Filter Results
:
(224)
Show Results For
-
All HBS Web
(2,082)
- Faculty Publications (224)
Show Results For
-
All HBS Web
(2,082)
- Faculty Publications (224)
Page 1 of
224
Results
→
- 2023
- Working Paper
Who Invests in Crypto? Wealth, Financial Constraints, and Risk Attitudes
By: Darren Aiello, Scott R. Baker, Tetyana Balyuk, Marco Di Maggio, Mark J. Johnson and Jason Kotter
We provide a first look into the drivers of household cryptocurrency investing. Analyzing consumer transaction data for millions of U.S. households, we find that, except for high income early adopters, cryptocurrency investors resemble the general population. These...
View Details
Aiello, Darren, Scott R. Baker, Tetyana Balyuk, Marco Di Maggio, Mark J. Johnson, and Jason Kotter. "Who Invests in Crypto? Wealth, Financial Constraints, and Risk Attitudes." NBER Working Paper Series, No. 31856, November 2023.
- 2023
- Working Paper
Cost-Efficient Decarbonization of Portland Cement Production
By: Gunther Glenk, Anton Kelnhofer, Rebecca Meier and Stefan Reichelstein
Accounting for nearly 8% of global annual carbon dioxide (CO2) emissions, the cement industry is considered difficult to decarbonize. While a sizeable number of abatement levers for Portland cement production is becoming technologically ready for deployment, many are...
View Details
Keywords:
Decarbonization;
Carbon Abatement;
Carbon Accounting;
Carbon Emissions;
Carbon Regulation;
Carbon Tax;
Net-zero Emissions;
Management;
Environmental Management;
Sustainable Cities;
Accounting;
Management Analysis, Tools, and Techniques;
Environmental Accounting;
Energy;
Environmental Sustainability;
Construction Industry;
Steel Industry;
Pulp and Paper Industry;
Real Estate Industry;
Consulting Industry;
Energy Industry;
Green Technology Industry;
Manufacturing Industry;
Utilities Industry;
Industrial Products Industry;
Europe;
North America;
South America;
Africa;
Asia
Glenk, Gunther, Anton Kelnhofer, Rebecca Meier, and Stefan Reichelstein. "Cost-Efficient Decarbonization of Portland Cement Production." Harvard Business School Working Paper, No. 24-025, October 2023. (TRR 266 Accounting for Transparency Working Paper Series, No. 120, May 2023.)
- September 2023
- Case
Trilling Foods: Managing People with Data
Trilling Foods, a regional bricks-and-mortar grocery chain, has recently provided its frontline managers with new tools for using data. Allison Andersen, Trilling’s VP of Data Science, has spearheaded these efforts. Yet, as she works with Kent Wade, the general manager...
View Details
Feldberg, Alexandra C., and Jeffrey T. Polzer. "Trilling Foods: Managing People with Data." Harvard Business School Case 424-025, September 2023.
- 2023
- Article
On the Impact of Actionable Explanations on Social Segregation
By: Ruijiang Gao and Himabindu Lakkaraju
As predictive models seep into several real-world applications, it has become critical to ensure that individuals who are negatively impacted by the outcomes of these models are provided with a means for recourse. To this end, there has been a growing body of research...
View Details
Gao, Ruijiang, and Himabindu Lakkaraju. "On the Impact of Actionable Explanations on Social Segregation." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 10727–10743.
- 2023
- Working Paper
Channeled Attention and Stable Errors
We develop a framework for assessing when somebody will eventually notice that she has
a misspecified model of the world, premised on the idea that she neglects information that
she deems—through the lens of her misconceptions—to be irrelevant. In doing so, we...
View Details
Gagnon-Bartsch, Tristan, Matthew Rabin, and Joshua Schwartzstein. "Channeled Attention and Stable Errors." Working Paper, August 2023. (Revise and Resubmit, Quarterly Journal of Economics.)
- 2023
- Article
Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten
By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an...
View Details
Keywords:
Analytics and Data Science;
AI and Machine Learning;
Decision Making;
Governing Rules, Regulations, and Reforms
Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
- July–August 2023
- Article
What Smart Companies Know About Integrating AI
By: Silvio Palumbo and David Edelman
AI has the power to gather, analyze, and utilize enormous volumes of individual customer data to achieve precision and scale in personalization. The experiences of Mercury Financial, CVS Health, and Starbucks debunk the prevailing notion that extracting value from AI...
View Details
Keywords:
AI and Machine Learning;
Customization and Personalization;
Integration;
Technology Adoption
Palumbo, Silvio, and David Edelman. "What Smart Companies Know About Integrating AI." Harvard Business Review 101, no. 4 (July–August 2023): 116–125.
- July 2023 (Revised July 2023)
- Background Note
Generative AI Value Chain
By: Andy Wu and Matt Higgins
Generative AI refers to a type of artificial intelligence (AI) that can create new content (e.g., text, image, or audio) in response to a prompt from a user. ChatGPT, Bard, and Claude are examples of text generating AIs, and DALL-E, Midjourney, and Stable Diffusion are...
View Details
Keywords:
AI;
Artificial Intelligence;
Model;
Hardware;
Data Centers;
AI and Machine Learning;
Applications and Software;
Analytics and Data Science;
Value
Wu, Andy, and Matt Higgins. "Generative AI Value Chain." Harvard Business School Background Note 724-355, July 2023. (Revised July 2023.)
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea...
View Details
Keywords:
Algorithm Bias;
Algorithmic Data;
Race And Ethnicity;
Experimentation;
Promotion;
Marketing And Society;
Big Data;
Privacy;
Data-driven Management;
Data Analysis;
Data Analytics;
E-Commerce Strategy;
Discrimination;
Targeted Advertising;
Targeted Policies;
Pricing Algorithms;
A/B Testing;
Ethical Decision Making;
Customer Base Analysis;
Customer Heterogeneity;
Coupons;
Marketing;
Race;
Gender;
Diversity;
Customer Relationship Management;
Marketing Communications;
Advertising;
Decision Making;
Ethics;
E-commerce;
Analytics and Data Science;
Retail Industry;
Apparel and Accessories Industry;
United States
- 2023
- Working Paper
Evaluation and Learning in R&D Investment
By: Alexander P. Frankel, Joshua L. Krieger, Danielle Li and Dimitris Papanikolaou
We examine the role of spillover learning in shaping the value of exploratory versus incremental
R&D. Using data from drug development, we show that novel drug candidates generate more
knowledge spillovers than incremental ones. Despite being less likely to reach...
View Details
Frankel, Alexander P., Joshua L. Krieger, Danielle Li, and Dimitris Papanikolaou. "Evaluation and Learning in R&D Investment." Harvard Business School Working Paper, No. 23-074, May 2023. (NBER Working Paper Series, No. 31290, May 2023.)
- 2023
- Working Paper
Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation
By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to...
View Details
Keywords:
Performance Evaluation;
Research and Development;
Analytics and Data Science;
Consumer Behavior
Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
- 2023
- Working Paper
Random Distribution Shift in Refugee Placement: Strategies for Building Robust Models
By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the U.S.
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can...
View Details
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Random Distribution Shift in Refugee Placement: Strategies for Building Robust Models." Working Paper, June 2023.
- June 2020
- Article
Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure
By: Omar Isaac Asensio, Kevin Alvarez, Arielle Dror, Emerson Wenzel, Catharina Hollauer and Sooji Ha
By displacing gasoline and diesel fuels, electric cars and fleets reduce emissions from the transportation sector, thus offering important public health benefits. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to...
View Details
Keywords:
Environmental Sustainability;
Transportation;
Infrastructure;
Behavior;
AI and Machine Learning;
Demand and Consumers
Asensio, Omar Isaac, Kevin Alvarez, Arielle Dror, Emerson Wenzel, Catharina Hollauer, and Sooji Ha. "Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure." Nature Sustainability 3, no. 6 (June 2020): 463–471.
- 2023
- Article
Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in...
View Details
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
- May 2023
- Article
How Do Campaigns Shape Vote Choice? Multi-Country Evidence from 62 Elections and 56 TV Debates
By: Caroline Le Pennec and Vincent Pons
We use two-round survey data from 62 elections in 10 countries since 1952 to study the formation of vote choice, beliefs, and policy preferences and assess how televised debates contribute to this process. Our data include 253,000 observations. We compare the...
View Details
Keywords:
Political Debates;
TV Debates;
Voting;
Political Elections;
Decision Choices and Conditions
Le Pennec, Caroline, and Vincent Pons. "How Do Campaigns Shape Vote Choice? Multi-Country Evidence from 62 Elections and 56 TV Debates." Quarterly Journal of Economics 138 (May 2023): 703–767.
- April 2023
- Technical Note
An Art & A Science: How to Apply Design Thinking to Data Science Challenges
By: Michael Parzen, Eddie Lin, Douglas Ng and Jessie Li
We hear it all the time as managers: “what is the data that backs up your decisions?” Even local mom-and-pop shops now have access to complex point-of-sale systems that can closely track sales and customer data. Social media influencers have turned into seven-figure...
View Details
Parzen, Michael, Eddie Lin, Douglas Ng, and Jessie Li. "An Art & A Science: How to Apply Design Thinking to Data Science Challenges." Harvard Business School Technical Note 623-070, April 2023.
- 2023
- Article
Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations.
By: Edward McFowland III and Cosma Rohilla Shalizi
Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, that is, with a node’s network partners being informative about the node’s attributes and therefore its...
View Details
Keywords:
Causal Inference;
Homophily;
Social Networks;
Peer Influence;
Social and Collaborative Networks;
Power and Influence;
Mathematical Methods
McFowland III, Edward, and Cosma Rohilla Shalizi. "Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations." Journal of the American Statistical Association 118, no. 541 (2023): 707–718.
- March–April 2023
- Article
Pricing for Heterogeneous Products: Analytics for Ticket Reselling
By: Michael Alley, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li and Georgia Perakis
Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including endogeneity, heterogeneity in...
View Details
Keywords:
Price;
Demand and Consumers;
AI and Machine Learning;
Investment Return;
Entertainment and Recreation Industry;
Sports Industry
Alley, Michael, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li, and Georgia Perakis. "Pricing for Heterogeneous Products: Analytics for Ticket Reselling." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 409–426.
- March–April 2023
- Article
Market Segmentation Trees
By: Ali Aouad, Adam Elmachtoub, Kris J. Ferreira and Ryan McNellis
Problem definition: We seek to provide an interpretable framework for segmenting users in a population for personalized decision making. Methodology/results: We propose a general methodology, market segmentation trees (MSTs), for learning market...
View Details
Keywords:
Decision Trees;
Computational Advertising;
Market Segmentation;
Analytics and Data Science;
E-commerce;
Consumer Behavior;
Marketplace Matching;
Marketing Channels;
Digital Marketing
Aouad, Ali, Adam Elmachtoub, Kris J. Ferreira, and Ryan McNellis. "Market Segmentation Trees." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 648–667.
- December 2022
- Article
The Rise of People Analytics and the Future of Organizational Research
By: Jeff Polzer
Organizations are transforming as they adopt new technologies and use new sources of data, changing the experiences of employees and pushing organizational researchers to respond. As employees perform their daily activities, they generate vast digital data. These data,...
View Details
Keywords:
Organizational Change and Adaptation;
Analytics and Data Science;
Technology Adoption;
Employees
Polzer, Jeff. "The Rise of People Analytics and the Future of Organizational Research." Art. 100181. Research in Organizational Behavior 42 (December 2022). (Supplement.)