports

the case of two accounts: a completely liquid account and a completely illiquid

account. The fifth row reports the case of three accounts: a completely liquid

account, a partially illiquid account, and a completely illiquid account.

Table 2 reveals that a one-account system no longer obtains most of the

feasible welfare gains: one flexible account generates a social-welfare gain of
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1 Flexible 3.569
2 Flexible 6.136

General Mechanism (Relaxed) 6.144
1 Liquid, 1 Illiquid 6.105

1 Liquid, 1 Flexible, 1 Illiquid 6.137

Table 2: The welfare gain from five mechanisms (namely a single account
with an endogenous penalty (row 1); two accounts with endogenous penalties
(row 2); the general mechanism (relaxed), which allows for an arbitrary non-
linear budget set and does not impose the monotonicity restriction (row 3);
a two-account system with one completely liquid account and one completely
illiquid account (row 4); and a three-account system with one completely liquid
account, one account with an endogenous penalty and one completely illiquid
account (row 5)) in the heterogeneous-β model (with β distributed uniformly
between 0.2 and 1).

only 3.569% of the endowment, well below the upper bound of 6.144% from

the general mechanism.

In contrast, a two-account system gets very close to this upper bound:

two flexible accounts generate a social-welfare gain equal to 6.136% of the

endowment. For the two account case, we find that one penalty is close to

zero and the other is close to one. According, a two account system to a

completely liquid and a completely illiquid account also gets very close to the

upper bound, at a welfare gain of 6.105% of the endowment. Finally, the three-

account system (one completely liquid, one partially liquid and one completely

illiquid) generates a welfare gain of 6.137% of the endowment. The (money-

metric) differences among the mechanisms with more than a single account

are small in economic magnitude and a very simple two-account system–one

perfectly liquid and one perfectly illiquid–generates approximately optimal

welfare gains. Such a two-account system is commonplace in most countries
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in the developed world (Beshears, et al., 2015).

We offer two frameworks that provide intuition for these results. First, we

study the key conditional expectation E[θ|φ] and then we study comparative

statics on the penalty on the partially illiquid account.

4.3 Conditional Expectation: E[θ|φ]

The social planner’s objective function places a weight E[θ|φ] on date 1 con-

sumption by households with a given φ. Accordingly, one can better under-

stand the planner’s problem by mapping the function E [θ|φ] , which we do

in the top panel of Figure 2. The lower panel of Figure 2, reports the condi-

tional expectation of β given θ: E[β|φ]. These two panels illustrate three key

properties in our benchmark calibrated case.

First, at low values of φ, E
[
θ|φ
]

rises relatively quickly with φ. The

properties of this region create an economic motive for the creation of an

(equilibrium) separating region, in which agents who probabilistically have

high β values are given some flexibility in choosing c1. The second panel reveals

that at low φ, the conditional expectation of β is relatively high, suggesting

that only a relatively small Pigouvian correction (i.e., low penalty) is required

in this region.

Second, in the middle of the range of φ values, E [θ|φ] is relatively flat. This

relatively flat region implies that the planner only weakly raises the conditional

expectation of θ as φ rises. The relatively flat middle region arises because

variation in β (which is not directly observable by the planner) implies that, in

equilibrium, substantial variation in φ is associated only with modest variation
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Figure 2: The top panel plots the conditional expectation of θ given φ. The
bottom panel plots the conditional expectation of β given φ.
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in the expected value of θ. In this flat region, the planner has little incentive

to separate households because E [θ|φ] has relatively little variation.

Third, at the highest feasible value of φ, E
[
θ|φ
]

= θ, and in a neighbor-

hood of that limiting case, E [θ|φ] becomes steeper than it was in the middle

region. This would seem to create a motive for another separating region.

However, the second panel reveals that once φ rises above a value of around

five, the (conditional) expected value of β is below 0.25, implying large penal-

ties are required to correct present bias. However, the social cost of separation

in this region is also high, because a high marginal incentive for saving moves

resources from high marginal utility households (i.e., high expected θ) to low

marignal utility households (i.e., low expected θ). Accordingly, creating an-

other separating region generates very little welfare gain.

4.4 Comparative Statics on the Penalty of the Partially

Illiquid Account

To gain further intuition for this result, we report a related set of analyses in

Figure 3. Here, we study a two-account system. One account is completely liq-

uid (i.e., π1 = 0) and the other account has varying illiquidity (i.e., π2 varies).

As we vary the penalty π2 from 0 to 1, we re-optimize the allocations x1 and

x2 to the liquid and the partially illiquid accounts. The horizontal axis shows

the penalty π2, and the vertical axis shows the average welfare of the cross

sections of the population obtained by fixing β at one the five values 0.2, 0.4,

0.6, 0.8 and 1.0. It should be emphasized that all households are treated iden-

tically ex ante and, therefore, receive the same allocations and face the same
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early-withdrawal penalties.

For the most inconsistent households, with β = 0.2, money-metric welfare

as perceived by the planner rises dramatically as the early-withdrawal penalty

increases (Figure 3). The gain to these households from moving from fully

liquid, π2 = 0, to fully illiquid, π2 = 1 is equivalent to an increase of about

30% in their wealth level from the planner’s perspective.

Households with other β values experience increasing and then decreasing

welfare as π2 increases from 0 to 1. However, conditional on β, all house-

holds experience a rise in expected welfare as π2 rises from zero. For low-β

households, this rise occurs because higher penalties prevent low-β households

from overconsuming in period 1. For high-β households, this rise occurs be-

cause higher penalties generate larger cross-subsidies from low-β households

to high-β households. Specifically, these cross-subsidies occur because higher

penalty revenue relaxes the planner’s budget constraint, thereby enabling the

planner to give agents higher endowments in period 1. High-β households

are net recipients of cross-subsidies because they tend to make smaller early

withdrawals and, therefore, pay fewer penalties than low-β households. These

differential penalty payments are shown in Figure 5, which reports the gross

penalties paid by households with different values of β (again integrating over

θ). Penalties are hump-shaped, with lower-β households being willing on av-

erage to withdraw more and pay more at all penalty levels.

Unlike the welfare of low-β households, which rises monotonically as π2

rises, the welfare of high-β households eventually peaks and thereafter falls

with π2. This single-peaked property arises because, while initial rises in π2
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Figure 3: The welfare of various β cross sections of the population as a
function of π2 in the case in which: (i) the population has heterogeneous β;
(ii) the planner is confined to a mechanism with two accounts, with penalties π1

and π2 respectively; (iii) π1 = 0 (i.e., the first account is completely liquid); (iv)
the account allocations are chosen to maximize the welfare of the population
as a whole. Note that the cross section of the population with β = 0.82 (not
shown) is almost indifferent between the system with π2 = 0 and the system
with π2 = 1.
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simply result in greater revenue from the early-withdrawal penalties paid by

low-β households, later rises tend to eliminate early withdrawals altogether.

Hence the cross-subsidy to high-β households first rises and then falls. By the

time π2 reaches 1, the cross-subsidy has been completely eliminated, and high-

β households are now facing a binding constraint (if they have a sufficiently

high θ value) that limits their ability to adjust consumption in period 1, so

high-β households are slightly worse off on average than they were when π2

was 0. On a money-metric basis, the β = 1 households experience a welfare

loss equivalent to 0.23% of their income as the planner moves from π2 = 0 to

π2 = 1 in Figure 3. However, this welfare loss is swamped by the welfare gain

experienced by the β = 0.2 types (which is two orders of magnitude larger).

Figure 4 shows the welfare of the population as a whole as a function of

the early-withdrawal penalty π2. It confirms that–as one would expect–the

enormous welfare gains for low-β households swamp the modest welfare losses

for high-β households, an example of asymmetric paternalism (Camerer, et al.,

2003). Although it appears that total social welfare rises monotonically and

asymptotes, social welfare actually reaches a global maximum at π2 = 0.85

and then falls very slightly. However, the fall in welfare between π2 = 0.85

and π2 = 1 is insignificant: it is 0.00002% of wealth using a money metric.

Accordingly, the social optimum is effectively obtained with one completely

liquid account and one completely illiquid account.
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Figure 4: The welfare of the population as a whole as a function of π2 in the
case in which: (i) the population has heterogeneous β; (ii) the planner is con-
fined to a mechanism with two accounts, with penalties π1 and π2, respectively;
(iii) π1 = 0 (i.e., the first account is completely liquid); (iv) the account allo-
cations are chosen to maximize the welfare of the population as a whole. Note
that: (i) while this is not immediately apparent from the figure, the function in
question is non-monotone; (ii) the optimal penalty π∗2 is approximately 85%;
(iii) π∗2 yields a proportional increase of approximately 0.00002% in money-
metric welfare relative to the case in which π2 = 1 (i.e., the case in which the
second account is completely illiquid). In particular, the welfare cost of setting
the penalty on the second account too low far exceeds that of setting it too high.

33



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

C
ro

s
s
-S

e
c
ti
o
n
a
l 
P

e
n
a
lt
ie

s

=0.2

=0.4

=0.6

=0.8
=1

Figure 5: The total penalties paid by various β cross sections of the population
as a function of π2 in the case in which: (i) the population has heterogeneous
β; (ii) the planner is confined to a mechanism with two accounts, with penal-
ties π1 and π2, respectively; (iii) π1 = 0 (i.e., the first account is completely
liquid); (iv) the account allocations are chosen to maximize the welfare of the
population as a whole.

4.5 A three-account system that approximates the U.S.

retirement savings system

The fifth row in Table 2 reports the welfare gains for a three-account system

(N = 3). We will see that this analysis reproduces some of the features of the

U.S. system.
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We constrain the first account to be completely liquid (π1 = 0) and the

third account to be completely illiquid (π3 = 1). Think of this third account–

the illiquid account–as Social Security or a defined-benefit pension. The plan-

ner picks the penalty on the “middle” account (0 < π2 < 1) and the values

of the three endowments (x1, x2 and x3) to optimize social welfare (while sat-

isfying the budget constraint). The “middle” account turns out to have an

optimal penalty of π2 = 0.13, which is close to the actual penalty associated

with a 401(k) or IRA account, namely 0.10. Adding the optimized “middle”

account to the constrained two-account system (row 4 in Table 2) slightly

raises welfare, by 6.137%− 6.105% = 0.032% of wealth.

Our simulations reveal that the middle account is characterized by a very

high degree of leakage in equilibrium. Ninety percent of the assets in the

middle account are withdrawn to fund consumption in period 1. Figure 6

disaggregates this result, by plotting the cumulative distribution function of

the ratio c2/c1 = 0.94. Figure 6 shows that 76% of households fully draw down

the partially illiquid account, while another 22% partially withdraw from it.

Only 2% of households choose to withdraw nothing from the partially illiquid

account.

In summary, our analysis finds that welfare is nearly as high in the two-

account system with a completely liquid account and a completely illiquid

account as it is in the three-account system that adds a partially illiquid ac-

count.24 When a third account is added, it looks and performs somewhat like

24The third account offers the welfare benefit of additional separation for high-θ house-
holds and low-θ households. However, the third account has two effects that jointly offset
the welfare gains from separation. First, the third account enables low-β households to
increase their period 1 over-consumption. Second, withdrawals from the third account gen-
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Figure 6: The distribution function of the ratio c2/c1 of period-2 consumption
to period-1 consumption in the population as a whole in the case in which: (i)
the population has heterogeneous β; (ii) the planner is confined to a mechanism
with three accounts, with penalties π1, π2 and π3, respectively; (iii) π1 = 0
(i.e., the first account is completely liquid); (iv) π3 = 1 (i.e., the third account
is completely illiquid); (v) both π2 and the account allocations are chosen to
maximize the welfare of the population as a whole. There are two atoms in
the distribution: a large atom accounting for about 76% of the total mass near
c2/c1 = 0.94; and a small atom accounting for about 1% of the total mass near
c2/c1 = 1.70. Individuals at the second atom have withdrawn the entire balance
from the first (liquid) account, but have not yet touched the second account.
Individuals at the first atom have withdrawn the entire balance from both the
first and the second accounts. In particular, they have paid the penalty π2 on
the entire balance of the second account.
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a U.S. 401(k) plan: the third account has an optimized penalty of 0.13 and

generates a very high rate of leakage in equilibrium. This high leakage rate is

even higher than the empirical leakage rate observed in the U.S. system.

One explanation for the difference between the model-predicted leakage

rate (90%) and the empirically observed leakage rate (40%) is that initial ac-

count balances in the model are generated by government fiat, whereas almost

all of the dollars in real-world 401(k)/IRA accounts are voluntarily deposited,

implying that they are coming from households with higher β values and lower

θ values in the first place. In this sense, one can’t directly compare the leakage

rate in the model (which is the aftermath of universal forced savings in a DC

system) and the leakage rate in the US economy (which is the aftermath of

voluntary savings in a DC system). Accordingly, differential selection makes

this an apples to oranges comparison.

Another key factor that explains the high model-predicted leakage rate is

the fact that the planner optimally chooses to put almost half of each house-

hold’s resources into the completely illiquid account (47.4%), with 36.4% go-

ing to the completely liquid account and 16.2% going tot he partially illiquid

account. Accordingly, the completely illiquid account alone is sufficient to

generate nearly equal consumption in periods 1 and 2, even if the household

consumes all of its completely liquid and partially illiquid assets in period 1.

The high level of completely illiquid retirement assets explains the high level of

equilibrium leakage from the partially illiquid account (in period 1). The par-

erate (socially inefficient) transfers of resources from low-β and high-θ households to high-β
and low-θ households because of the penalties that are paid for period 1 withdrawals from
the third account. These tax revenues are redistributed in the mechanism.
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tially illiquid account is a source of retirement consumption that can be used to

supplement the consumption that will be generated by the assets in the com-

pletely illiquid account. Because the mandatory, completely illiquid retirement

assets is so large (at the social optimum), households are not strongly moti-

vated to preserve the assets in the partially illiquid account until retirement.

Accordingly, the equilibrium leakage rate from the partially illiquid account

is 90.2%.25 Hence, very high rates of equilibrium leakage are consistent with

optimized policy in an economy populated by agents with present-bias.

In the United States, the actual allocation to completely illiquid accounts

is far lower than our optimized policy implies (e.g., mandatory savings is not

sufficient to generate approximate consumption smoothing on its own in the

United States). Relatedly, the fully liquid account plays a far more important

role in practice than it does in our model. In addition, in the United States

some withdrawals from retirement accounts are not penalized (e.g., education

expenses, large unreimbursed health expenses, the purchase of a first home).

To account for these factors, we report an illustrative calibration of the model

where we exogenously fix the account balance allocations (rather than endoge-

nously optimizing them) to reflect the operation of the status quo system in

the United States. We exogenously allocate 60% of lifetime resources to the

liquid account, 10% of lifetime resources to the partially illiquid retirement

account with a 0.10 early-withdrawal penalty to match U.S. system, 10% of

25The high leakage rate implies that the partially illiquid account has very little impact
on almost all households (relative to a world in which the funds from the partially illiquid
account were instead put in the liquid account). This explains why the partially illiquid
account has such a small effect on total social welfare relative to the two-account benchmark,
with a completely liquid account and a completely illiquid account.
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lifetime resources to another partially illiquid retirement account with a 0.01

early-withdrawl ‘penalty’ to conceptually capture the fact that some retire-

ment assets are accessible with only small logistical costs (i.e., non-penalized

withdrawals), and 20% of assets to the completely illiquid account. With this

calibration, we obtain an aggregate leakage rate (total leakage divided by to-

tal balances in the two partially illiquid retirement accounts) of 31%, which is

within the range of historical leakage rates in the United States (see Argento,

Bryant and Sabelhaus, 2014).

5 Optimal Policy with Transfers and Hetero-

geneous Present Bias: Robustness

In the previous section, which studied the case in which inter-household trans-

fers are allowed and present bias is heterogeneous in the population, three key

findings emerged:

1. The constrained-efficient social optimum is approximated by a two-account

system, with one account that is completely liquid and a second account

that is completely illiquid. Little welfare gain is obtained by moving

beyond this simple two-account system.

2. If a third account is added, its optimized early-withdrawal penalty is

13%.

3. The equilibrium leakage rate from this third account is 90%.
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In the current section, we document the robustness of these three findings

when the distribution of β is heterogeneous. With respect to the first finding,

the largest incremental welfare gain that we generate in our robustness checks

by extending the system of savings accounts beyond one completely liquid

and one completely illiquid account is 0.081% of income. With respect to the

second finding, the optimized penalty on the partially illiquid account ranges

from 11% to 14% across our calibrated economies, similar to the penalties on

401(k)s and IRAs. With respect to the third finding, the equilibrium leakage

rates remain very high, ranging from 84% to 99%.

The detailed results are reported in the three panels of Table 3, which

report the welfare gain (relative to the laissez faire case) for (i) the two-account

system π1 = 0 and π2 = 1, (ii) the three-account system with π1 = 0, 0 < π2 <

1, and π3 = 1, and (iii) the upper bound of the general mechanism (i.e., the

‘relaxed’ non-linear case described in Appendix D). For case (ii), in addition

to the welfare gain, we also report the penalty π2 and the leakage rate.26

Table 3a varies the value of the coefficient of relative risk aversion (γ). In

Table 3a, we study the cases γ = 1/2, γ = 1 (our benchmark, for comparison),

and γ = 2. Table 3b varies the shape of the density of the taste shock θ,

changing the variance of the normal distribution between σ = 0.30, σ = 0.25

(our benchmark, for comparison), and σ = 0.20. Table 3c varies the standard

deviation of the distribution of β values (holding the mean fixed). In our

benchmark calibration, we studied the case of a uniform distribution of β

between 0.2 and 1.0. In Table 3c, we study truncated normal distributions of

26Note that the upper bound on the welfare gain–case (iii)–is tight in the sense that it is
economically close to the constrained N -account cases that we study.
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β, with 0.2 and 1.0 serving as the truncation points. Our original benchmark

is equivalent to the (truncated) normal case with σβ = ∞ and µβ = 0.6. We

now reduce σβ to 1, 1/2 and 0 (holding the truncation points and µβ fixed).

The case σβ = 0 is the degenerate case in which all agents have the same value

of β = 0.6. As shown in Section 4, results do not generalize to the degenerate

case of homogeneous β (the last column of Table 3c). Gathering these results

together, we infer that (at least partially unobservable) heterogeneity in β is

necessary for a fully illiquid account to be optimal.

6 Conclusions and Directions for Future Work

To summarize, we focus on the case in which agents have heterogeneous present

bias and the planner can implement mechanisms with inter-household trans-

fers. Three findings emerge from our analysis:

1. The constrained-efficient social optimum is well-approximated by a two-

account system, with one account that is completely liquid and a second

account that is completely illiquid. Little welfare gain is obtained by

moving beyond this simple two-account system. Accordingly, the two-

account system identified in AWA (in a model with homogeneous β and

no inter-household transfers) turns out to be approximately optimal in

our new setting (with heterogeneous β and inter-household transfers).

2. If a third account is added, its optimized early-withdrawal penalty is

only slightly above 10%.
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Value of γ
0.5 1.0 2.0

1 Liquid, 1 Illiquid 8.851 6.105 3.261
1 Liquid, 1 Flexible, 1 Illiquid 8.919 6.137 3.274
— — — — Penalty π∗2 0.13 0.13 0.11
— — — — Leakage Rate 0.89 0.90 0.99
General Mechanism (Relaxed) 8.932 6.144 3.278

(a) Variation of the coefficient of relative risk aversion γ

Value of σθ
0.30 0.25 0.20

1 Liquid, 1 Illiquid 5.918 6.105 6.323
1 Liquid, 1 Flexible, 1 Illiquid 5.958 6.137 6.344
— — — — Penalty π∗2 0.14 0.13 0.12
— — — — Leakage Rate 0.84 0.90 0.89
General Mechanism (Relaxed) 5.966 6.144 6.349

(b) Variation of the standard deviation σθ of the taste shock

Value of σβ
+∞ 1.0 0.5 0.0

1 Liquid, 1 Illiquid 6.105 6.019 5.772 2.542
1 Liquid, 1 Flexible, 1 Illiquid 6.137 6.053 5.810 2.841
— — — — Penalty π∗2 0.13 0.13 0.14 0.36
— — — — Leakage Rate 0.90 0.90 0.90 0.73
General Mechanism (Relaxed) 6.144 6.060 5.819 2.881

(c) Variation of the standard deviation σβ of the present bias distribution

Table 3: Robustness checks for welfare gains, optimal penalties and leakage
rates. In each subtable: row 1 contains welfare gains for a two-account system
with one completely liquid account and one completely illiquid account; row 2
contains welfare gains for a three-account system with one completely liquid
account, one account with an endogenous penalty and one completely illiquid
account; rows 3 and 4 contain the optimal penalty and leakage rate from the
endogenous-penalty account associated with the system in row 2; and row 5
contains welfare gains for the general mechanism (relaxed), which allows for
an arbitrary non-linear budget set and does not impose the monotonicity re-
striction. Table 3a varies the value of the coefficient of relative risk aversion
γ. Table 3b varies the parameter σθ of the truncated-normal distribution of θ.
Table 3c varies the parameter σβ of the truncated-normal distribution of β.
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3. In equilibrium, the leakage rate from this (partially illiquid) third ac-

count is high. We report a range of equilibrium leakage rates, depend-

ing on the calibration. With optimal allocations to all three accounts–

completely liquid, partially illiquid, and completely illiquid–equilibrium

leakage rates from the partially illiquid account range from 73% to 99%.

By contrast, when we calibrate the model to match actual empirical al-

locations to the completely illiquid account (e.g., treating Social Security

as the empirical analog of the model’s completely illiquid account), the

implied equilibrium leakage rate from the partially illiquid account drops

to 46%.

These properties have analogs in the U.S. retirement savings system. The

United States has completely liquid accounts (e.g., a standard checking ac-

count), completely illiquid accounts (e.g., Social Security), and a partially

illiquid defined-contribution system with a 10% penalty for early withdrawals

(e.g., an IRA or a 401(k)). This partially illiquid DC system has a leakage

rate of approximately 40% (see Argento, Bryant and Sabelhaus, 2014).

Despite these superficial similarities, it is inappropriate to conclude that

our findings demonstrate the social optimality of the U.S. system. Most impor-

tantly, our theoretical model includes several key simplifications.27 First, we

assume a particular conceptual formulation of self-defeating behavior (present

bias).28 Second, we assume only two periods (e.g., working life and retire-

27In addition, the U.S. system contains some scope for tax arbitrage, which is not present
in our model.

28Other models of self-control include Thaler and Shefrin (1981), Gul and Pesendorfer
(2001), Bernheim and Rangel (2004), O’Donoghue and Loewenstein (2004), Fudenberg and
Levine (2006). See Ericson and Laibson (2019) for a review of this wider class of ‘present-
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ment).29 Third, we assume a particular form of multiplicative taste shifter,

θ.30 Fourth, we assume that households are naive with respect to their present

bias parameter, β. Fifth, we study a limited set of distributions of θ and β

(and no correlation).31

Moreover, our simulations imply that retirement consumption should not

be allowed to fall far below working life consumption (recall that the illiquid

account has a high funding level when we calculate the socially optimal sys-

tem). In the actual data on U.S. households, consumption proxies appear to

decline between working life and retirement,32 raising the normative possibility

that mandatory savings might be underutilized in the U.S.33 However, there

is an active debate about both the existence and normative interpretation of

the observed distribution of consumption changes for households transitioning

from work life to retirement.34

Our normative result on underutilization of mandatory savings is closely

related to a similar result reported in Moser and Olea de Souza e Silva (2019).

Though many elements of the two models differ, both models assume that

agents are present biased, and they both imply that optimal savings mecha-

focused’ models.
29Infinite horizon problems introduce technical challenges with respect to multiple equi-

libria. However, there has been progress on this issue. For example, see Harris and Laibson
(2012) and Cao and Werning (2018).

30We assume θu(c), but we could have instead assumed u(c− θ).
31Research is only beginning on the distribution of present bias. For analysis of this issue,

see Lockwood (2016), Moser and Olea de Souza e Silva (2017), and Cohen, et al., (2019).
32See Stephens and Toohey (2018).
33In our model, mandatory savings are achieved through a funded system. Our model

takes no position on the distinction between funded (e.g., the superannuation scheme in
Australia) and unfunded (e.g., U.S. Social Security) mandatory savings systems.

34See Beshears, et al., (2018) for a recent review of the literature on consumption dynamics
at and through retirement.
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nisms are characterized by more mandatory savings than currently exists in

the U.S. system.

Much more robustness work is needed to interrogate the three findings that

we summarized above, as well as the additional finding that more mandatory

savings would be socially optimal. It is not clear whether these results will

continue to hold as future research enriches and expands our understanding of

household behavior and optimal policy.
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Online Appendices

A Optimal Liquidity with Homogeneous Present

Bias and No Inter-household Transfers

In this section, we consider a first deviation from the (laissez faire) refer-

ence case. We allow the government to intervene by setting up multiple ac-

counts and imposing early-withdrawal penalties, but we do not allow any inter-

household transfers. This is equivalent to saying that any penalty revenue that

is collected must be discarded/burned (instead of being transferred to other

households through the government budget constraint). Such money burning

is a case of theoretical interest and it has been characterized by AWA. This

restriction on inter-household transfers is equivalent to assuming that

N∑
n=1

xn = Y.

In other words, the sum of the resources allocated to households (account by

account) will equal the total sum of resources in society, which is Y = 1. (In

the next section, we eliminate the money-burning restriction and accordingly

allow inter-household transfers to occur through the tax/penalty system.)

In this section, we assume that all agents share a common value of β –

i.e., a common degree of present bias. Hence, the distribution function G is

degenerate.

With the assumption of no inter-household transfers, our problem can be

expressed using our standard notation with the aggregate budget constraint

replaced by a household-level budget constraint:

c1 +
c2

R
≤ Y for each household. (7)

To simplify notation, we henceforth we set δ = 1, R = 1 and Y = 1.35

35This involves no loss of generality because the utility function can be rescaled.
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We now formulate a generalization of a theorem by AWA (2006).

We begin by denoting the support of the taste shifter θ by Θ = [ θ, θ ],

where 0 < θ < θ < ∞. We denote the distribution function of θ by F :

(0,∞) → [0, 1]; we denote the density function of θ by F ′ : (0,∞) → [0,∞);

and, following AWA (2006), we define a function Γ : (0,∞) → R by the

formula

Γ(θ) = (1− β) θ F ′(θ) + F (θ).

Next, we define the “pooling type” θ1 to be the minimum θ ∈ ( 0, θ ) such

that

1
θ−t

∫ θ

t

Γ(s)ds ≥ 1 for all t ∈ [ θ, θ ).

Notice that θ1 is well-defined. Indeed, θ1 > 0 and – if we denote by Θ1 the set

of all θ ∈ ( 0, θ ) such that 1
θ−t

∫ θ
t

Γ(s) ds ≥ 1 for all t ∈ [ θ, θ ) – then Θ1 is the

non-empty half-open interval [ θ1, θ ). However, it is entirely possible that θ1

is a “hypothetical” type, in the sense that θ1 < θ.36

Our candidate for an optimal consumption allocation is then obtained by

requiring that: (i) all types in the “separating interval” ΘS = {θ | θ ∈ Θ, θ < θ1}
choose freely from the unconstrained budget line, namely the set of all (c1, c2)

such that c1 ≥ 0, c2 ≥ 0 and c1 + c2 = 1; and (ii) all types in the “pooling

interval” ΘP = {θ | θ ∈ Θ, θ ≥ θ1} receive the allocation that the (possibly

hypothetical) type θ1 would choose freely from the unconstrained budget line.

Notice that ΘS may be empty, but that ΘP never is.

If this construction is to work, then we need to ensure that all the allocated

consumption bundles lie in the interior of the unconstrained budget line. If

θ1 > θ, then this will be the case if and only if: (i) the most patient of the

relevant types, namely θ, would choose c1 > 0 from the unconstrained budget

36It is helpful to compare our definition of θ1 with AWA’s (2006) definition of θp. AWA

define θp to be the minimum value of θ ∈ [ θ, θ ) such that
∫
θ
t

(1 − Γ(s)) ds ≤ 0 for all

t ∈ [ θ, θ ). Hence θp and θ1 are related by the formula θp = max {θ1, θ}. Hence AWA’s
Proposition 3 holds when θp > θ, in which case, θp = θ1. AWA’s Proposition 3 does not,
however, hold when θp = θ. To see why, consider the following counterexample. Suppose
that θ − θ is small and that 1 − β is large. Then offering different consumption bundles
to different θ is not a priority for the planner, but preventing overconsumption is. So the
planner will want to choose a pooling type strictly less than θ.
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line; and (ii) the least patient of the relevant types, namely θ1, would choose

c2 > 0 from the unconstrained budget line. If θ1 ≤ θ, then the only relevant

type is the pooling type θ1, and we need only require that this type chooses

both c1 > 0 and c2 > 0 from the unconstrained budget line.37

Finally, we need to ensure that the Lagrange multiplier used in the suf-

ficiency argument is non-negative. To that end, we assume that Γ is non-

decreasing on the separating interval ΘS = [ θ, θ1).38 Notice that, if θ1 ≤ θ,

then ΘS is empty; so in that case this assumption places no restriction on Γ.

We now enumerate all of our assumptions.

A1 u1, u2 are twice continuously differentiable, with u′1, u
′
2 > 0 and u′′1, u

′′
2 < 0.

A2 u′1(0+) = u′2(0+) =∞.

A3 F ′ is a function of bounded variation.39

A4 Γ is non-decreasing on the separating interval ΘS = [ θ, θ1).

A5 0 < β < 1.

Theorem 3 (Cf. Proposition 3 of AWA (2006).) Suppose that β is the same

for all households. Suppose further that inter-household transfers are not pos-

sible. Then welfare is maximized by dividing the endowment between two ac-

counts: a completely liquid account (that can be used in both period 1 and

period 2) and a completely illiquid account (that can be used only in period

2). In particular, types in the separating interval ΘS – which consists of those

37A simple sufficient condition ensuring that all the allocated consumption bundles lie in
the interior of the unconstrained budget line is therefore that u′1(0+) = u′2(0+) = +∞.

38It is helpful to compare our Assumption A4 with AWA’s (2006) Assumption A. AWA
assume that Γ is non-decreasing on the interval [ θ, θp].

39Intuitively speaking, F ′ is a function of bounded variation iff there exists a bounded
Borel measure F ′′ on (0,∞) such that F ′ is the distribution function of F ′′. For example,
if F ′′ assigns mass 1 to the point 1 and mass −1 to the point 2 (and assigns no mass to any
other point) then F ′ will be the density of the uniform distribution on [1, 2]. More generally:
(i) the truncation to the interval [ θ, θ ] of the densities of most named distributions are
functions of bounded variation; and (ii) any step function, the support of which is contained
in [ θ, θ ], is a function of bounded variation. See Appendices B.3 and B.4 for a detailed
discussion of functions of bounded variation.
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θ ∈ Θ such that θ < θ1, and which will be empty if θ1 ≤ θ – choose c1 strictly

less than the balance of the liquid account; and types in the pooling interval ΘP

– which consists of those θ ∈ Θ such that θ ≥ θ1, and which is never empty –

set c1 equal to the balance of the liquid account (and therefore set c2 equal to

the balance of the completely illiquid account).40

In other words, in the case of homogeneous β, no inter-household transfers

and a weak restriction on the distribution function of the taste shifter θ, the

socially optimal allocation is achieved with only two accounts: one account that

is completely liquid, and a second account that is completely illiquid in period

1 and completely liquid in period 2. Additional accounts (with intermediate

levels of liquidity) do not have any value.

This theorem embeds two cases: in one case (θ1 > θ), some types are

separated and some types are pooled; and in the other case (θ1 ≤ θ), all agents

are pooled. We emphasize that, in the second case, it is entirely possible that

θ1 < θ. In other words, the pooling type θ1 is a hypothetical type that is not

a member of the population Θ. Either way, all types θ ∈ Θ with θ ≥ θ1 pool

on the choice that type θ1 would make from the unconstrained budget line.

The key difference between our analysis and that of AWA (2006) is that their

analysis covers the case θ1 > θ, whereas our analysis holds for all values of

θ1.41

In summary, Theorem 3 implies that no gain in welfare is achieved by in-

creasing the number of accounts beyond N = 2 in the N -account mechanism-

design problem (equations 2-6). But the theorem relies on two strong assump-

tions – homogeneous β and no inter-household transfers. We next analyze the

model in the case in which the latter assumption does not hold.

40In particular, no money burning arises in equilibrium. See Ambrus and Egorov (2013)
for cases (that do not satisfy our assumptions) in which money burning arises.

41There is another important difference between our analysis and AWA’s. The original
AWA proof shows that the two-account system is optimal in the class of continuous incentive-
compatible consumption allocations, whereas our proof shows that the two-account system
is optimal in the class of all incentive-compatible consumption allocations. This is po-
tentially important because many incentive-compatible consumption allocations are in fact
discontinuous. For example, suppose that there is a type θ2 ∈ ( θ, θ ) and two consumption
bundles c and c such that all types in [ θ, θ2 ) choose c and all types in ( θ2, θ ] choose c. Then
there is a jump in the allocation at θ2.
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B Proof of Theorem 3

B.1 Formulation of the Theorem

In the main text we assumed that the income Y of a household was 1 and that

the total mass F ( θ ) of households was 1. This was done in order to reduce

notation. In this appendix we will work with general Y and general F ( θ ),

since it is easier to follow the derivations in the general case.

The first step in formulating Theorem 3 is then to define θ1 in this more

general setting. Recalling that the function Γ is given by the formula

Γ(θ) = (1− β) θ F ′(θ) + F (θ),

we define θ1 to be the minimum θ ∈ ( 0, θ ) such that

1

θ − t

∫ θ

t

Γ(s)ds ≥ F ( θ ) for all t ∈ [ θ, θ ).

for all t ∈ [ θ, θ ). Assumptions A1-A5 are then assumed to hold exactly

as stated in the main text. Finally, we restate Theorem 3 for the reader’s

convenience.

Theorem 3 (Cf. Proposition 3 of AWA (2006).) Suppose that β is the same

for all households. Suppose further that inter-household transfers are not pos-

sible. Then welfare is maximized by dividing the endowment between two ac-

counts: a completely liquid account (that can be used in both period 1 and

period 2) and a completely illiquid account (that can be used only in period

2). In particular types in the separating interval ΘS – which consists of those

θ ∈ Θ such that θ < θ1, and which will be empty if θ1 ≤ θ – choose c1 strictly

less than the balance of the liquid account; and types in the pooling interval ΘP

– which consists of those θ ∈ Θ such that θ ≥ θ1, and which is never empty –

set c1 equal to the balance of the liquid account (and therefore set c2 equal to

the balance of the completely illiquid account).
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Our theorem generalizes AWA’s analysis in two respects. First, AWA’s

analysis covers the case θ1 > θ, whereas our analysis holds for all values

of θ1. Second, AWA’s analysis shows that the two-account system is opti-

mal in the class of continuous incentive-compatible consumption allocations,

whereas our analysis shows that the two-account system is optimal in the class

of all incentive-compatible consumption allocations. The first point could be

expressed by saying that AWA’s analysis covers the partial-separation case,

whereas our analysis covers both the pooling and the partial-separation case.

The second point is important, because many incentive-compatible consump-

tion allocations – including some of the simplest possible incentive-compatible

consumption allocations – are discontinuous.

B.2 A Candidate Utility Allocation

Our strategy of proof is to construct a candidate utility allocation and a candi-

date Lagrange multiplier, and then show that the utility allocation maximises

the Lagrangian when violations of the resource constraint are penalized using

the Lagrange multiplier.

We begin by constructing a candidate consumption allocation. This is

obtained by requiring that: (i) all types θ in the separating interval ΘS =

{θ | θ ∈ Θ, θ < θ1} = [ θ, θ1) choose freely from the unconstrained budget line,

namely the set of all (c1, c2) such that c1 ≥ 0, c2 ≥ 0 and c1 + c2 = Y ; and (ii)

all types θ in the pooling interval ΘP = {θ | θ ∈ Θ, θ ≥ θ1} = [ max{ θ, θ1}, θ ]

receive the allocation that the (possibly hypothetical) type θ1 would choose

freely from the unconstrained budget line.42

We transform the candidate consumption allocation (c1, c2) : Θ → (0∞)

into a candidate utility allocation (r1, r2) : Θ→ R by setting r1(θ) = u1(c1(θ))

and r2(θ) = u2(c2(θ)). We would like to show that the utility allocation (r1, r2)

42The consumption allocation will be interior if and only if

u′2(Y )

u′1(0+)
<

min{θ1, θ}
β

≤ θ1
β
<
u′2(0+)

u′1(Y )
.

Assumption A2 obviously implies this condition.
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is optimal among all economically meaningful utility allocations (v1, v2).

This sets up a mathematical hurdle. For, while (r1, r2) itself is fairly reg-

ular (it is a continuously differentiable function of θ with a kink at θ1), the

alternative utility allocations (v1, v2) may not even be continuous. We will get

over this hurdle by using the one regularity property that incentive-compatible

utility allocations do possess: they are monotonic. Hence they are functions

of bounded variation.

B.3 Functions of Bounded Variation on Θ

There are a number of competing definitions of a function of bounded variation.

According to one elementary definition, a function f : Θ → R is of bounded

variation iff it is the difference of two bounded and non-decreasing functions

f+, f− : Θ → R. The most serious drawback with this definition for our

purposes is that the functions defined in this way do not form a function

space. This definition cannot therefore be used in a Lagrangian analysis. A

second drawback of the definition is that it does not capture the behaviour

of a function of bounded variation at the endpoints of Θ. We shall therefore

adopt a definition that leads directly to a usable function space, and which

ties down the behaviour of a function at the endpoints of Θ.

The intuitive idea is to say that f is a function of bounded variation on Θ

iff it is the distribution function of a bounded Borel measure on Θ plus a con-

stant of integration. More precisely, we begin from a constant of integration,

denoted suggestively by fL( θ ), and a bounded Borel measure on Θ, denoted

suggestively by f ′. We then define the left-hand limits fL of f by

fL(θ) = fL( θ ) + f ′([ θ, θ ))

for all θ ∈ Θ (including θ) and the right-hand limits fR of f by

fR(θ) = fL( θ ) + f ′([ θ, θ ])

for all θ ∈ Θ (including θ). And we endow the set of functions obtained in this

57



way with the norm

‖f‖BV = |fL( θ )|+ ‖f ′‖TV ,

where ‖·‖TV is the total-variation norm on bounded Borel measures on Θ.

This definition has at least three advantages: it is concrete; it builds on

familiar ideas like distribution functions and the total-variation norm; and

it brings out the subtleties implicit in the concept of a function of bounded

variation. One subtlety is the fact that a “function” of bounded variation is

not a function in the narrow sense of that word: it is only well defined where

fL = fR, and there may be a countable set of points at which this is not the

case. (These points are precisely the atoms of the bounded Borel measure f ′.

As such, they may include the endpoints θ and θ.) A second subtlety is the fact

that a function of bounded variation has limits from both the left and right at

all points of Θ, including a limit from the left at θ and a limit from the right

at θ. (This makes perfect sense if one views functions of bounded variation on

Θ as restrictions to Θ of functions of bounded variation on (0,∞).) In view

of these subtleties, one cannot simply adopt a convention that all functions of

bounded variation are (say) right continuous.

B.4 Functions of Bounded Variation on (0,∞)

The discussion of the previous section applies mutatis mutandis to functions

of bounded variation on (0,∞). The main differences are that: (i) we do not

need to consider behaviour at the endpoints of the interval (0,∞); and (ii) it

is preferable to specify the constant of integration at an interior point. Rather

than work through this material in general, we shall simply discuss the special

case of F ′.

We note first that – according to Assumption A2 – the support of F ′ (as

a function) is contained in Θ. It follows, first, that F ′L( θ ) = F ′R( θ ) = 0. It

follows, second, that the support of F ′′ (as a measure) is contained in Θ. In

other words, |F ′′| ((0, θ)) = |F ′′| ((θ,∞)) = 0.

Now, because |F ′′| ((0, θ)) = 0, we can suppress the constant of integration

58



in the formulae for F ′ in terms of F ′′. More explicitly, we have

F ′L(θ) = F ′′((0, θ)),

F ′R(θ) = F ′′((0, θ])

for all θ > 0. It then follows that

0 = F ′R( θ ) = F ′′(( 0, θ ]) = F ′′(( 0, θ )) + F ′′([ θ, θ ])

= F ′L( θ ) + F ′′([ θ, θ ]) = F ′′([ θ, θ ]).

In other words, F ′′ assigns total mass 0 to Θ.

B.5 The Lagrangian

Denote by BV(Θ,R) the Banach space of functions of bounded variation on Θ

with the norm ‖·‖BV , and by

Ot = BV(Θ, (ut(0+), ut(∞−)))

the subset of BV(Θ,R) consisting of functions taking values in the interior of

the range of ut. (Recall that ut is the utility function for date t.) Denote by

Ω the set of utility allocations

v = (v1, v2) ∈ O1 ×O2

such that

θ v′1 + β v′2 = 0 (ICL)

and

v′1 ≥ 0. (ICM)

(The idea here is to split the incentive-compatibility condition into the linear

part ICL and the monotonic part ICM.) In other words, let Ω be the set of

59



incentive-compatible utility allocations. Define the objective function

M : BV(Θ,R)2 → R

by the formula

M(v) =

∫
(θ v1 + v2)F ′ `(dθ),

where ` is Lebesgue measure, and define the budget operator

N : O1 ×O2 → BV(Θ,R)

by the formula

(N(v))(θ) = Y − C1(v1(θ))− C2(v2(θ)).

Then the planner’s problem is to maximize M over the the set of all utility

allocations v ∈ Ω such that N(v) ≥ 0.

Remark 4 We use the notation `(dθ) rather than dθ in the formula for M

in order to be consistent with the notation for integration elsewhere in this

appendix.

Since N takes values in BV(Θ,R), a Lagrange multiplier is a continuous

linear functional on BV(Θ,R). Denote the space of all continuous linear func-

tionals on BV(Θ,R) by BV(Θ,R)∗. Then the Lagrangian is the mapping

L : Ω× BV(Θ,R)∗ → R

given by the formula

L(v;λ) = M(v) + 〈N(v), λ〉 ,

where 〈N(v), λ〉 denotes the real number obtained when the continuous linear

functional λ ∈ BV(Θ,R)∗ is evaluated at the point N(v) ∈ BV(Θ,R).
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Remark 5 Notice that both M and N are defined on open sets containing Ω,

and not just on Ω itself.

Remark 6 M is well defined since v1 and v2 are well defined except at a

countable number of points.

Remark 7 N is well defined since ut(0+) < min vt ≤ max vt < ut(∞−) and

Ct is continuously differentiable on (ut(0+), ut(∞−)). Hence

‖(Ct ◦ vt)′‖TV ≤ K ‖v′t‖TV ,

where

K = max{C ′t(w) | w ∈ [ min vt,max vt ]} .

Remark 8 According the the Riesz representation theorem, the dual C(Θ,R)∗

of the space C(Θ,R) of continuous functions on Θ can be represented by the

spaceM(Θ,R) of bounded Borel measures on Θ. Unfortunately, there does not

seem to be a correspondingly tractable representation for the dual BV(Θ,R)∗

of the space BV(Θ,R) of functions of bounded variation on Θ. This might be

an obstacle to analyzing necessary conditions, where we would not have any

control over the Lagrange multiplier. It is less of a problem when it comes

to analyzing sufficiency conditions, where we are free to choose the Lagrange

multiplier.

B.6 A Space of Lagrange Multipliers

One can associate continuous linear functionals in BV(Θ,R)∗ with bounded

Borel measures in M(Θ,R) as follows. Suppose that we are given Λ ∈
M(Θ,R). Then we can construct λR ∈ BV(Θ,R)∗ by means of the formula

〈f, λR〉 =

∫
fR(θ) Λ(dθ),

where fR is the right-continuous version of f . In this way we obtain a closed

linear subspace of BV(Θ,R)∗. It turns out that this subspace is big enough

for our purposes.
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Remark 9 By the same token, we can construct λL ∈ BV(Θ,R)∗ by means

of the formula

〈f, λL〉 =

∫
fL(θ) Λ(dθ),

where fL is the left-continuous version of f .

Remark 10 Notice that λL 6= λR and, while both λL and λR seem quite nat-

ural, neither seems to have a claim to being canonical.

Remark 11 We use the notation Λ(dθ) in the definition of 〈f, λR〉 and 〈f, λL〉
in order to emphasize that the integral in question is the Lebesgue integral of a

measurable function with respect to the measure Λ. (The notation dΛ(θ) might

be taken to suggest that the integral in question was the Riemann-Stieltjes inte-

gral of a continuous function with respect to the function of bounded variation

Λ.)

B.7 The Directional Derivative of the Lagrangian

Let us fix Λ ∈M(Θ,R) and consider L( · ;λR). If our candidate allocation r ∈
Ω maximizes L( · ;λR) then, for all v ∈ Ω, the directional derivative ∇sL(r;λR)

of L( · ;λR) at r in the direction s = v − r must be non-positive. Conversely

if, for all v ∈ Ω, ∇sL(r;λR) is non-positive, then r ∈ Ω maximizes L( · ;λR).

The purpose of the present section is to derive a formula for ∇sL(r;λR). This

formula will then be used to guide our eventual choice of Λ.

In view of our choice of λR, we have

L(v;λR) =

∫
(θ v1R + v2R)F ′ `(dθ) +

∫
(Y − C1(v1R)− C2(v2R)) Λ(dθ).

Hence

∇sL(r;λR) =

∫
(θ s1R + s2R)F ′ `(dθ)−

∫
(C ′1(r1R) s1R + C ′2(r2R) s2R) Λ(dθ).

Now, because F is continuous, the standard formula for integration by
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parts shows that ∫
s2R F

′ `(dθ) = [ s2 F ]θ+θ− −
∫
F s′2(dθ),

where:

• [ s2 F ]θ+θ− denotes the difference between the right-hand limit of s2 F at

θ and the left-hand limit of s2 F at θ;

•
∫
F s′2(dθ) denotes the integral of F with respect to the measure s′2.

Furthermore, it follows from incentive compatibility that θ s′1+β s′2 = 0. Hence∫
F s′2(dθ) = −

∫
F θ

β
s′1(dθ) = − 1

β
[ s1 (θ F ) ]θ+θ− + 1

β

∫
s1R (θ F )′ `(dθ),

(integrating by parts again, and using the fact that F is continuous). Hence

the first integral in the directional derivative∫
(θ s1R + s2R)F ′ `(dθ) =

∫
θ s1R F

′ `(dθ) +

∫
s2R F

′ `(dθ)

=

∫
θ s1R F

′ `(dθ) + [ s2 F ]θ+θ− + 1
β

[ s1 (θ F ) ]θ+θ− −
1
β

∫
s1R (θ F )′ `(dθ)

=
(
θ
β
s1R( θ ) + s2R( θ )

)
F ( θ )− 1

β

∫
s1R ((1− β) θ F ′ + F ) `(dθ)

(where we have used the fact that F ( θ ) = 0).

Next, G be the distribution function of the measure C ′2(r2R) Λ. I.e. let G

be the unique element of BV(Θ,R) such that G′ = C ′2(r2R) Λ and GL( θ ) = 0.

Then ∫
C ′2(r2R) s2R Λ(dθ) =

∫
s2RG

′(dθ)

= [ s2G ]θ+θ− −
∫
Gs′2(dθ) +

∑
θ∈[ θ ,θ ]

∆s2 ∆G,

where ∆s2 and ∆G denote the jumps in s2 and G at θ (if any). Furthermore,

it follows from incentive compatibility that θ s′1 + β s′2 = 0. In particular,
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θ∆s1 + β∆s2 = 0. Hence∫
Gs′2(dθ) = −

∫
G θ

β
s′1(dθ)

= − 1
β

[ s1 (θ G) ]θ+θ− + 1
β

∫
s1R (θ G)′ (dθ)− 1

β

∑
θ∈[ θ ,θ ]

∆s1 ∆(θ G)

= − 1
β

[ s1 (θ G) ]θ+θ− + 1
β

∫
s1R (θ G)′ (dθ)− 1

β

∑
θ∈[ θ ,θ ]

∆s1 θ∆G

(integrating by parts again and using the fact that ∆(θ G) = θ∆(G)), and∑
θ∈[ θ ,θ ]

∆s2 ∆G = − 1
β

∑
θ∈[ θ ,θ ]

θ∆s1 ∆G.

Overall, ∫
C ′1(r1R) s1R Λ(dθ) =

∫
C ′1(r1R)

C ′2(r2R)
s1RG

′(dθ)

and∫
C ′2(r2R) s2R Λ(dθ) = [ s2G ]θ+θ− + 1

β
[ s1 (θ G) ]θ+θ− −

1
β

∫
s1R (θ G)′ (dθ)

= s2R( θ )GR( θ ) + 1
β
s1R( θ ) θ GR( θ )− 1

β

∫
s1R (θ G′(dθ) +G`(dθ))

=
(
θ
β
s1R( θ ) + s2R( θ )

)
GR( θ )− 1

β

∫
s1R (θ G′(dθ) +G`(dθ))

(where we have used the facts that GL( θ ) = 0 and (θ G)′ (dθ) = θ G′(dθ) +

G`(dθ)).
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Finally, putting all of this information together, we have

∇sL(r;λR) =
(
θ
β
s1R( θ ) + s2R( θ )

)
F ( θ )− 1

β

∫
s1R ((1− β) θ F ′ + F ) `(dθ)

−
∫
C ′1(r1R)

C ′2(r2R)
s1RG

′(dθ)

−
(
θ
β
s1R( θ ) + s2R( θ )

)
GR( θ ) + 1

β

∫
s1R (θ G′(dθ) +G`(dθ))

=
(
θ
β
s1R( θ ) + s2R( θ )

) (
F ( θ )−GR( θ )

)
+ 1
β

∫
s1R (G− (1− β) θ F ′ − F ) `(dθ)

+ 1
β

∫
s1R

(
θ − β C

′
1(r1R)

C ′2(r2R)

)
G′(dθ).

B.8 A Candidate Lagrange Multiplier

We are now in a position to motivate our choice of Lagrange multiplier Λ. We

shall do this in two steps. First, we motivate our choice of G. Second, we

show how to translate our choice of G into a choice of Λ.

In choosing G, the broad aim is to ensure that ∇sL(r;λR) ≤ 0. However,

given that we have only limited control over s, it will be helpful to make as

many of the terms in the formula for ∇sL(r;λR) vanish as possible.

Recall that

∇sL(r;λR) =
(
θ
β
s1R( θ ) + s2R( θ )

) (
F ( θ )−GR( θ )

)
+ 1
β

∫
s1R (G− Γ) `(dθ)

+ 1
β

∫
s1R

(
θ − β C

′
1(r1R)

C ′2(r2R)

)
G′(dθ),

where Γ = (1− β) θ F ′ − F . We can therefore make a start by requiring that

GR( θ ) = F ( θ ).

This will ensure that the first term vanishes.
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Remark 12 At this point we have specified both GL( θ ) and GR( θ ). It re-

mains to specify G in the interior of Θ.

Next, suppose that θ1 > θ. Then

C ′1(r1R)

C ′2(r2R)
=

{
θ
β

for θ ∈ ΘS = [ θ, θ1 )
θ1
β

for θ ∈ ΘP = [ θ1, θ ]

}
.

Hence the expression for ∇sL(r;λR) simplifies to

1
β

∫
ΘS∪ΘP

s1R (G− Γ) `(dθ) + 1
β

∫
ΘP

s1R (θ − θ1)G′(dθ).

Suppose further that we follow the suggestion of AWA (2006), and put G =

Γ on ΘS, where Γ is the function defined in Section B.1 above. Then the

contribution to∇sL(r;λR) from the separating interval ΘS vanishes altogether,

and all that is left is the contribution

1
β

∫
ΘP

s1R (G− Γ) `(dθ) + 1
β

∫
ΘP

s1R (θ − θ1)G′(dθ)

to ∇sL(r;λR) from the pooling interval ΘP . Suppose finally that we follow the

suggestion of AWA (2006), and put G = F ( θ ) on ( θ1, θ ). Then the measure

G′ will have an atom of size F ( θ )−ΓL(θ1) at θ1, and it will vanish on ( θ1, θ ].

Since the term θ − θ1 multiplying G′(dθ) vanishes at θ1, the second integral

itself vanishes, and the first integral reduces to

1
β

∫
ΘP

s1R

(
F ( θ )− Γ

)
`(dθ).

Next, suppose that θ1 ≤ θ. In this case, the expression for ∇sL(r;λR)

simplifies to

1
β

∫
s1R (G− Γ) `(dθ) + 1

β

∫
s1R (θ − θ1)G′(dθ).

Suppose further that we follow the suggestion of AWA (2006), and put G =
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F ( θ ) on the whole of ( θ, θ ). Then the measure G′ will have an atom of size

F ( θ ) at θ, and it will vanish on ( θ, θ ]. Hence the expression for ∇sL(r;λR)

becomes

1
β

∫
s1R

(
F ( θ )− Γ

)
`(dθ) + 1

β
s1R( θ ) ( θ − θ1)F ( θ ).

In other words, compared with the case θ1 > θ, there is an extra term arising

from the atom of G′ at θ.

Finally, we obtain the Lagrange multiplier Λ itself from the formula

Λ =
1

C ′2(r2R)
G′.

B.9 Non-Negativity of the Lagrange Multiplier

Since C ′2(r2R) > 0, Λ ≥ 0 iff G′ ≥ 0. We will show that G′ ≥ 0. Suppose first

that θ1 > θ. Then we have

GL( θ ) = 0

G = Γ on ( θ, θ1 )

G = F ( θ ) on ( θ1, θ )

GR( θ ) = F ( θ )

Now, it follows from the formula for Γ that

GR( θ ) = ΓR( θ ) = (1− β) θ F ′R( θ ) + F ( θ ) = (1− β) θ F ′R( θ ) ≥ 0.

And GL( θ ) = 0 by construction. Hence

∆G( θ ) = GR( θ )−GL( θ ) ≥ 0.
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Next, it follows from Assumption A4 that Γ is non-decreasing on ( θ, θ1). Hence

G′ = Γ′ ≥ 0 there. Third, we have

∆G( θ1 ) = F ( θ )− ΓL( θ1 ).

But if it were the case that ΓL( θ1 ) > F ( θ ) then there would be an open

interval ( θ1− ε, θ1 ) on which Γ > F ( θ ). This would contradict the definition

of θ1 as the minimum θ ∈ ( 0, θ ) such that 1
θ−t

∫ θ
t

Γ(s)ds ≥ F ( θ ) for all

t ∈ [ θ, θ ). Hence ΓL( θ1 ) ≤ F ( θ ) and ∆G( θ1 ) ≥ 0. Fourth, we have G′ = 0

on ( θ1, θ ). Finally, we obviously have ∆G( θ ) = 0.

Suppose now that θ1 ≤ θ. Then we have

GL( θ ) = 0

G = F ( θ ) on ( θ, θ )

GR( θ ) = F ( θ ).

So it is obvious that G′ ≥ 0 on the whole of [ θ, θ ].

B.10 Non-Positivity of the Directional Derivative

Suppose that θ1 > θ. Then, in the light of the discussion in Section B.8, we

have

∇sL(r;λR) = 1
β

∫
ΘP

s1R

(
F ( θ )− Γ

)
`(dθ).

Define H : (0,∞)→ R by the formula

H(θ) =

∫ θ

θ

(
Γ− F ( θ )

)
`(dθ).
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Then ∫
ΘP

s1R

(
F ( θ )− Γ

)
`(dθ) =

∫
[ θ1,θ ]

s1R

(
F ( θ )− Γ

)
`(dθ)

=

∫
[ θ1,θ ]

s1RH
′ `(dθ)

= [ s1H ]θ+θ1− −
∫

[ θ1,θ ]

H s′1(dθ)

(integrating by parts and using the fact that H is continuous). Moreover

[ s1H ]θ+θ1− = s1R( θ )H( θ )− s1L( θ1 )H( θ1 )

and ∫
[ θ1,θ ]

H s′1(dθ) = H( θ1 ) ∆s1( θ1 ) +

∫
( θ1,θ )

H s′1(dθ) +H( θ ) ∆s1( θ ).

Hence, overall,

∇sL(r;λR) = −H( θ1 ) s1R( θ1 )−
∫

( θ1,θ )

H s′1(dθ) +H( θ ) s1L( θ )

= −
∫

( θ1,θ )

H s′1(dθ)

(since H( θ ) = 0 by construction and H( θ1 ) = 0 by definition of θ1). Now

v′1 ≥ 0 on the whole of Θ, since v1 is non-decreasing, and r′1 = 0 on ( θ1, θ ),

since r1 is constant there. Hence s′1 ≥ 0 on ( θ1, θ ). On the other hand, for all

θ ∈ [ θ1, θ ], we have

H(θ) =

∫ θ

θ

(
Γ− F ( θ )

)
`(dθ) = ( θ − θ )

(
1
θ−θ

∫ θ

θ

Γ `(dθ)− F ( θ )

)
≥ 0,

by definition of θ1. Hence ∇sL(r;λR) ≤ 0, as required.

Remark 13 Notice that s1 is the difference of the two non-decreasing func-

tions v1 and r1. Hence there is no general reason why s1 should be non-
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decreasing. The situation is saved by the fact that r1 is constant on ( θ1, θ ).

Suppose now that θ1 ≤ θ. Then, in the light of the discussion in Section

B.8, we have

∇sL(r;λR) = 1
β
s1R( θ ) ( θ − θ1 )F ( θ ) + 1

β

∫
s1R

(
F ( θ )− Γ

)
`(dθ).

Now, arguing as in the case θ1 > θ, we have∫
s1R

(
F ( θ )− Γ

)
`(dθ) =

∫
[ θ,θ ]

s1R

(
F ( θ )− Γ

)
`(dθ)

=

∫
[ θ,θ ]

s1RH
′ `(dθ)

= [ s1H ]θ+θ− −
∫

[ θ,θ ]

H s′1(dθ)

= −H( θ ) s1R( θ )−
∫

( θ,θ )

H s′1(dθ) +H( θ ) s1L( θ )

= −H( θ ) s1R( θ )−
∫

( θ,θ )

H s′1(dθ)

(since H( θ ) = 0 by construction). Hence, overall, we have

β∇sL(r;λR) =
(
( θ − θ1 )F ( θ )−H( θ )

)
s1R( θ )−

∫
( θ,θ )

H s′1(dθ).

But

( θ − θ1 )F ( θ )−H( θ ) =

∫ θ

θ1

F ( θ ) `(dθ)−
∫ θ

θ

(Γ− F ( θ )) `(dθ)

(by definition of H)

= −
∫ θ

θ1

(
Γ− F ( θ )

)
`(dθ)−

∫ θ

θ

(
Γ− F ( θ )

)
`(dθ)

(since Γ = 0 on [ θ1, θ ))

= −H( θ1 )
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(by definition of H again)

= 0.

(by definition of θ1). Hence

β∇sL(r;λR) = −
∫

( θ,θ )

H s′1(dθ).

Hence, arguing as in the case θ1 > θ, ∇sL(r;λR) ≤ 0.

C Proof of Theorem 14

We now study the case in which the government can make inter-household

transfers. Specifically, we now replace household-by-household budget balance

(Equation 7) with overall budget balance (Equation 6). With overall budget

balance, we will show that a combination of a perfectly liquid and a perfectly

illiquid account is not sufficient to maximize social surplus. We continue to

make assumptions A1-A5. To these assumptions we add:

A6 F ′ is bounded away from 0 on ( θ, θ ).43

Theorem 14 Suppose that inter-household transfers are possible. A two-

account system with one completely liquid account and one completely illiquid

account does not maximize welfare.

Intuitively, when inter-household transfers are possible (in the interior case,

with partial separation), we can use an incentive compatible mechanism to

redistribute c1 away from low−θ types (i.e., households with low marginal

utility, ceteris paribus). This theorem is proven in Appendix C.

C.1 The Optimization Problem of the Planner

If self 1 is presented with two accounts, a perfectly liquid account containing

the amount xliquid > 0 and a perfectly illiquid account containing the amount

43In particular, both the right-hand limit F ′R( θ ) of F ′ at θ and the left-hand limit F ′L( θ )
of F ′ at θ are strictly positive.
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xilliquid ≥ 0, then the outcome will depend on her type θ. There will exist

θ2 ∈ (0,∞) such that: if θ < θ2, then she consumes less than the balance

xliquid in her liquid account: and, if θ ≥ θ2, then she consumes the whole of

xliquid. The cutoff θ2 need not lie in [ θ, θ ]. It could be that θ2 < θ, in which

case there will be perfect pooling: all types will consume the whole of xliquid

and both c1 and c2 will be constant. Or it could be that θ2 > θ, in which case

there will be perfect separation: all types will consume less than xliquid, c1 will

be strictly increasing in θ and c2 will be strictly decreasing in θ.

More generally, we will obtain consumption allocations c1, c2 : Θ→ (0,∞)

and associated utility allocations r1, r2 : Θ → R, where the latter are given

by the formulae r1(θ) = u1(c1(θ)) and r2(θ) = u2(c2(θ)). The overall utility

allocation r = (r1, r2) will be a smooth function of θ for θ < θ2, have a kink at

θ2, and be constant for θ > θ2. The idea behind the proof is to find necessary

conditions for utility allocations of this type to be optimal, and to use these

necessary conditions to derive a contradiction.

The first step is to formulate the optimization problem of the planner.

We do this in terms of general utility allocations v1, v2 : Θ → R, reserving

the notation r1, r2 for the specific allocations arising from two-account sys-

tems with one completely liquid account and one completely illiquid account.

Accordingly, the planner seeks to maximize social welfare∫
(θ v1(θ) + v2(θ)) dF (θ)

over utility allocations

(v1, v2) : [ θ, θ ]→ (u1(0+), u1(∞−))× (u2(0+), u2(∞−))

subject to aggregate budget balance and incentive compatibility. Aggregate

budget balance can be expressed in the form∫
(Y − C1(v1(θ))− C2(v2(θ))) dF (θ) ≥ 0, (BC)

where Ct = u−1
t for t ∈ {1, 2}. Incentive compatibility breaks down into two

72



parts, a linear part

θ v′1 + β v′2 = 0 (ICL)

and a monotonic part

v′2 ≤ 0. (ICM)

Remark 15 The two conditions (ICL) and (ICM) are simply the differential

counterpart of the usual integral representation of incentive compatibility in a

mechanism-design problem.

C.2 The Case θ2 ∈ ( θ, θ )

Consider first the case in which xliquid and xilliquid are such that θ2 ∈ ( θ, θ ). In

this case, the second step is to parameterize candidate solutions v = (v1, v2) to

the planner’s problem in terms of boundary values v1( θ ), v2( θ ) and continuous

functions v′1L : [ θ, θ2 ]→ R, v′1R :
[
θ2, θ

]
→ R. More precisely, we can put:

1. v1(θ) = v1( θ )−
∫ θ
θ
v′1R(t) dt for θ ∈

[
θ2, θ

]
;

2. v1(θ) = v1( θ2 )−
∫ θ2
θ
v′1L(t) dt for θ ∈ [ θ, θ2 ];

3. v′2R(θ) = − θ
β
v′1R(θ) for θ ∈

[
θ2, θ

]
;

4. v′2L(θ) = − θ
β
v′1L(θ) for θ ∈ [ θ, θ2 ];

5. v2(θ) = v2( θ )−
∫ θ
θ
v′2R(t) dt for θ ∈

[
θ2, θ

]
;

6. v2(θ) = v2( θ2 )−
∫ θ2
θ
v′2L(t) dt for θ ∈ [ θ, θ2 ].

In other words: v1 is the continuous function with continuous derivative v′1L
on [ θ, θ2 ), continuous derivative v′1R on

(
θ2, θ

]
and value v1( θ ) at θ; and v2 is

the continuous function with continuous derivative v′2L on [ θ, θ2 ), continuous

derivative v′2R on
(
θ2, θ

]
and value v2( θ ) at θ.

Remark 16 Notice that the two-account system described in Theorem 14 gives

rise to a utility allocation r = (r1, r2) satisfying conditions 1-6. Moreover –
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as we shall see below – in order to show that r is not optimal, it suffices to

consider variations in this same class. We simply do not need to consider

variations in which (say) θ2 changes or v = (v1, v2) can be discontinuous.

The third step is to formulate the Langrangian. This can be written

L(v1( θ ), v2( θ ), v′1L, v
′
1R, λ, ζL, ζR) =

∫
(θ v1(θ) + v2(θ)) dF (θ)

+λ

∫
(Y − C1(v1(θ))− C2(v2(θ))) dF (θ)

−
∫

[ θ,θ2 ]

v′2L(θ) dζL(θ)

−
∫

[ θ2,θ ]
v′2R(θ) dζR(θ), (8)

where:

1. the arguments of L are the parameters v1( θ ), v2( θ ), v′1L and v′1R, and

the multipliers λ, ζL and ζR;

2. λ is a scalar (namely the multiplier on the aggregate budget constraint);

3. ζL is a finite non-negative Borel measure on [ θ, θ2 ] (namely the multiplier

associated with the non-positivity constraint on v′2L);

4. ζR is a finite non-negative Borel measure on
[
θ2, θ

]
(namely the multi-

plier associated with the non-positivity constraint on v′2R);

5. the variables v1, v2, v′2L and v′2R on the right-hand side are determined

by the parameters v1( θ ), v2( θ ), v′1L and v′1R as explained above.

Remark 17 The Langrangian does not include a term corresponding to (ICL).

This is because we have used (ICL) to solve for v′2L and v′2R in terms of v′1L
and v′1R.

The fourth step is to note that we can associate parameters (r1( θ ), r2( θ ), r′1L, r
′
1R)

with the reference utility allocation (r1, r2) and parameters (v1( θ ), v2( θ ), v′1L, v
′
1R)
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with the alternative utility allocation (v1, v2) in the obvious way, and take the

derivative of the Langrangian at the parameter values (r1( θ ), r2( θ ), r′1L, r
′
1R)

in the direction (s1( θ ), s2( θ ), s′1L, s
′
1R), where s = v − r. Furthermore, this

calculation can be simplified by noting that the variables (v1, v2, v
′
2L, v

′
2R) in

the RHS of the equation for the Langrangian are linear in the underlying pa-

rameters (v1( θ ), v2( θ ), v′1L, v
′
1R). Hence we can simply take the derivative of

the RHS at the point (r1, r2, r
′
2L, r

′
2R) in the direction (s1, s2, s

′
2L, s

′
2R) and only

then substitute for (s1, s2, s
′
2L, s

′
2R) in terms of (s1( θ ), s2( θ ), s′1L, s

′
1R).

Taking the derivative of the RHS at the point (r1, r2, r
′
2L, r

′
2R) in the direc-

tion (s1, s2, s
′
2L, s

′
2R), we obtain

0 =

∫
(θ s1 + s2) dF − λ

∫
(C ′1(r1) s1 + C ′2(r2) s2) dF

−
∫

[θ,θ2]

s′2L(θ) dζL(θ)−
∫

[θ2,θ]
s′2R(θ) dζR(θ) (9)

for all feasible (s1, s2, s
′
2L, s

′
2R). Moreover, the constraints must all be satisfied.

That is,

0 =

∫
(Y − C1(r1(θ))− C2(r2(θ))) dF (θ),

0 ≥ r′2L,

0 ≥ r′2R.

Finally, constraint qualification must hold. That is,

0 =

∫
[θ,θ2]

r′2L(θ) dζL(θ), (10)

0 =

∫
[θ2,θ]

r′2R(θ) dζR(θ). (11)

Furthermore, a variation (s1, s2, s
′
2L, s

′
2R) is feasible iff it can be expressed

in terms of the underlying parameters (s1( θ ), s2( θ ), s′1L, s
′
1R). We therefore

substitute for the variation (s1, s2, s
′
2L, s

′
2R) in terms of the underlying param-

eters (s1( θ ), s2( θ ), s′1L, s
′
1R) and manipulate the RHS in such a way as to
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expose the linear dependence of the RHS on s1( θ ), s2( θ ), s′1L and s′1R.

The first contribution to the RHS is
∫
θ s1 dF (θ). Putting F (θ) =

∫
[θ,θ]

F (t) dt,

and noting that θ F −F and s1 are both continuous, we can integrate this con-

tribution by parts to obtain∫
θ s1 dF (θ) =

[
( θ F − F ) s1

]θ
θ− −

∫
( θ F − F ) s′1 dθ

=
(
θ F ( θ )− F ( θ )

)
s1( θ )−

∫
( θ F − F ) s′1 dθ

=
(
θ F ( θ )− F ( θ )

)
s1( θ )

−
∫

[ θ,θ2 ]

( θ F − F ) s′1L dθ −
∫

[ θ2,θ ]
( θ F − F ) s′1R dθ,

The second contribution to the RHS is
∫
s2 dF (θ). For this contribution, we

have ∫
s2 dF (θ) = [F s2]θθ− −

∫
F s′2 dθ

= F ( θ ) s2( θ )−
∫
F s′2 dθ

= F ( θ ) s2( θ )−
∫

[ θ,θ2 ]

F s′2L dθ −
∫

[ θ2,θ ]
F s′2R dθ

= F ( θ ) s2( θ ) +

∫
[ θ,θ2 ]

F θ
β
s′1L dθ +

∫
[ θ2,θ ]

F θ
β
s′1R dθ.

Next, putting Λ1(θ) =
∫

[θ,θ]
C ′1(r1(t)) dF (t), we have

−λ
∫
C ′1(r1) s1 dF = −

∫
s1 λΛ′1 dθ

= − [s1 λΛ1]θθ− +

∫
λΛ1 s

′
1 dθ

= −s1( θ )λΛ1( θ ) +

∫
λΛ1 s

′
1 dθ

= −s1( θ )λΛ1( θ )

+

∫
[ θ,θ2 ]

λΛ1 s
′
1L dθ +

∫
[ θ2,θ ]

λΛ1 s
′
1R dθ.
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Similarly, putting Λ2(θ) =
∫

[θ,θ]
C ′2(r2(t)) dF (t),

−λ
∫
C ′2(r2) s2 dF = −

∫
s2 λΛ′2 dθ

= − [s2 λΛ2]θθ− +

∫
λΛ2 s

′
2 dθ

= −s2( θ )λΛ2( θ ) +

∫
λΛ2 s

′
2 dθ

= −s2( θ )λΛ2( θ )

+

∫
[ θ,θ2 ]

λΛ2 s
′
2L dθ +

∫
[ θ2,θ ]

λΛ2 s
′
2R dθ

= −s2( θ )λΛ2( θ )

−
∫

[ θ,θ2 ]

λΛ2
θ
β
s′1L dθ −

∫
[ θ2,θ ]

λΛ2
θ
β
s′1R dθ.

Finally, we have

−
∫

[θ,θ2]

s′2L(θ) dζL(θ) =

∫
[θ,θ2]

θ
β
s′1L(θ) dζL(θ)

and

−
∫

[θ2,θ]
s′2R(θ) dζR(θ) =

∫
[θ2,θ]

θ
β
s′1R(θ) dζR(θ).

The fifth step is to equate the coefficients of s1( θ ), s2( θ ), s′1L and s′1R to

0. Doing so yields:

0 = θ F ( θ )− F ( θ )− λΛ1( θ ), (12)

0 = F ( θ )− λΛ2( θ ), (13)

0 = −( θ F − F ) dθ + θ
β
F dθ + λΛ1 dθ − θ

β
λΛ2 dθ + θ

β
dζL, (14)

0 = −( θ F − F ) dθ + θ
β
F dθ + λΛ1 dθ − θ

β
λΛ2 dθ + θ

β
dζR. (15)

Now, we certainly have r′2L < 0 on [ θ, θ2 ]. (This is because, if θ < θ2, then

self 1 consumes less than xliquid. Hence r′1L > 0 and r′2L < 0.) It therefore

follows from constraint qualification (namely (10)) that ζL = 0. Equation (14)
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therefore implies that

λ (θΛ2 − β Λ1) = θ F − β (θ F − F ) = (1− β) θ F + β F = Γ (16)

almost everywhere on [θ, θ2], where Γ = (1−β) θ F ′+F and Γ(θ) =
∫

[θ,θ]
Γ(t) dt.

Furthermore, since F ′ is of bounded variation,

θΛ2(θ)

θ − θ
→ θ C ′2(r2(θ))F ′(θ+),

β Λ1(θ)

θ − θ
→ β C ′1(r1(θ))F ′(θ+),

Γ

θ − θ
→ Γ(θ+) = (1− β) θ F ′(θ+)

as θ ↓ θ. But, since (r1(θ), r2(θ)) is chosen freely from the ambient budget line

by the θ type, we must have

C ′1(r1(θ))

θ
=
C ′2(r2(θ))

β
.

We therefore have
θΛ2(θ)− β Λ1(θ)

θ − θ
→ 0

as θ ↓ θ. On the other hand,

Γ

θ − θ
→ (1− β) θ F ′(θ+) > 0

as θ ↓ θ. Passing to the limit in equation (16), we therefore obtain

0 = (1− β) θ F ′(θ+).

But all three terms on the RHS are strictly positive. Indeed: β < 1; θ >

0; and F ′ is bounded away from 0 on ( θ, θ ). We have therefore reached a

contradiction. This establishes that we cannot have θ2 ∈ ( θ, θ ).
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C.3 The Case θ2 ∈ [ θ,∞ )

Consider now the case in which xliquid and xilliquid are such that θ2 ∈ [ θ,∞ ).

In this case, we can derive equations (12, 13 and 14) exactly as in Section C.2

above. In particular, we can still derive equation (14). We can therefore derive

a contradiction by essentially the same argument.

C.4 The Case θ2 ∈ ( 0, θ ]

Consider now the case in which xliquid and xilliquid are such that θ2 ∈ ( 0, θ ].

In this case, we can still derive equations (12, 13 and 15). However, we can

no longer derive equation (14). We therefore need new arguments. The first

point to note is that, since θ2 ≤ θ, all types θ ∈ [ θ, θ ] choose the point that a

hypothetical θ2 type would choose from the ambient budget set. We therefore

have

Λ1( θ ) =

∫
[θ,θ]

C ′1(r1(t)) dF (t) = F ( θ )C ′1(r1(θ2)), (17)

Λ2( θ ) =

∫
[θ,θ]

C ′2(r2(t)) dF (t) = F ( θ )C ′2(r2(θ2)). (18)

Furthermore, since the θ2 type chooses freely from the ambient budget set, we

have
C ′1(r1(θ2))

θ2

=
C ′2(r2(θ2))

β
.

Using (12) and (13), we therefore obtain

θ F ( θ )− F ( θ )

F ( θ )
=

Λ1( θ )

Λ2( θ )
=
C ′1(r1(θ2))

C ′2(r2(θ2))
=
θ2

β
. (19)

Hence

( θ − θ2 )F ( θ ) = θ F ( θ )− β
(
θ F ( θ )− F ( θ )

)
= (1− β) θ F ( θ ) + β F ( θ )

= Γ( θ ), (20)
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where Γ and Γ are as above.

Remark 18 Bearing in mind that θ2 ≤ θ, so that Γ(θ2) = 0, this equation

can also be written

(θ − θ2)F ( θ ) = Γ( θ )− Γ(θ2)

or
1

θ − θ2

∫
[θ2,θ]

Γ(t) dt = F ( θ ). (21)

The significance of this observation is that θ1 satisfies equation (21) too. So,

while the necessary conditions that we have used here do not quite imply that

θ2 = θ1, they do highlight a close relationship between the two. The intuitive

reason for this relationship is clear. If θ2 ≤ θ then all types make the same

choice. In particular, there are no interpersonal transfers. Since this outcome

is – by hypothesis – the optimum in the class of outcomes with or without

transfers, then a fortiori it is the optimum in the class of outcomes without

transfers.

However, we have not yet used equation (15). It follows from this equation

that

dζR = β
θ

( θ F − F ) dθ − F dθ + λ
(
Λ2 − β

θ
Λ1

)
dθ.

In other words, ζR is absolutely continuous w.r.t. Lebesgue measure, with

density

ζ ′R = β
θ

( θ F − F )− F + λ
(
Λ2 − β

θ
Λ1

)
.

Furthermore:

Λ1(θ) =

∫
[θ,θ]

C ′1(r1(t)) dF (t) = F (θ)C ′1(r1(θ2)) =
F (θ)

F ( θ )
Λ1( θ )

=
F (θ)

F ( θ )

θ2

β
Λ2( θ ) =

F (θ)

F ( θ )

θ2

β

F ( θ )

λ
=
θ2

β

F (θ)

λ
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(where the last line follows from (19) and (13)); and

Λ2(θ) =

∫
[θ,θ]

C ′2(r2(t)) dF (t) = F (θ)C ′2(r2(θ2)) =
F (θ)

F ( θ )
Λ2( θ )

=
F (θ)

F ( θ )

F ( θ )

λ
=
F (θ)

λ

(where the last line follows from (13)). Hence

λ (θΛ2 − β Λ1) = (θ − θ2)F (θ)

and

θ ζ ′R = β ( θ F − F )− θ F + (θ − θ2)F

= (θ − θ2)F (θ)− Γ.

Now, F (θ) = Γ(θ) = 0. Hence θ ζ ′R(θ) = 0. Furthermore, we must have

θ ζ ′R ≥ 0 on
(
θ, θ
)
. Hence

θ ζ ′R(θ)− θ ζ ′R(θ)

θ − θ
≥ 0.

Letting θ → θ+, we therefore obtain

(θ ζ ′R)′(θ+) = (β θ − θ2)F ′(θ+) ≥ 0.

Since F ′(θ+) > 0, it follows that

θ2 ≤ β θ. (22)

Similarly, (20) implies that (θ − θ2)F ( θ ) − Γ( θ ) = 0. Hence θ ζ ′R( θ ) = 0.

Hence
θ ζ ′R( θ )− θ ζ ′R(θ)

θ − θ
≤ 0.
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Letting θ → θ−, we therefore obtain

(θ ζ ′R)′(θ−) = (β θ − θ2)F ′(θ−) ≤ 0.

Since F ′(θ−) > 0, it follows that

θ2 ≥ β θ. (23)

But inequalities (22) and (23) are inconsistent with one another, so we have a

contradiction.

Remark 19 We can use the preceding analysis to obtain some perspective

on why a pooling mechanism in which all resources are placed in the illiquid

account is never optimal. Suppose that we replace the inequality constraint

0 ≥ r′2R with an equality constraint and choose the multiplier ζR in such a way

that this constraint is respected. Then, proceeding almost exactly as above, we

will obtain

(θ ζ ′R)
′

= (θ − θ2)F ′ + F − Γ

= (θ − θ2)F ′ − (1− β) θ F ′

= (β θ − θ2)F ′.

Moreover we will have the boundary conditions θ ζ ′R(θ) = 0 and θ ζ ′R( θ ) = 0.

It follows that θ2 ∈
(
β θ, β θ

)
and θ ζ ′R < 0 on

(
θ, θ
)
. Hence a small change

in the direction of any incentive-compatible and fully separating mechanism is

desirable. (This would have the effect of reducing r′2 from 0 – and increasing r′1

from 0 – at all points in the range ( θ, θ ).) In other words, it is always desirable

to allow some flexibility to the decision maker to respond to the information

contained in θ.
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D Analysis of a General (Non-Linear) Mech-

anism

D.1 The Mechanism-Design Problem

In the general mechanism-design problem, the planner chooses a budget set

C ⊂ (0,∞)2

and consumption allocations c1, c2 : Θ×B → (0,∞) to maximize welfare∫ ∫
(θ u1(c1(θ, β)) + u2(c2(θ, β))) f(θ) g(β) dθ dβ

subject to the resource constraint∫ ∫ (
Y − c1(θ, β)− 1

R
c2(θ, β)

)
f(θ) g(β) dθ dβ ≥ 0

and the incentive-compatibility constraint

(c1(θ, β), c2(θ, β)) ∈ argmax
(c̃1,c̃2)∈C

{θ u1( c̃1) + β u2( c̃2)} .

Here, f is the density of θ (associated with distribution function F in the main

text); g is the density of β (associated with distribution function G in the

main text); Y is the per capita endowment; and R is the gross rate of return.

Furthermore, we assume that: Θ = [ θ, θ ]; B = [ β, β ]; 0 < θ < θ < ∞;

0 < β < β < ∞; f is continuous and bounded away from 0 on Θ; g is

continuous and bounded away from 0 on B.

Remark 20 For example: f might take the form

f(θ) =
exp

(
−1

2

(
θ−µ
σ

)2
)

∫ θ
θ

exp
(
−1

2

(
θ−µ
σ

)2
)
dθ

for θ ∈ [ θ, θ ]
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and f(θ) = 0 otherwise, i.e., f might be the density of the univariate normal

distribution with mean µ and variance σ2 truncated to the interval [ θ, θ ]; and

g might take the form

g(β) =
1

β − β
for β ∈ [ β, β ]

and g(β) = 0 otherwise, i.e., g might be the density of the uniform distribution

on the interval [ β, β ].

D.2 Transforming the Problem

The first step in solving this problem is to note that

(c1, c2) ∈ argmax
(c̃1,c̃2)∈C

{θ u1(c̃1) + β u2(c̃2)}

iff

(c1, c2) ∈ argmax
(c̃1,c̃2)∈C

{
θ
β
u1(c̃1) + u2(c̃2)

}
.

The set of optimal choices of the individual therefore depends only on φ = θ / β.

Combining this fact with the assumed continuity of the distribution functions

F and G of θ and β implies that, if we put Φ = [φ, φ ] where φ = θ / β and

φ = θ / β, then the planner can work with consumption allocations c1, c2 :

Φ→ (0,∞) instead of with consumption allocations c1, c2 : Θ×B → (0,∞).

The second step is to note that we can work with utility allocations v1, v2 :

Φ → R instead of with consumption allocations c1, c2 : Φ → (0,∞). The

former are related to the latter via the formulae v1(φ) = u1(c1(φ)) and v2(φ) =

u2(c2(φ)). We can also invert these formulae to get c1(φ) = C1(v1(φ)) and

c2(φ) = C2(v2(φ)).

The third step is to note that we can change variables in the integral

defining welfare and in the integral giving the resource constraint, replacing

(θ, β) with (φ, β).

At this point, the planner’s problem can be expressed as that of choosing

84



v1, v2 : Φ→ R to maximize welfare∫ ∫
(β φ v1(φ) + v2(φ)) β f(β φ) g(β) dφ dβ

subject to the resource constraint∫ ∫ (
Y − C1(v1(φ))− 1

R
C2(v2(φ))

)
β f(β φ) g(β) dφ dβ ≥ 0

and the incentive-compatibility constraint, which now has two parts, namely

a linear part,

0 = φ v′1(φ) + v′2(φ) (ICL)

and a monotonic part,

0 ≤ −v′2(φ). (ICM)

Remark 21 Notice that, whenever c1 and c2 are chosen from a budget set

C, v1 will be non-decreasing and v2 will be non-increasing. However, neither

function need be differentiable (or even continuous). Hence the derivatives

v′1 and v′2 might in principle be a non-negative and a non-positive measure

respectively. This does not invalidate (IC1) or (IC2), both of which make

sense for measures. However, in what follows, we will sometimes reason as if

v′1 and v′2 exist in the usual sense.

The fourth step is to introduce the marginal density h of φ and the condi-

tional density j of β given φ, namely

h(φ) =

∫
β f(β φ) g(β) dβ (24)

and

j(β | φ) =
β f(β φ) g(β)

h(φ)
. (25)

We can also introduce the conditional expectation of β, namely

b(φ) =

∫
β j(β | φ) dβ. (26)
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Remark 22 The limits of integration in the definition of h (namely (24)) are

implicit in the definitions of f and g. Since the integrand will only be non-

zero if both f(β φ) and g(β) are non-zero, these limits are max
{
β , θ / φ

}
and

min
{
β , θ / φ

}
. In particular, the support of the conditional distribution of β

varies with φ:

1. For φ ∈
[
φ ,min

{
θ / β , θ / β

}]
, the support of β is

[
θ / φ , β

]
. In other

words: the range of β types that is consistent with φ is increasing in φ,

and this range always includes β. By the same token, the range of θ

types that is consistent with φ is increasing in φ, and this range always

includes θ.

2. For φ ∈
[
max

{
θ / β , θ / β

}
, φ
]
, the support of β is

[
β , θ / φ

]
. In other

words: the range of β types that is consistent with φ is decreasing in φ,

and this range always includes β.

3. If θ / β < θ / β then, for φ ∈
[
min

{
θ / β , θ / β

}
,max

{
θ / β , θ / β

}]
,

the support of β is [ β , β ]. In other words, if the range of θ types is

large relative to the range of β types, then all β types are consistent with

intermediate values of φ.

4. If θ / β > θ / β then, for φ ∈
[
min

{
θ / β , θ / β

}
,max

{
θ / β , θ / β

}]
,

the support of β is
[
θ / φ , θ / φ

]
. In other words, if the range of θ types

is small relative to the range of β types, then there is no value of φ for

which all β types are consistent with that value.

Armed with b and h, the integral defining welfare and the integral giving

the resource constraint can be expressed∫ (
b(φ)φ v1(φ) + v2(φ)

)
h(φ) dφ (W)

and ∫ (
Y − C1(v1(φ))− 1

R
C2(v2(φ))

)
h(φ) dφ ≥ 0. (R)
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We have therefore completed the transformation of our initial two-dimensional

problem into a purely one-dimensional problem.

The Langrangian for the one-dimensional problem can be written∫ (
b(φ)φ v1(φ) + v2(φ)

)
h(φ) dφ

+λ

∫ (
Y − C1(v1(φ))− 1

R
C2(v2(φ))

)
h(φ) dφ

−
∫

(φ v′1(φ) + v′2(φ))µ(φ)h(φ) dφ

−
∫
v′2(φ) ν(φ)h(φ) dφ,

where the Lagrange multipliers on the resource constraint, the incentive-compatibility

constraint (ICL) and the incentive-compatibility constraint (ICM) take the

form λ ∈ R, µ : Φ→ R and ν : Φ→ R.

D.3 The First-Order Conditions

In order to derive first-order conditions from this Langrangian, we must first

eliminate v′1 and v′2. We can do this by integrating by parts. Taking the third

term of the Langrangian, we obtain

−
∫

(φ v′1 + v′2)µh dφ = −
∫

((φ v1)′ − v1 + v′2)µh dφ

=

∫
v1 µh dφ−

∫
((φ v1)′ + v′2)µh dφ,

where we have dropped the dependence of v1, v2, µ and h on φ. Moreover

−
∫

((φ v1)′ + v′2)µh dφ = − [((φ v1) + v2)µh]φφ +

∫
((φ v1) + v2) (µh)′ dφ

=

∫
((φ v1) + v2) (µh)′ dφ
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(since h(φ) = h(φ) = 0). Similarly, taking the fourth term,

−
∫
v′2 ν h dφ = − [v2 ν h]φφ +

∫
v2 (ν h)′ dφ

=

∫
v2 (ν h)′ dφ.

The Langrangian can therefore be written∫ ((
(b φ+ µ) v1 + v2 + λ

(
Y − C1(v1)− 1

R
C2(v2)

))
h

+ (φ v1 + v2) (µh)′ + v2 (ν h)′
)
dφ.

Differentiating the latter Langrangian with respect to v1 and v2, we obtain

the first-order conditions

0 =
(
b φ+ µ− λC ′1(v1)

)
h+ φ (µh)′

and

0 =

(
1− λ 1

R
C ′2(v2)

)
h+ (µh)′ + (ν h)′.

We also have: (IC1), namely

0 = φ v′1 + v′2;

the complementary slackness condition associated with the resource constraint,

namely

0 ≤
∫ (

Y − C1(v1)− 1
R
C2(v2)

)
h dφ

0 ≤ λ

}
;

and the complementary slackness condition associated with (IC2), namely

0 ≤ −v′2
0 ≤ ν

}
.
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D.4 The Relaxed Problem

We focus on the relaxed version of the problem, in which we do not impose

(IC2). Furthermore, we look for a solution of the relaxed problem in which

the resource constraint holds as an equality. We therefore drop ν from the

equations and tackle the three differential equations

0 =
(
b φ+ µ− λC ′1(v1)

)
h+ φ (µh)′, (27)

0 =

(
1− λ 1

R
C ′2(v2)

)
h+ (µh)′, (28)

0 = φ v′1 + v′2 (29)

and the integral equation

0 =

∫ (
Y − C1(v1)− 1

R
C2(v2)

)
h dφ. (30)

The first step is to make v1 and v2 the subjects of equations (27) and (28).

Putting U1 = (C ′1)−1 and U2 = (C ′2)−1, we obtain

v1 = U1

(a1

λ

)
, (31)

v2 = U2

(a2

λ

)
, (32)

where

a1 = b φ+ µ+
φ (µh)′

h
, (33)

a2 = R

(
1 +

(µh)′

h

)
. (34)

D.5 Solving (27-29) where b and h are Smooth

Consider the equations (27-29) in the open region Φ̊ = Φr
{
φ , θ / β , θ / β , φ

}
.

In this region, both b and h are smooth. Hence we may differentiate (31,32)
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to obtain

v′1 = U ′1

(a1

λ

) a′1
λ
, (35)

v′2 = U ′2

(a2

λ

) a′2
λ

(36)

and, substituting (35,36) in (29),

0 = φU ′1

(a1

λ

) a′1
λ

+ U ′2

(a2

λ

) a′2
λ
.

Next, provided that u1 and u2 have the same coefficient of relative risk

aversion γ, the latter equation is homogeneous in λ. It therefore simplifies

further to

0 = φU ′1(a1) a′1 + U ′2(a2) a′2.

(If u1 and u2 have coefficient of relative risk aversion γ, then U ′1(x) = U ′2(x) =
1
γ
x

1
γ
−2.)

Next, substituting for a′1 and a′2 and collecting terms in µ′′, µ′ and µ, we

obtain

0 =
(
φ2 U ′1 (a1) +RU ′2 (a2)

)
h2 µ′′

+ (φ (φh′ + 2h)U ′1 (a1) + h′RU ′2 (a2))hµ′

+
(
φ
(
h (φh′′ + h′)− φh′2

)
U ′1 (a1) +

(
hh′′ − h′2

)
RU ′2 (a2)

)
µ

+φ (φ b′ + b)U ′1 (a1) h2. (37)

In other words, in the region Φ̊, equations (27-29) reduce to a second-order

ordinary differential equation for µ.

D.6 Solving (27-29) where b and h have Kinks

Now consider the equations (27-29) at the points φ1 = θ / β and φ2 = θ / β,

where both b and h have kinks. We cannot differentiate (31,32) at these points.
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However, we do have

∆v1(φi) = U1

(
a1(φi+)

λ

)
− U1

(
a1(φi−)

λ

)
,

∆v2(φi) = U2

(
a2(φi+)

λ

)
− U2

(
a2(φi−)

λ

)
where

a1(φi+) = b φi + µ(φi+) +
φ (µh)′(φi+)

h(φi)
,

a1(φi−) = b φi + µ(φi−) +
φ (µh)′(φi−)

h(φi)
,

a2(φi+) = R

(
1 +

(µh)′(φi+)

h(φi)

)
,

a2(φi−) = R

(
1 +

(µh)′(φi−)

h(φi)

)
.

Hence, at φi, we can impose the value-matching condition

0 = ∆µ(φi) = µ(φi+)− µ(φi−) (38)

and the incentive condition

0 = φi (U1(a1(φi+))− U1(a1(φi−))) + (U2(a2(φi+))− U2(a2(φi−))) . (39)

D.7 Solving (27-29) at the Endpoints

Assuming for concreteness that φ1 < φ2, we now have the second-order or-

dinary differential equation (37) in the three open intervals (φ, φ1), (φ1, φ2)

and (φ2, φ ). Moreover, we have two boundary conditions at each of φ1 and

φ2. (Cf. (38) and (39).) The obvious way of completing the equation would

therefore be to require that µ take on appropriate values at the boundaries φ

and φ. However, h decays linearly to 0 at both φ and φ. Moreover, inspection

of (37) shows that:

1. the coefficient of µ′′ is positive and of order h2 near φ and φ;
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2. the coefficient of µ′ is positive and of order h near φ, and negative and

of order h near φ;

3. the coefficient of µ is negative and of order 1 near φ and φ.

Hence µ will not take on boundary values at φ and φ in the usual way.44 On

the other hand, the inhomogeneous term, namely

φ (φ b′ + b)U ′1(a1)h2,

is of order h2 near φ and φ. In particular, it is bounded. Hence the relevant

solution of the equation is the one that is bounded near φ and φ.45

D.8 Solving for λ

As we have seen, we can find µ by solving the second-order o.d.e. (37) with

the required boundary conditions at the internal boundaries φ1 and φ2 and

the required boundedness properties at the endpoints φ and φ. Like b and h,

µ can be expected to have kinks at φ1 and φ2. The next step is to solve for λ.

This can be done using the resource equation (30).

Indeed, if u1 and u2 have the same coefficient of relative risk aversion γ,

then we have

Ci(vi) = Ci

(
Ui

(ai
λ

))
=
(ai
λ

) 1
γ
.

Hence, substituting in (30),

0 =

∫ (
Y −

(a1

λ

) 1
γ − 1

R

(a2

λ

) 1
γ

)
h dφ = λ−

1
γ

∫ (
λ

1
γ Y − a

1
γ

1 −
1

R
a

1
γ

2

)
h dφ,

44Intuitively speaking, the dynamics of φ move away from the endpoints φ and φ.
45Since the inhomogeneous term is of order h2 near φ and φ, the solution can in fact be

expected to decay quadratically to 0 at both φ and φ. In particular, we would expect that it

would satisfy µ(φ ) = µ′(φ ) = 0 and µ(φ ) = µ′(φ ) = 0. These equations cannot, however,
be used as boundary conditions. For one thing, there are too many of them! (There are
4 instead of 2.) They are simply additional properties that we would expect the unique
bounded solution to possess.
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or

λ
1
γ =

∫ (
a

1
γ

1 + 1
R
a

1
γ

2

)
h dφ∫

Y h dφ
.

Bearing in mind that a1 and a2 are given in terms of µ by equations (33) and

(34), this gives us a formula for λ in terms of µ.

D.9 Completing the Solution

It is then a straightforward matter to find the remaining unknowns in the

model: v1 and v2 are given in terms of λ and µ by (31) and (32); and c1 and c2

are given in terms of v1 and v2 by the formulae c1 = C1(v1) and c2 = C2(v2).

D.10 Numerical implementation

We generate a numerical solution (using Matlab’s bvp4c function46) for the

second-order differential equation for µ (equation 37) with the boundary con-

ditions described in section D.7 of this appendix.

E Analysis of the Quasi-Linear Limit Case for

a Population of Agents with Heterogeneous

β

E.1 Introduction

In Subsections 3.1 and 4.1, we discuss the quasi-linear limit case of our model:

i.e., the case in which the utility function in the second period is linear (i.e.,

u2(c2) = c2). In this case, the planner’s problem can be written

max

∫ (
θu1(c1) + u2(c2)

)
dF (θ) dG(β) = max

∫ (
θu1(c1) + c2

)
dF (θ) dG(β),

46See https://www.mathworks.com/help/matlab/ref/bvp4c.html
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subject to ∫ (
c1 + c2

)
dF (θ) dG(β) = Y,

φ ∈ arg max
φ′∈Φ
{φu1(c1(φ′)) + u2(c2(φ′))} (IC)

for φ ≡ θ/β.

We study equilibria that satisfy the revelation principle, and, following the

literature, refer to these as direct mechanisms. When we talk about φ, we refer

to the true value of φ elicited from each agent in an equilibrium that satisfies

the revelation principle.

We now turn to proving Theorem 2.

E.2 Proof of Theorem 2

E.2.1 Implementability

Given the representation of the problem in the space of φ, we now effec-

tively have a single-type mechanism-design problem. We begin by trans-

forming the problem into the promised utility space, v1(φ) = u1(c1(φ)) and

v2(φ) = u2(c2(φ)) = c2(φ). We invoke the standard equivalence between global

incentive compatibility and the combination of integral incentive compatibility

and monotonicity. Monotonicity implies v′1(φ) ≥ 0, and in the standard way

we solve the relaxed mechanism (not subject to monotonicity) and verify that

the solution satisfies monotonicity.

Integral incentive compatibility is the standard condition, derived from the

Envelope Theorem. In particular, the Envelope Theorem implies d
dφ

(φv1(φ) + v2(φ)) =

v1(φ), and we obtain integral incentive compatibility by integrating:

φ v1(φ) + v2(φ) = φ v1(φ) + v2(φ) +

∫ φ

φ

v1(ζ)dζ.

We then use integral incentive compatibility to define the function v2 in terms

of the function v1 and the constant v2(φ), which gives us the implementing

function v2 that guarantees integral incentive compatibility:
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v2(φ) = φ v1(φ) + v2(φ) +

∫ φ

φ

v1(ζ)dζ − φ v1(φ).

We then characterize v2(φ) from v1 using the resource constraint. Rewriting

the resource constraint over promised utility in the φ space:∫ (
u−1

1 (v1(φ)) + v2(φ)
)
dH(φ) = Y.

Rearranging: ∫
v2(φ) dH(φ) = Y −

∫
u−1

1 (v1(φ)) dH(φ).

Or, in other words, given a specification of a function v1, we can use this

condition plus the implementability condition to pin down v2. In other words,

if we substitute in the implementability condition for v2, we get an equation

for v2(φ)in terms of v1:

v2(φ) = Y −
∫
u−1

1 (v1(φ)) dH(φ)−φ v1(φ)−
∫ (∫ φ

φ

v1(ζ)dζ − φ v1(φ)

)
dH(φ).

E.2.2 Completing the Model

Lastly, let us rewrite the objective function in terms of φ and v1. The contri-

bution of type-φ agents to social welfare is E[ θ |φ ] v1(φ) + v2(φ). Therefore,

the planner objective function is:∫ (
E[ θ |φ ] v1(φ) + v2(φ)

)
dH(φ).

Substituting in the characterization of v2 above, we get:

max
v1

{∫ (
E[ θ |φ ] v1(φ)− u−1

1 (v1(φ))
)
dH(φ) + Y

}
s.t. (Monotonicity).

That is, the planner chooses a non-decreasing function v1, with the imple-

mentability conditions above defining the function v2 that implements this
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outcome.

From here, we solve the relaxed problem, not subject to monotonicity. The

relaxed problem is simply given by

max
v1

{∫ (
E[ θ |φ ] v1(φ)− u−1

1 (v1(φ))
)
dH(φ) + Y

}
and so has a solution given by the first order condition for optimal allocation

E[ θ |φ ]u′1 (c1(φ)) = 1.

From here, all that remains is to verify that this allocation satisfies mono-

tonicity. Monotonicity arises provided that E[ θ |φ ] is non-decreasing. Hence,

provided E[ θ |φ ] is non-decreasing, we have characterized the optimal alloca-

tion.

E.2.3 The Optimal Penalty

Consider the implied marginal penalty π(φ) that implements the above allo-

cation rule. The marginal trade-off of a private agent is then:

(1− π(φ))φu′1(c1(φ)) = 1.

Therefore, the marginal penalty is:

1− π(φ) =
E[ θ |φ ]

φ
= E

[
θ

φ
|φ
]

= E[ β |φ ].

E.2.4 Homogeneous β

If β is homogeneous, then E[ β |φ ] = β, and we have:

π(φ) = 1− β.

That is, we simply have a Pigouvian tax. This gives another proof of Theorem

1.
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E.2.5 Heterogeneous β

If β is heterogeneous and the regularity condition of Theorem 1 is satisfied,

then as mentioned before we have:

π(φ) = 1− E[ β |φ ].

That is, we have an “average Pigouvian tax”: the optimal tax rate on the

margin for a type-φ agent is the average tax rate in that population.

We know that π(φ) must be close to 1 − β near φ, where the highest β

types are the only ones with that φ type. Similarly, we know that π(φ) ' 1−β
near φ. This suggests a large degree of flexibility over initial withdrawals, and

much tighter restrictions on flexibility for households withdrawing a lot.
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